
SIAM J. MATH. ANAL.
Vol. 12, No. 1, January 1981

1981 Society for Industrial and Applied Mathematics

0036-1410/81/1120-0001 $01.00/0

ON AN EXTENSION OF THE STURM COMPARISON THEOREM*

SHAIR AHMAD AND ALAN C. LAZER

Abstract. The main purpose of this paper is to extend the Sturm comparison theorem for second-order
differential equations to the equation Ly + p(t)y 0, where L is a disconjugate linear differential operator.of
order n, n => 2, and where p(t) is a continuous function of constant sign.

In this paper we study the differential equation

(1) Ly+p(t)y=O,

where p(t) is a continuous function of constant sign on a compact interval [a, b ], and L is
a disconjugate linear differential operator of order n _>-2 which we may assume to be
factored as a product of first-order operators: L0y roy, Lhy rh(Lh-ly)’ for h
1, , n, Ly Lny. This differential equation and special cases have been investigated
many times. (See, for example, [1], [3], [4], [5], [8], [9], [10], [11].) An extensive
bibliography is contained in [1]. Here we assume that rh(t)>O for t[a,b], and
rh Cn-h for h 1,. , n, although ifwe generalize the notion of a solution of (1) as in
[5] or [9] our results will still hold if these functions are only assumed to be continuous.
Throughout, ix, i2, , ik, 1, ", ]-k will denote fixed integers such that 1 <_- k -<_ n 1
and 0-< ix < i2 <" < ik -< n 1, and 0-<_/x <j2 <’ <jn-k -< n 1. In our main
theorems we shall always make the assumption

(A) For a < c <- b them exists no nontrivial solution ofLy 0 such that

(2)
(Lisy)(a) O, s 1, 2,..., k,

(Lj,y)(c) O, 1,. ., n k.

The following result which is a special case of a more general theorem due to Elias [4,
Corollary 3] shows that this condition depends only on the integers is, s 1, , k, and
]t,t=l,...,n-k.

THEOREM 1. A necessary and sufficient condition for (A) to hold is that for any
integer with 1 <-_ <-n- 1, at least terms of the sequence of integers il, i2,’", ik,
fx, ],-k are less than I.

It is not difficult to show that if the above condition is not satisfied for some l, then
some linear combination of independent solutions of Lty 0 will satisfy the conditions
(2) and the equation Ly 0. Sufficiency can be derived as a consequence of Lemma 1
given below.

Our main result concerning (1) is the following extension of the well-known Sturm
comparison theorem for second-order equations:

THEOREM 2. Let pl(t) and p2(t) be continuous on [a, b], and suppose that

(3) (--1)"-kpz(t)<--__(--1)"-kpx(t)<--__O &rail t[a,b].
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IfPl P2, if condition (A) holds, and if them exists a nontrivial solution u of

LU+pl(t)u=O,

(4) (Lisu)(a)=O,

(Li,u)(b)=O,

then them exists a nontrivial solution y of

(5) Ly+pz(t)y=O,

such that y satisfies the boundary conditions (2) for some c with a < c < b.
Remark. Elias [3, p. 256] has shown that if p(t) is not identically zero on any

subinterval of [a, c] and does not change sign, then the existence of a nontrivial solution
of (1) satisfying the boundary conditions (2) implies that (--1)"-kp(t)<--0 on [a, c].

For the special cases is s- 1, s 1,..., n- 1, ix 0, and il 0, ]t t-1,
1,..., n- 1, Theorem 2 was established by Schmitt [10] in a slightly weaker form.
Later, in [1], the authors established Theorem 2 for the special case is s- 1, s
1, , k, f, t- 1, 1, , n k, where k satisfies 1 -< k <- n 1. Utilizing recently
published results of Elias [4], we are now able to give a simpler proof of the more
general theorem.

We present a simple example in which (A) does not hold and Theorem 2 does not
apply. Let r0(t)= rl(t)= rE(t) -= 1, and Ly =L2y y". Let il =/’1 1, so that Lhy
Lhy y’. We see that (A) is not satisfied, since for any a and any c > a, y"=0,
y’(a)=y’(c)=0 has nontrivial solutions. If 0<b-a<zr, pl(t)=-O, pz(t)=-l, then
u(t) 1 is a nontrivial solution of Lu +pl(t)u=O, (Llu)(a)=(Lu)(b)=O, but Ly/
pE(t)y 0, (Lxy)(a) (Ly)(c) 0 has no nontrivial solution for a < c -<_ b.

As a byproduct of our methods used to prove Theorem 2 we shall obtain a simple
comparison theorem concerning an eigenvalue problem for the equation

(6) Ly+Ap(t)y=O.

We shall illustrate this comparison theorem with an example from fluid mechanics.
We make use of some known results concerning (6) which are summarized in
TI4EOREM 3. Ifp(t) is continuous on [a, b], ifp(t) does not vanish identically on any

subinterval of [a,b], if (A) holds, and if (--1)n-kp(t)_<-- 0 for all t[a,b], then for any
c (a, b] there exists a unique number A0(c)>0 such that when A Ao(C), (6) has a
solution y which is strictly positive on (a, c) and which satisfies the boundary conditions
(2). Moreover, A0(c) is continuous in c.

The first statement follows from results of Elias [4, pp. 34, 54]. It also follows as a
special case of a result of Karlin [7, 4] and the theory of oscillation kernels. The second
statement follows from a result of [4, Corollary 5] which actually shows that Ao(C) is
continuously differentiable on (a, b].

The number A0(c) is the smallest eigenvalue of (6) with the boundary conditions
(2).

Let f be continuous on [a, b]. A maximal closed subinterval of [a, b], which may
consist of a single point, on which f is identically zero will be called a zero component
We say that f changes sign h times on a subinterval of [a, b if there exist h + 1 points
Xl <X2<’’’<Xh+l belonging to this subinterval such that f(xj)f(x+l)<O for ]=
1,. , h. We say " changes sign on a subinterval if [ changes sign at least once on the
subinterval.
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LEMMA 1. Letfl, f2, , f,,+, m >- 1, be continuous on [a, b], and suppose thatfor
1 <-_ h <- m the function fh does not vanish identically on [a, b ]. Suppose also thatfor all h,
1 <= h <- m, ]h+X changes sign on the open interval between any two zero components

(I) Ifm + s o[the numbers fl(a), f2(a), f,,(a), fx(b), f2(b), ],,(b) are zero,
where s >= 1, then [,+ changes sign at least s times on (a, b).

(II) Ifm => 2,// and]2 have a common zero component contained in (a, b) and if
m 2 + s of the 2m numbers fi(a), j 1,. ., m, and .(b), f 1,..., m are zero with
s >= 1, then f,,+x changes sign at least s times on (a, b).

Rolle’s theorem implies that if ro, rl,. , rn are as above and if f Cn[a, b ], then
the functions fh Lh-lf, h 1, , n + 1, will satisfy the first conditions of Lemma 1
provided that f,/ L[ does not vanish identically. In this case Lemma 1 follows from
Lemma 2 of [4]. In the general case it is easy to prove Lemma 1 by induction, starting
with m 1 for part (I), and starting with m 2 for part (II).

LEMMA 2. Suppose thatp(t) does not vanish identically on any subinterval of [a, c],
and that y is a nontrivial solution of (1) which satisfies the boundary conditions (2). If
0 <-_ h <-_ n 1, then Lhy must vanish at some point of [a, c].

Proof. Suppose on the contrary that for some satisfying 0 <- _<- n 1, (Ly)(t) 0
for all [a, c]. If n 1, let fh(t) (Lh-y)(t) for [a, c] and h 1,. ., n. If
0 _<- < n 1, let fh(t) (Ll+hy)(t) for 1 <_-- h -<_ n 1 l, and fh(t) (Lh-n+ty)(t) for n

<_-- h -<_ n. In either case the hypotheses of the lemma imply that for h 1,.. , n 1,
fh/l changes sign on the open interval between any two zero components of fh, and
that fh does not vanish identically on [a, b] for h 1, 2,..., n. Since f,(t)= L(t) 0
for all [a, c l, the boundary conditions (2) imply that at least n of the numbers
f(a),... ,f,-l(a), fa(b),... ,f,,-l(b) are equal to zero. Therefore, according to
Lemma 1, f,(t)=L(t) must change sign on [a,c], which is a contradiction. This
contradiction proves the lemma.

LEMMA 3. If the hypotheses of Theorem 3 hold, then limc-.a+ Ao(C) +.
Proof. Assume the contrary; it follows that, since Ao(C)>0 for c[a,b], there

exists a sequence of numbers {c,,} such that c,, > a for all m, lim,,_ c,, a, and the
sequence {Ao(C,,)} is bounded. By considering a suitable subsequence we may assume,
without loss of generality, that lim,_. Ao(C,,)= A* >=0. For each m => 1, let y,, be a
nontrivial solution of the boundary value problem Ly + Ao(C,,)p(t)y O, (Lisy)(a) O,
s 1, 2, , k, (L.,y)(c,) 0, 1, 2,. , n k. We may assume that y, is defined on
[a, b] and by multiplying y,, by a suitable positive constant we may suppose that

2h-O (Lhy,,, (b )) 1. By compactness of the unit sphere in [ we may assume, by
considering a suitable subsequence, the existence of numbers dl, d2," ’, d, such that

(7)

lim (Lhy,)(b)= dh+, h=0,...,n-l,

If m _>- 1 and we set Xh Lh-lYm, h 1,. , n, then

1
Xth=Xh+l, h=l," .,n-l,

Ao(C.)p(t)
x x(t).

rn(t)ro(t)

Since Ao(C,,) A * as m -, it follows from (7) and the standard theory of the continuity
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of solutions of linear differential systems with respect to parameters and initial
conditions, that if z 1,’ ’, zn are the functions which satisfy the system of differential
equations

(8)

and the initial conditions

(9)

then

(o)

1
Z Zh+l, h 1," n 1,

rh(t)

A*p(t)
Zn Zl,

&(t)ro(t)

Zh(b) dh, h 1, 2," , n,

lim (LhYm)(t) Zh+a(t), h 0," ", n 1,

uniformly on [a, b]. Now the conditions satisfied by y at a and at c and Lemma 2
imply the existence of numbers o,,"’, (,-X)m such that h, e[a, Cm] for h
0,... ,n-1 and Lhy,(&)=O. Since (10) holds uniformly on [a,b], and since
lim_.oo & a, it follows that Zh(a) =0 for h 1,. , n. But since Xh =--0 is a solution
of X’h=(1/rh)Xh+X for h=l,...,n-1, x,=-(X*p/r,ro)Xx, it follows from the
uniqueness theorem for linear differential systems that Zh(t)=O for h 1,..., n. As
this contradicts (9) and (7), the lemma is proved.

LEMMA 4. If (A) holds, if px and p2 are continuous on [a, c] with (--1)’-kp(t) <
(--1)"-kpl(t) =< 0 for all [a, c], iffor m 1, 2,

(11) Lu+p,(t)u,=O, te[a,c],

(12) (L,u)(a) O, s 1,..., k,

(13) (Li,u,)(c) O, 1,. ., n k,

if u2(t) > 0 for (a, c), and ux(t) 0 on [a, c], then p: =- p2 and there exists a number y
such that ux =- yu2.

Proof. By replacing Ul by -Ul, if necessary, we may assume ux(?)>0 for some
? e (a, ). Letq be the smallest integer such that 0=<q -< n 1 and (Lau2)(a) O, and let r
be the smallest integer such that 0 <= r =< n 1 and (Lu2)(c) O. Since u2(t) > 0 on (a, c),
it follows that (Lu2)(a) > 0 and (-1)(Lu2)(c) > 0. Since Lhux(a) LhU2(a) 0 if
0-<_h <q, and LhU2(c)=LhUl(C)=O if 0-<h <r, there exist numbers al>O and 6>0
such that Lq(u2-oul)(a)>O, (-1)rLr(u2-aUl)(C)>O and u2(t)-aux(t)>O for t
(a, a +t) and e (c -8, c), provided that 0_<-a al. Since u2 is positive on the compact
interval [a+3, c-8], there exists a number a2=>0 such that UE(t)--OUl(t)O if
e [a + 8, c 8] and 0_-< a -<_ a2. Therefore, if 3 min (a, a2 0, we have for 0 -< a <_-

(14) Lq(u2- au)(a) > O,

(15) (-1)Lr(u2 au)(c) > O,

and

(16) u2(t)-aUl(t)>O for all te(a,c).

Since ul() > O, (14), (15), and (16) cannot hold for all a > O. Consequently, there exists
y > 0 such that (14), (15), and (16) hold if a < y but at least one of the inequalities fails
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to hold for a > y. Clearly

(17)

We claim that either

(18a)

(18b)

u2(t) 3"U (t) >- O,

Lq(u2 3"u 1)(a O,

L,(ua 3"u l)(c O,

te(a,c).

or

(18c) ua(to)-3"ul(to)=O for some toe (a, c).

Indeed, if none of (18a), (18b) or (18c) held, then, by applying the same reasoning that
was applied to u and u to w --- u). 3,u and u 1, it would follow that (14), (15), and (16)
would hold for values of a larger than 3’. From the hypotheses of the lemma and from
(17) it follows that

(19) (--1)n-k(Lw)(t)=(--1)n-k[--pl(t)w(t)+(pl(t)--p2(t))u2(t)]>=O,

for all (a, c).
We claim that w(t)=u2(t)-3"ul(t)=O for all te[a,c]. Assume the contrary; it

follows that Lw does not vanish identically on [a, c] because of assumption (A).
Consequently, LhW does not vanish identically on [a, c] for h 0, 1, ., n 1, so the
functions fh Lh-1 w, h O, ", n, fulfill the conditions in Lemma 1. If either (18a) or

(18b) held, it would follow by (12) and (13) that, since q#is, 1<-s<--k, and r#ft,
1 <_- <_- n k, at least n + 1 of the numbers

(Low)(a)," (L,_lw)(a), (Low)(b), (L,_lw)(b)

would be zero. Thus, by Lemma 1, L,w Lw would change sign on (a, c), contradicting
(19). Therefore, both (18a) and (18b) are impossible, so (18c) must hold for some

toe (a, c). If either w(t)= 0 for all e [to, c], or w(t)= 0 for all e [a, to], then either
(LhW)(a)=O for 0<-h <-n-1 or (Lhw)(b)=O for 0=<h -<n-1. Since l<-k<-n-1, it
would follow from (12) and (13) that least n + 1 of the numbers

(Low)(a), (L,-l w)(a), (Low)(b), (L,-l w)(b)

would be zero. By the reasoning used above, this gives a contradiction. Hence, (18c)
implies that w has a zero component contained in (a, c) and since, according to (17),
w(t)>-_O on (a, c), we see that Low =row and LlW =rl(Low)’ have a common zero
component contained in (a, c). Since, by (14) and (15), at least n n-2 +2 of the
numbers

(Low)(a), (L,-l w)(a), (Low)(b), (L,-l w)(b)

are zero, part (II) of Lemma I implies that Lnw Lw changes sign twice on (a, c), which
contradicts (19).

This contradiction shows that w(t) u2(t)- 3"ul(t)=-0 on [a, c]. Hence, Lw --0 on
[a, c] and, since u2(t) > 0 on (a, c), it follows from (19) that pl(t) --- pz(t) on [a, c]. This
proves the lemma.

As an application of Lemma 4 we prove a simple comparison theorem for the
eigenvalue problem (6).

THEOREM 4. Let p(t) and q(t) be continuous on [a, b] and let

(20) (--1)"-kq(t)<=(--1)n-kp(t)<=O, te[a, 6].
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Suppose that p(t) does not vanish identically on any subinterval of [a, b ]. ffp(t) q(t) on
[a, b], and IZo(C) has the same meaning relative to the differential equation Ly +/xq (t)y
0 as ho(C) has relative to (6) in Theorem 3, then/.o(b) <ho(b).

Proof. According to the definition of ho(b) and/xo(b) there exists a solution v of
Lv + ho(b)p(t)v 0 which satisfies the boundary conditions (2) for b c with v(t) > 0 on
(a, b). Similarly, there exists a solution w(t) of Lw + Io(b)q(t)w 0 satisfying the same
boundary conditions with w(t) > 0 on (a, b). If, contrary to the assertion of the lemma,
0<ho(b)_-</xo(b) then, by (20), (-1)-ktzo(b)q(t)<--_(-1)-kAo(b)p(t)<--O for all t
[a, b]. Applying Lemma 4 with pE(t) tzo(b)q(t) and pl(t) Ao(b)p(t), it would follow
that Ao(b)p(t)=- txo(b)q(t) for all s [a, b], which contradicts (20), the assumed inequal-
ity 0 < Ao(b) _-</xo(b), and the hypothesisp q. Thus, 0 </xo(b) < A0(b), and the lemma is
proved.

Remark. If L and the boundary conditions (2) are self-adjoint, Theorem 4 is a
consequence of a well-known variational characterization of Ao in terms of Rayleigh
quotients.

Example. The eigenvalue problem given by the differential equation (6) and the
boundary conditions (2) includes as a special case an eigenvalue problem which occurs
frequently in the study of stability and bifurcation of fluid motions. This is the
eigenvalue problem

Lu+Ap(t)v=O,

(21) LEv-Aq(t)u =0,

u(a) u(b)= v(a)= v(b)= v’(a)= v’(b)= O,

an excellent discussion of which is given by Joseph in [6, vol. 1, pp. 251-255]. Here L is
a second-order iterated operator of the type considered above, and p and q are assumed
to be positive and sufficiently ditierentiable. We note that (21) is equivalent to either of
the two problems

Mu + A Zq(t)u O,

(22) (Mou)(a) (Mzu)(a) (M3u)(a) O,

(Mou)(b) (M2u)(b) (M3u)(b) O,

where Mu L2p- Lu or

Nv + A 2p(t)v O,

(23) (Nov)(a) (Nlv)(a) (Nav)(a) O,

(Nov)(b) (Nlv)(b) (N4v)(b) O,

where Nv Lq-XLZv.
Since the boundary conditions for both problems satisfy the hypothesis of Theorem

1, and since A0 is the smallest eigenvalue of (21) if and only if ho2 is the smallest
eigenvalue of either (22) or (23), it follows from Theorem 4 that the smallest eigenvalue
of (21) decreases (increases) if either p(t) or q(t) are increased (decreased). This fact has
been suggested by numerical studies such as the one given by Chandrasekhar [2, pp.
298-305] that concerns the problem

(D- a2)Zu (1 + at)v,
(24)

(D a2)v Ta2u
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u(O) (Uu)(O) v(o) o,
(25)

u(1) (Du)(1) v(1) 0.

Here/9 d/dt, a and a are constants, and T is to be determined. Since

Ly (D-a)y
cosh at d- csh at- cosh at

is an iterated operator of’the type considered, and since the substitutions T I , w Au
transform the system (24) into Lv +la 0, Lw- (1 +t)v 0, the problem (24),
(25) is equivalent to the form (21) if >- 1. The numerical study in [2] shows, among
other things, that the smallest eigenvalue T of (24), (25) increases as 1 +
decreases.

Proo[o Theorem 2. For each integer m N 1 let

()-
(26) Qm(t)=p2(t)-,

m

and let A,o(C) > 0 denote the number for which there exists a solution of the differential
equation

(27) Ly+A.o(c)O,.(t)y=O,

such that y satisfies the boundary conditions (2) and y is positive on (a, c). Since
(-1)n-kQr(t) < (--1)n-kQs(t)if r < s and e [a, b], it follows from Theorem 4 that

(28) A,o(C) < Aso(C),

if r < s and c (a, b]. If for some m => 1, A.,o(b) _-> 1, then (3) and (26) would imply that

(29) (-1)"-kAmo(b)Qm(t)< (--1)"-kp (t)

Since (4) has a nontrivial solution, and since the boundary value problem

Ly+A.,o(b)Q.,(t)y=O,

(L,.y)(a) O, s 1,..., k,

(Lhy)(b) 0, 1,. ., n k,

has a solution which is positive on (a, b), (29) and Lemma 4 would imply that
A.,o(b)Q.,(t)=-pa(t) which is absurd. Therefore,

(30) A.,o(b) < 1, m >_- 1.

Since lim_./ Ao(C)= +c, there exists c with a <c <b such that Ao(Cx)= 1.
Suppose that for some r -> 1 we have shown the existence of numbers cx <. < c with
a < Ch < b such that Aho(Ch) 1 for h 1,. , r. Since A/t)o(b) < 1 and, according to
(28), 1 =Ao(C)< Ar/l)o(C), it follows, by continuity of A/a)o, that there exists c/,
with c < c+x < b, such that A/l)o(C+)= 1. Thus, there exists a sequence {c.,}] such
that for all m -> 1

(31) a < c., < b, c., < c./, Amo(C.,) 1.

Let c limm-.oo c., <- b. By (31) and the definition of A.,o, there exists for each m ->_ 1 a
solution v. of

(32) Lv.,+Q.,(t)v.,=O,
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such that

(33) v,.(t) > 0, te(a,c.),

and

(Lisvm)(a) O, s l k,
(34)

(Lt,v)(c,,) O, 1,. ., n k.

By multiplying each Vm by a suitable positive constant we may assume thatn--1 2Y-h=O (LhV.,)(a) 1 for all m. Thus by compactness, there exists a subsequence {v,,}-I
n-1 2of {v,}’ and numbers do," ", d,,-1 such that h=O dh 1 and llm_,o (Lhv,,)(a) dh

for h 0,. , n 1. Since, by (26), lim/_. Qm, (t) p2(t) uniformly on [a, b ], it follows
by the same reasoning used to prove Lemma 2, that if v denotes the solution of (5) such
that (LhV)(a)=dh for h 0,..., n-l, then

(35) lim (LhVm,)(t) (LhV)(t) uniformly on [a, b].

Since (34) implies that (Lisv)(a)= O, s 1,..., k and (Lhv)(c)= lim_.o (Lhv,,)(c,,)=
0, 1,. , n k, and since v is a nontrivial solution of (5), the proof of Theorem 2 is
complete if c < b.

We show that c b is impossible. Assume the contrary; if a < < b then < c,,, for
sufficiently large, so by (35) for h 0 and (33), v(t)= lim/_,o l)m,(t) >-- 0. Hence,

(36) (-1)n-k(Lv)(t)=-(-1)n-p2(t)v(t)>--O for all t[a, b].

By the uniqueness theorem, the zeros of v on (a, b) are isolated. If V(to)= 0 for some
to(a,b), then, since v(t)>-_O, v’(to)=O. Hence, {to} would be a common zero
component of Lov and Lv, contained in (a, b). Since v satisfies the boundary
conditions (2) for b c, at least n n 2 + 2 of the numbers

(Lov)(a)," (Ln_v)(a), (Lov)(b), (L,,_v)(b)

are zero, so part (II) of Lemma 1 would imply the existence of at least two sign changes
of L,v =Lv on (a, b), contradicting (36). Thus, if b =c, v(t)>0 on (a, b).

Since the boundary value problem (4) has a nontrivial solution, and since v is a
positive solution of (5) satisfying the conditions (2) with c b, the inequality (3) and
Lemma 4 imply that p(t)=-pz(t) on [a, b]. Since this contradicts an assumption of
Theorem 2, b c is impossible. Hence, c < b so, by an earlier remark, the proof is
complete.

Remark. The reasoning used in the proof of Theorem 2 actually shows the
existence of a solution of (5), satisfying conditions (2), which is positive on (a, c).
Lemrna 4 with p pz shows that this solution is unique up to constant multiples.
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AN EXTENSION OF THE ENESTRM-KAKEYA THEOREM
AND ITS SHARPNESS*

N. ANDERSON,t E. B. SAFF:I: AND R. S. VARGA

Abstract. The classical Enestr/Sm-Kakeya Theorem, for obtaining bounds for the moduli of the zeros of
any polynomial with positive coefficients, is extended to the case of any complex polynomial having no zeros
on the ray [0, +o). It is shown that this extension is sharp in the sense that, given such a complex polynomial
pn(z) of degree n=>l, a sequence of polynomials {O,i(z)}--1 can be found for which the classical
Enestr6m-Kakeya Theorem, applied to the products O,,i(z)pn(z), yields, in the limit as --), the maximum
of the moduli of the zeros of p, (z).

A computational algorithm, based on linear programming, is also described whereby nearly "optimal"
multiplying polynomials O,(z) can be computed.

1. Introduction. With r/2 denoting the set of all complex polynomials of degree
exactly n, and with

(1.1) 7r/2 := {p/2 (z) Y’. aiz
i" a > 0 for all j 0, 1,. ., n },

a useful form of the classical Enestr6m-Kakeya Theorem [4], [13], due in fact to
Enestr6m [4], is the following:

THEOREM A. For any p/2 (z) Y-j=0 aJzj in 7r/2 with n >- 1, define

a a[p/2] := o<-,<min {aal},
Then, all the zeros ofpn(z) lie in the annulus

(1.3) lzl.
Evidently, if

/fl flip,,] := max

(1.4) p(p) :=max {Izil" p/2(z)=0)

denotes the spectral radius of any complex polynomial p/2(z) of degree at least unity,
then it follows from (1.3) of Theorem A that

+(1.5) fl[p/2]>-p(p,,) Vp,,(z) zr/2, Vn >--_ 1.

Naturally, it is of interest to know when the inequality of (1.5) is sharp. This was first
studied by Hurwitz 11], and the following result of [1 is a corrected form of Hurwitz’s
original contribution. (A similar result can be analogously obtained for the sharpness of
a[p/2] in estimating the minimum of the moduli of the zeros of p(z); see [1].)

ft.TI-IEOREM B. For any pn(z) Yq=0 azl in r with n >- 1, define

(1.6) S S[p/2] := {] 1, 2," , n + 1" fla,+l-. a,_ > 0}, where a-1 := 0,
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and

k kips] := g.c.d. (j S).

Then, equality in (1.5) is valid iff if.> 1. If> 1, the zeros of pn(z) on Izl are all
simple, and are precisely given by

(1.8) / exp {2"n’i]/k" i 1, 2,..., k 1}.

Moreover, pn (z) has the form
(1.9) pn(Bz) (1 + z + z 2 +... + z -1 }q, (z ),

+where q, r,,. 1fro >=1, all the zeros of q,(w) lie in Iwl< 1, and/[qm]=< 1.
NOW, the Enestr6m-Kakeya upper bound B[Pn] for p(p,) from (1.5) is certainly an

easy quantity to compute. But, it suffers from two serious deficiencies. First, this upper
bound can be applied only to the rather limited set of polynomials (.J +

n’--1 "/’/’n. For
example, it cannot be applied as such to the particular polynomial f(z)= l+z.
Second, the upper bound/3[p] may be a poor estimate of P(Pn), and it is not apparent
how this situation can be improved. For example, if f(z) 1 + ez + z where 0 < e <- 1,

--1,we find that/3[]’z] e which is a crude upper bound for p(f)= 1, when e is small.
To explain our approach of generalizing the Enestr6m-Kakeya Theorem, note in

the first example above that if O(z)=l+z, then the product O(z)’fl(Z)=
1 + z + z + z 3 is an element of 7r3. On applying Theorem A, we obtain that [O1 ]eli
1 >-p(Of). Moreover, sincep(Olf)>-p(f) from (1.4), then

and this last inequality is sharp since p (fl) 1. Similarly, for the second example above
we find that

this upper bound being a sharper estimate of p(f:z)= 1 than the classical Enestr6m-
-1,Kakeya bound e when e is small.

More generally, for some complex polynomial p,(z) in r, with n => 1, suppose that
there is a nonnegative integer rn and a multiplier polynomial O(z) in zr, such that
O,(z). p(z) zr++,. Then, on applying (1.5), we have [O,,p]>-_p(O,,p)>-p(p),
i.e.,

(1.10) [Q,,pn]>-p(p),

and we call B[O,,p,] a generalized Enestrb’m-Kakeya functional for p(z).
Several questions now arise, the first being to find the precise class of polynomials

pn(z) for which the generalized Enestr6m-Kakeya functional is defined. This is
answered in

PROPOSITIO 1. Given p (z) zr with n >- 1, there exists a nonnegative integer rn
+and a O,,(z)r for which O,,(z)" p,(z)zr,,+, iff p,(z) has no zeros on the ray

[0, +o).
The proof of this result will be given in 3. Because of Proposition 1, it is

convenient then to set

(1.11) ’, :={p(z) 7rn" p,(z) has no zeros on the ray [0, +oo)} for n=>l.

The next results, aimed at the sharpness of the inequality of (1.10), are our main
results. Their proofs are given in 4 and 5.
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THEOREM 1. For each p, (z , with n >- 1, there exists a sequence ofpolynomials
+ for all > 1, such that{Qm,(z)}=l, with Q,,(z) 6 7r,,, and with Q,,,(z). p,(z)6 7rm,+,

(1.12) lim/3[O.,,p.] to(p.).

In essence, Theorem 1 gives us that the generalized Enestr6m-Kakeya functional is
asymptotically sharp in the sense of (1.12).

Another question that can be asked is to characterize those elements p, ., with
n _-> 1 for which equality holds in (1.10) for some polynomial Q,(z), as opposed to
equality holding in the limit as in (1.12) of Theorem 1. This is answered in

THEOREM 2. Given p, (z Or, with n >-_ 1, there exists a nonnegative integer m and a
polynomial Q,,(z) in 7r,, with Q,(z) p,(z) 7r+,, such that

(1.13) [3[Qmpn]= p(p,)

iff all of the following hold:

(i) All zeros ofp,(z) of modulus p(p,) are simple.
(ii) If (’i}7=1 denotes the set of all zeros of p,(z) on the circle ]zl--p(p,), then

arg (i is a (nonzero) rational multiple of 27r, i.e., arg (i 2zrni/di (in lowest
(1.14) terms), where ni and di are positive integers with O<ni<di for all j=

1,2,...,r.
(iii) IfD := 1.c.m. {di}=x, there is a positive integer tr such that, for every zero of

p,(z) with ]l<o(p.); we have’ [0, +).

It is interesting to note that the motivation for Theorems 1 and 2 comes directly
from Theorem B, in the sense that the polynomial p, (/3z) of (1.9) of Theorem B is such
that its zeros have a ring-like character; i.e., p,([3z) has k- 1 zeros nearly uniformly
distributed on [zl 1, while its remaining zeros are distributed as the kth roots of zeros
of q,,(w) (cf. (1.9)). This pattern persists, as we shall see, both in our examples as well as
in the spirit of the proofs of Theorems 1 and 2.

In the next section, we show how linear programming techniques can be used to
determine nearly "optimal" polynomial multipliers Qm (z) of a specific degree such that

/ In addition the results of some numerical experiments will beO,,(z) p,(z) e zr,,,+,.
given and discussed.

Because of the continuing interest in the classical Enestr6m-Kakeya Theorem and
its many generalizations, we have gathered in the References a number of books and
papers which deal in part with this topic, in the hope that such a list may be of value to
the readers.

2. Optimization of the generalized Enestrim-Kakeya functional. For any p.
set

(2.1) /w,(p,):={Q,,(z)r,,’Q,,(z)’p,(z)6zr,+,} for any m ->0.

Note that w,,(pn) may be empty for a particular nonnegative integer m, but from
Proposition 1, it follows there is a nonnegative integer mo such that w,,,o(pn) . As is
easily seen, to,,(p,) implies to,,/k(p,) for every k >- 1. Thus, as a consequence
of Proposition 1, there is a least nonnegative integer tr(p,) for each p, "k, such that

(2.2) for all m

Note also that o,(p,) implies that o,. (p.) is a convex subset of r,, i.e., if ql(Z) and
qz(z) are in o.,(pn), then so is aql(z)+(1-a)qz(z) for all O-<a -<_ 1.
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Given a p,, .k,,, and given that to" (p,,) , it is of interest to determine compu-
tationally a nearly "optimum" element 0"(z) in to,,(pn), i.e., one whose generalized
Enestr6m-Kakeya functional satisfies"

/3[0mPn]-W-inf {/3[Q"‘p]: Q"‘

This can be done by solving a sequence of linear programming subproblems, each of
which consists of finding a so-called feasible solution [17, 3.5] to a set of linear
inequalities. (Such computational subproblems are usually solved using "Phase I" of
the simplex method; see [17].) Specifically, for any fixed p(z) i=0 aJzj in 7r, (which
we may take, without loss of generality, to be real), assume to,, (pn) , and consider
any real Q"‘(z) Y’.j---o bJzj If we set

Ore(z). pn(Z)= Z )’iZ/,
j=0

then Q"‘ to"‘ (p,) iff

(2.3) yi>0 for allj=0,1,...,m+n,
-, min (j; n)which is a system of linear inequalities in the bi s, since yi i=max(0;i-"‘)aib-e, for

/" =0, 1,..., rn +n. We then say that (z, Q"‘(z)) is a feasible point for to"‘(p) (cf.
Luenberger [17, p. 18]) if, in addition to (2.3),

(2.4) for all/’ 0, 1,. , rn + n 1.

By definition, if (r, Qm(Z)) is a feasible point for to"‘(Pn), then Q" to’(p,) and
[Q"‘p,]<=r. Note that Theorem 1 implies that given any r > p(pn), a feasible point
(r, Q"‘(z)) is guaranteed to exist for m sufficiently large.

On the other hand, fixing m.and given a feasible point (r, Q"‘(z)) for to"‘ (p,,) we can
proceed (see below) to determine computationally a least feasible point (-"‘, 0"‘(z)) in
to., (p,), where

(2.5) r"‘ := inf {r" (r, Q.,(z)) is a feasible point in to.,(p,) for some Qm(z)

Note that since (/3[Q"‘p,], Q"‘(z)) is, by definition, a feasible point for to"‘ (p,) for each
Q.,(z) to"‘(p"‘), it follows from (2.4) and (2.5) that

(2.6) 7.., =inf {/3[Q.,p,,]:

Thus, our computational technique finds in essence an "optimal" multiplier polynomial
in to.,(p), if to.,(p,,) .

The computational experiments were carried out as follows. Given a p (z)
1. Compute a .o)> p(p,) from the coefficients of pn using some standard upper

bound for p(p,) (see, e.g., [18]).
2. For m := 1, 2, 3, , use linear programming to attempt to find a feasible point

(.o, Q.,(z)). Call the first m for which success occurs too.
3. For m := too, mo+ 1,. ., find "optimal" multipliers Q"‘ (z), for each fixed m, by

using a bisection technique on the variable z, with (2.3) and (2.4) holding. For example,
given (.o, Q.,o(Z)) try to find a feasible point for -:= r/2; if this is not possible, try
with -:=43-. z); otherwise try -:= z)/4, etc.

In our computations, the actual testing for feasibility ("Phase I" of the simplex
method) was done using the program in Wilkinson and Reinsch [25, p. 152].

Now, let m be the sequence of integers and Q"‘, (z) the sequence of polynomials in
Theorem 1. By (2.5), we can compute a sequence of polynomials 0.,, satisfying

(2.7)
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where the ei are positive quantities which can be chosen to satisfy limi_. ei 0. But,

(p) <- (O,p) <= t (O.,p)+
since from (2.6), r,,, =</3(Q,,,pn). Thus, taking limits and using (1.12),

(2.8) lim (t)m,pn) p(p,),

and hence (ignoring roundoff), the sequence of estimates provided by the compu-
tational algorithm is guaranteed to converge to p(p).

Example 1. p6(z) (z 3 + 1)a "/’6.
For this polynomial, an optimum multiplier polynomial 032(z) was computed. Its

zeros are shown in Fig. 1. The value of "r32 (cf. (2.6)) is 1.03626 to 5D. The coefficients yj
in

38

032(z)p6(z) := Z "Yizj
i=o

satisfy ’/3q+ 1.03626 for all 0<=] <= 37 except for ’26/’27 0.944348 and Y32/’Y33
0.051895. Two of the zeros of 032 are roughly equal to the zeros of z :z + Rz /R :z, where
R 1.03626 7"32 (compare (4.7) in the proof of Theorem 1).

Note the circular pattern of the zeros of O3(z) p6(z). This idea is used in the proof
of Theorem 1, although the multiplier polynomials used there are not "optimal" at each
stage. For example, using the technique of this proof on p6(z) above yields/[{)48P6]
2/= 1.14870, which is not as good as the result [032p6]-- 1.03626 obtained from
linear programming.

Example 2. p4(z) (Z2-4-Z + 1)(2"2 + (x//2)Z + 4a-) #4-
For this polynomial (which is not in 7r), an optimum multiplier polynomial 17(z)

was computed. Its zeros are shown in Fig. 2. Again, note the tendency of the optimal
multiplier (17(z) to "fill out" the rings (Izl 1, [zl 1/2) on which the zeros of the original
polynomial lie.

FIG. 1. Zeros of p6(z)=(z3+l)2" diamonds" zeros of optimal multiplier of degree 32: crosses (r32
1.03626).
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FIG. 2. Zeros ofp4(z)= (z2- x/ z + 1)(z z + (4/2)z + 1/4): diamonds" zeros ofoptimal multiplier ofdegree
17’ crosses (717--- 1.00034).

3. Proofs of Proposition 1 and lemmas. We begin with the
ProofofProposition 1. First, assume that pn (z) is any polynomial which has no zeros

on the ray [0, +). Without loss of generality, we may assume that pn(z) is monic and
moreover real, for if (z ’) is a factor of p,, (z) with ( not real, then both r and ff are not
contained in [0, +) and we may consider pn (z). (z ) in place of p, (z) if (z ) is not
a factor of p,, (z). Hence, we can express p (z), by hypothesis, as

or equivalently

p,(z)= I] (z+6,) H (z-riei)(z-rie-i),
i=1 /=1

(3.1) pn(Z)"-H (Zq"i) H (zZ-2ricosOiz+r),
i=1

where 6i > 0 (if the first product is not vacuous), and where r > 0 and 0 < 0j < 7r (if the
+second product is not vacuous). If the second product is vacuous, then already p rn.

If the second product is not vacuous, consider the quadratic factor
2 2z -2rj cos Oz + r, r >0, O< O < zr.

+If 7r/2 < 0. < r, this quadratic factor is an element of r2. If not, this quadratic factor
divides

4(z 2 2ri cos Oiz + r)(z2 + 2ri cos Oiz + r) z#-2r cos (20i)zZ + ri.

If zr/4 < 8 =< zr/2, this product, when multiplied by (1 + z), is then a polynomial in 7r-. If
0 < 0i <- r/4, this process of doubling the argument 0. can be continued, and eventually,

+since 0j > 0, one obtains in this manner an element in some r. As this is true for each
quadratic factor of (3.1), a polynomial multiplier can thus be found such that

4-O,,(z) p,,(z)6 r,,,+,.
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Conversely, supposing that pn (z) has a zero on the ray [0, +oo), the same is true for
any product Q,(z) pn(z), whence Q,,(z) p(z) : rL/ for any Q,(z).

Before proceeding to the proof of Theorem 1 in 4, we establish some results
needed in the proof of that theorem.

LEMMA 1. For any positive integer m, let {Pk(Z)}= be any collection of m
polynomials, each having positive coecients and each being of degree at least unity.
Then,

(3.2) B P E B[P].
k=l k=l

Proof. The proof will be by induction on m. Obviously, (3.2) is valid for m 1.
Assume, then, that (3.2) is true for m, and consider any (m + 1) polynomials {Pk" ,+1

Z)k=l,

each having positive coecients and degree at least unity. Calling

Y

(3.3) Q(z):= Pk(Z)= aiz and P+(z):= bz,
k=l =0 ]=0

and, noting that rearrangements of the P’s have no effect in (3.2), we may assume that
y A. On setting

O(z) P+l(Z):= E CkZ k,
k=0

then from (3.3) and the hypotheses of this lemma, we obtain

k

Ck abk- > O, fork=0,1,...,y+A,
i=0

where a := 0 for all ] > y and where bi := 0 for all ] > A. With the inductive hypothesis
that B [Q] E= B[P], we must show that

(3.4) Ck/Ck+Xfl[Q]+fl[P+x] forallk=0,1,...,y+A-1.

This is done by considering the three cases: 0 k < A, A k < , and k + A 1.
Since the proofs of the cases are similar, we consider for brevity only the case

k + A 1. In this case, we have

( ,)/(a_b+ Y. ab_ Y
]=k+l-A j=k+l-h

<-- ak-xbx +
/=k+l-X a[P,+l]b,+l_i)/(i=+l_x

ak-xbA m+l

+[P/]<=3[o]+[P/] <- E [P,],
ak+l-xbx k=l

the last inequality making use of the inductive hypothesis/ [Q] -<
k= B [Pk ], which

completes the proof. []

Next, we establish a needed polynomial perturbation result.
LEMMA 2. Given any complex number re i with

(3.5) O<O<Tr and r > O,
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and given any sequence {sv}l ofpositive integers such that

(3.6) s>-2 /vl, and lims=+oo,

+ for all v sufficientlythere exists a sequence ofmonic polynomials {Ps. (z)}= with fisv
large such that

(i) (z rei)(z re -i) divides fis. (z) for all v >- 1, and
(3.7)

(ii) !irn/3[L.] r.

Proof. First, if we can show that {Ps. (z)} satisfies (3.7) for the special case r 1,
then fi(z/r) will satisfy (3.7) for the general case. Thus, assuming r 1, we define the
real monic polynomials P(z) by

(3.8) Pv(z) := 1 + z +" + z (z+ 1)/(z 1),

whose simple zeros are (k(S):=exp[2zrki/(s+l)], k=l, 2,...,s. For each u
sufficiently large, choose the distinct zero, say ’kl(S), of Ps. (z) which best approximates

i0e in the upper-half complex plane. It is geometrically clear that

(3.9) I’kl (sv)- eil <-
s+l’

for all v sufficiently large, say v -> Vo. With this choice, define

(Z --ei)(Z --e -iO)
(3.10) P(z) := Pv(z)

(z kl(S))(Z -kI(S,))
VV >= VO,

SO that /(z) is a monic polynomial in r, and (z-ei)(z-e-i) divides/.(z). In
essence, the pair of simple zeros ’kl(s) and (k(S,) is "perturbed" to the two simple

+iozeros e of/(z). Expressing/5(z) in the form

(3.11) /Ss(z) E ai(s; O)z Iv >- Vo,
i=0

and writing ai ai(s; O) and arg ’k(Sv) =: , we obtain on cross-multiplying in (3.10)
that

(3.12) (z 2- 2 cos 4,z + 1)s(z)= (z2- 2 cos Oz + 1)Pv(z).

On equating coefficients of z on both sides, we have (cf. (3.11))

(3.13) ai_2-- 2 cos Sai_l + a. 2(1 -cos 0), j 1, 2,. , s,

where a0 1 =: a-1. We write’

(3.14) b- := ai- 1, j=-l,0,...,s;

then (3.13) becomes

(3.15) bi-2- 2 cos @b.-x + b. 2(cos @ -cos 0), j -1, 0,.. , s,

where bo b_ 0. The solution of this linear difference equation can be verified to be

[cos -cos 0]{sin 4 +sin f- sin (j + 1)}(3.16) bi= (1-cos ) sin 4
-l<=j<=s"
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so that

(3.17) ibl < 31cos 0-cos 01 _l<=j<=s.
(1 -cos 4) sin ’From our definition in (3.9) of (kl(S) and from (3.5), it then follows that there is a

constant M, dependent only on 0, such that

(3.18) ]bii<=M/s forall-l<=j<__s,andforalls,,>=2.

Recalling (3.14), we see that (3.18) implies that la-ll<-_M/s, from which
4-it follows that Ps.(z)Trsv for all , sufficiently large, as well as (cf. (3.7 (ii)))

lim_.oo/3[Psv] 1.

4. Proof of Theorem 1. Consider (cf. (1.11)) any pn(z) .k,, with n-> 1, and
assume, without loss of generality, that p,,(z) is monic, real, and is normalized so
that (cf. (1.4))

p(p,)= 1.

Writing

(4.1) p,(z) fi (z (i),
i=1

so that ]’i]-<- 1 for all i, we define

(4.2) := fi tw
i=1

where is any positive integer, and set

(4.3) Si := {t 77+. sr [0, +oo)}, 1 =< _-< n,

where 77+ denotes the set of all positive integers. Because p, (z) ,, then 1 .i, and -i is
thus nonempty for all 1 -< =< n. Note that if some arg (i =: 0i is a rational multiple of
i.e., (in lowest terms) Oi 2r3"/6 where 3’ and 6 are positive integers with 3"/8 < 1, then
no multiple of 6 is in Si, while all 0 (mod 6) are in Si. In this case, it is evident that

Si 77+\{m6}=1.
On the other hand, if some arg i is not a rational multiple of r, then Si--77+.
Consequently, since p, (z) is a fixed polynomial in .kn, then

(4.4)

(i) f Si =: T {/1}/.= c 77+, and
i=1

(ii) l=tl<ta<t3..., withlim
/’oo

We claim now that for each T, there exists a polynomial Gi(w) such that

(i) Gi(w) is monic and has positive coefficients for all j => 1,

(4.5) (ii) Pt(w) of (4.2) divides Gi(w) for all j-> 1, and

(iii) [Gi] <= n,

where n is the degree of p,(z) in (4.1). To see this, consider from (4.2) any factor
(w-srl’) of Pt(w), where tie T. If srl is real, i.e., arg ri rr, then this factor is
just (w +](1), since T can contain only odd integers in this case, and moreover,
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fl[(w + IsrJl)] [srl;[-<_ 1. If srl; is not real, the reality of the polynomial Pt(w) gives us that
the product

(4.6) (w sri’)(w ()’,)
divides P(w), where we may assume that 0<arg ’ < rr. Applying Lemma 2 to the
product of (4.6) gives a polynomial/5,i(w.) having (4.6) as a factor, such that/5.i(.w) has
positive coefficients, and such that /3[Pi,i]-<2. Thus, multiplying all these Pa(w)’s
together, thereby forming Gi(w), gives that Gi(w) is monic with positive coefficients.
Applying Lemma 1 to the product defining Gi(w) gives [Gi(w)]<-n, and by con-
struction, P(w) o (4.2) divides Gi(w), thereby establishing (4.5).

Next, for each R > 0, form the product

(4.7) H.(z; R):={R tj-a +Rti-2z +"

for each tj T, where Gj(w) satisfies (4.5). Because Gi(w) has all positive coefficients
from (4.5 (i)), the polynomial /-/.(z; R) defined in (4.7) similarly has all positive
coefficients, and the Enestr6m-Kakeya functional/3 of (1.2) can be directly applied to it.
Note that the given pn (z) in "kn divides/-/. (z R) (cf. (4.2) and (4.5 (ii)) for each choice of
R > 0. Now, it can be easily verified that

(4.8) B[H.(z R )] max {R F/R t-i },

where F. :=/3[Gi]. On equating R and Fj/R t-l, i.e., on setting R. := Fi tj, we obtain
from (4.8) that

(4.9) B[/-/.(z; Ri)] F/t’= (B[Gi])1/,, /ti T.

To complete the proof of Theorem 1, it thus remains from (4.9) to show that

(4.10) lim ([G.i]) 1/ti 1.

Since p, (z divides /-// (z R.) and since, by normalization, p(p,) 1, then from (4.9) and
(4.5 (iii)),

1 p(p,,) <=/3[H/(z R/)] ([Gi]) i/t’ (n) i/tj,

which .yields, by way of (4.4 (ii)), the desired result of (4.10).

5. Proo[ of Theorem 2. First, assume that for p,,(z) "?r,, with n => 1, there exists a
+polynomial O,,(z) in rrm with {m(Z)’pn(Z)G’rrm+n, such that 8[O,,,p,,]=p(p,,).

Without loss of generality, we may, as in 4, normalize to the case p(p,,)= 1, i.e.,

[Op,,]=O(p,,)=l.

From (1.5), [Q,,,p,,]>-o(Q,,,p,)>=p(p,,) 1, so that

fl[OmPn] O(Ompn) O(P,,) 1.

Hence, from Theorem B, all zeros of Q,,(z). p,(z) on Iz[ 1 are necessarily simple,
which establishes the necessity of (1.14 (i)) of Theorem 2. Next, again from Theorem B,
there is a positive integer k > 1 such that the zeros of Qm(z)" p,,(z) on Izl= 1 are
precisely of the form

(5.1) exp {2rif/k" ] 1, 2,..., k 1}.

Evidently, each zero of p,,(z) (as well as each zero of Q,,(z)) on ]zl 1 is a (nonzero)
rational multiple of 2zr; i.e., if {srj}= denotes the set of all zeros of p,,(z) on Izl 1, then
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(5.2) arg (j 2zrnj/d (in lowest terms),

where n and d. are positive integers with 0< n < dj for all j 1, 2,..., r, thereby
establishing the necessity of (1.14 (ii)) of Theorem 2.

Next, again from Theorem B, we have that, for some nonnegative integer l,

(5.3) O,,,(z) p,(z) (1 + z + z z +. + z-l)g(z),
h-where gt(w) rt, and if -> 1, all zeros of g(w) lie in Iwl < 1, and [3[gl]<= 1. Clearly, the

zeros of pn(z) on Izl-- 1 must be of the form (5.1), so that, for suitable integers ,j,

Thus, if D := 1.c.m. {d.}= 1, then D divides k, whence k rD for some positive integer
r. Now, consider any zero ( of pn(z)_with I(1< 1. Evidently, r is a zero of gl(W) from
(5.3). But, since g(w) r[, then (k= (o could not be contained in [0, +oo), which
establishes the necessity of (1.14 (iii)).

Conversely, assume that p, .k, with n -> 1, that p(p,) 1, and that (1.14) is valid.
Defining/,-r(z) := p,(z)/I-Ii=l (z (i) l-Ii=l (z -/xi), where again {(i}i--1 is the set of
all zeros of pn(z) on Izl a, then either/,_r(z) is a nonzero constant, or/,_(z) is a
polynomial of degree n-r-> 1, all of whose zeros lie in Izl < a. In the former case,
hypothesis (1.14 (iii)) holds vacuously, while in the latter case, hypothesis (1.14 (iii))
implies that/3,_(W) := I-Ii=l (W-’) is an element of r,-r. Now, applying Theorem 1
to/3,_r(W) "k,_, shows that there exists a sequence of polynomials {Qi(W)}il such
that

i) Oi(W)./,_r(W) has positive coefficients for all => 1, and
(5.4)

(ii) lim[Qi.,_]=p(,_r(W))<l.

To fix matters, choose from this sequence {Qi(W)}I the polynomial ((W) of least
degree such that

(i) O(W)’ p_(W) has positive coefficients, and
(5.5)

(ii) [(. 1-] - 1,

and set g(W):= ((W)/,_(W).
Since 1-I=l (z- () divides, from (1.14 (ii)), the polynomial

1 + z + z +.. + z -1, where/ o’D,

it follows that there is a polynomial multiplier, Q,(z), such that

(5.6) O,,(z) p,(z) {1 + z +... + z-l}g(z),

where g(W), from (5.5), has positive coefficients,/3[g]-< 1, and all zeros of g(W) lie in

Izl <= 1. By this construction, one directly verifies that

which establishes (1.13). [3
We remark that the construction in the proof of the sufficiency of conditions (1.14)

of Theorem 2 gives the multiplier polynomial Q,,(z) of least degree for satisfying (5.7).
To illustrate the result of Theorem 2, consider

2Example 3. p3(z) := (1 + z )(+ z) ’3.
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The zeros of p3(z) are +i, -1/2, so that /9(p3)-" 1. For the zeros on Izl 1, their
arguments are 27r/4 and 6r/4, whence (cf. (1.14 (iii))) D =4. But, since (_1/2)4
[0, +m) for every positive integer tr, hypothesis (1.14 (iii)) fails, and it is not possible to
find a polynomial multiplier Q,,(z) for which (1.13) is valid.

Example 4. p4(Z) (1 + Z2)(41- + 1/2Z "]" Z 2) ’’4.
The zeros of p4(z) are +/-i, and 1/2 e +2"i/3. As in the previous case, the zeros on [z[ 1

have arguments 2r/4 and 6r/4, whence D 4, and as (1/2 e+2i/3)4’_ [0, +3) for o- 1,
2, 4,. , we choose o- 1. In this example, the conditions of (1.14) of Theorem 2 are
valid, and with Qs(z):= (1 + z)(1/4-1/2z + z2)(-1/4z + z2), then

Qs(z)p4(z) (1 + z + z 2 + z 3)g2(z4), 1 w 2with g2(w)=’+-+ w

so that

[Qsp4] 1
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ALGEBRAIC METHOD FOR SOLVING SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS*

SERGE VASILACH

Abstract. In our previous papers [SIAM J. Math Anal., 6(1975), pp. 295-311’ 10(1979), pp. 586-602"
10(1979), pp. 1077-1088.] we have given an algebraic method for solving linear differential equations and
partial differential equations with variable coefficients.

The present article is devoted to the application of the same method for solving systems of linear
differential equations whose coefficients are functions of the independent variable of the real line Rt.

The important result of this method consists in the fact that the required solution is obtained in an

arbitrary neighborhood of a fixed point to of Rt.

1.1. Introduction. In the present paper, an algebraic method is given for solving
systems of linear differential equations with variable coefficients. For a similar method
concerning linear differential equations and partial differential equations, see our
previous articles [1], [2], [3]. Our method is based on the construction of a new class of
distributions (cf. [4]), which permits us to define certain composition algebras as tensor
products of distributions of this class, and to transform linear differential equations
(respectively, partial differential equations) into algebraic composition equations (cf.,
for example, [1, Thm. 1, p. 305] and [2, 4, Thm. 4.1]).

1.2. The composition algebras, (+r,) -r,) and [+r,) (-r,). Let Rt (resp.
R,,) be the real line with variable (resp. c).

Let (-Ft) (resp. (+F)) be the cone of Rt (resp. R,), defined by

(-Ft) (-oc, t], (resp. (+F)= [c, +oo)).

Let (cf. I-5, Chapt. II, 2]) (/r,) (resp. (-r,)) be the locally convex space of
indefinitely differentiable functions with support limited to the left (resp. to the right)
with respect to the variable c R (resp. Rt).

Let @’ (resp. 9’ be the strong dual of(+Ft)

-rl) (resp. +r)).

Let @-z,)/r) be the locally convex space of indefinitely differentiable functions with
respect to the variables (t, c) Rt R,,, and with support limited to the left for c R
and to the right for R, (cf. [4, 2, pp. 5-7]).

Let @+r,)(-r) be the strong dual of (-r,)(+r) (cf. [4, 4, pp. 7-9]). One has (cf. [4,
3, No. 2, Thm. 4]) the kernel theorem,

(1 1) (+r,)(-r)-(+r,) (-r.).

If we consider (+r,) as a subspace of +r,), equipped with the topology induced
by @+rt), we have

and @(+r,) @-r.) is a composition algebra for the composition operation given by

(1.2) S T= | S(t, )T(5, o) d.

* Received by the editors September 20, 1977, and in revised form May 28, 1980.
5" Departement de Math6rnatiques, Universit6 Laval, Quebec G1K 7P4, Canada.
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More precisely, (+r,)@@-r) is a composition algebra, non-commutative, with zero
divisors and which has Dirac kernel 6(t-a) as unit element for the composition (el. [1,

1.2]).
Similar definitions and properties hold for _v,)) +v). Moreover, in [2, 1.3],

we have seen that +i-,)zi-) is a right (resp. left) module with respect to the
composition algebra (+r,)@ -r) (resp. +r,) (-r)).

Let m(t) be a multiplication operator in @(+r,)(-r) (el. [1, 3.10] and [2, 3.5]).
Then, we have

(1.3) A (m(t)T)= (Am(a))o T.

Indeed, using (1.2) we obtain

A (m (t) T) (A (t, ), m () T((, a)) (Am (a)) T.

1.3. Composition product and derivatives into +r,)-r,). Let 8(t-a) be the
Dirac kernel with respect to the variables and a. It is known that g(t- a) 6(a t) and
that (t-a).belongs to the composition algebras" ’t, t,

(-r), (+r,) @ (-r)(cf. [1, 1, Remark
p. 296]). Further, one has for the derivative of order ]"

(1.4) 6(/)(t-a)=(-1)i6) (t-a),

and

PROPOSITION 1.1. For all S(t, a) @i+r,)(-r) we have

(ef. [2, 3, Formulas (3.36) and (3.37)]):

iS
(1.5) (t) (t-a)o $(t, a)= O--t
(1.6)

(1.7)

S(t, )o 6i) (t-a)= (-1)
dis
Oa

a(ti)(t-a)o S(t, a)o 61k)(t--a)= (--1) k
oi+ks
Ot Oak.

Let

1 for t=>a,
Y(t- a

0 elsewhere,

be the Heaviside kernel with respect to the variables and a (cf. [1, 3.2]).
Let Y(t-a) be the/’th composition power of Y(t-a) given by (cf. [1, 3.6,

formula (3.7)]:

--a)
j-1

Y(t-a)i= (j- 1)!
for r->_a,

0 elsewhere.

For S(t, a)= Y(t-a), (1.5) and (1.6) give us

li)(t_a) y(t_a)=6(,i-a)(t_a) y(,i) (t-a)
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and

g(t--ol) (,k)(t--ol)" (--1)kc(tk-1)(t--ol)-’(--1)kg(ak) (t--ol)" g(tk) (t--ol).

In particular, we obtain

(t-) ’, (t ) ,’ (t-) r(t, ) (t- ),

which shows us that Y(t-a) (resp. 8’t(t-a)) is the inverse of 6’t(t-a) (resp. Y(t-a))
for the composition product. Therefore, it is natural to write

y(i) (t-a) 3 (i-1) (t-a)
(1.8) and

y(t-k)(t--a)=8(tk-l)(t--a)={ (t-a }(k-)
for any positive integers j and k. Under these conditions the following commutativity
formula holds:

(1.9) a(/)(t-a)o 8(tk)(t--a)=8(tk)(t--a)o
for any positive or negative integers j and k.

1.4. Derivatives of the composition products into +ro(-r). For

A +r,) (-r),

B (+r,)(-r),

C (-r),

the composition products A B and B C belong to +r,)(-r). Moreover, the equa-
tions (1.5), (1.6), (1.7) imply

(.10)

(-1)
0i+A O+B

o (-1)

for any positive or negative integers ], k, l. Similar formulas can be obtained or the
composition product B C.

2. Composition igebrs
2.1. Preliminaries. In [1, 2] and [2, 2.3] we have defined the composition

algebras

(Lo),(Lo) for 1/p + 1/q 1, 1

of (classes of) functions f(t, a) with pth locally integrable powers with respect to
Lebesgue measure on Rt for each fixed a R and with qth locally integrable powers
with respect to Lebesgue measure on R for each fixed R.

Also in [1, 2.3] we have defined the composition algebra c/dk of functions f(t, a)
continuously differentiable of order -<l with respect to the variable R.t and of order
-<m with respect to the variable a R. On the other hand, for an element f of

(t,m)(Lt’oc)t(Loc) (resp. ct we have defined (cf. [1, 3.3]), the kernel-function {f}, as an
element of @’(+r,)(-r), by setting

}= Y(t-a)f(t, a)= f(t, 0)
0

for _>- a,
elsewhere.
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Further, for elements f, g of (Lf’oc),(Loc) (resp. of (t’m) we have seen (cf. [1, 2.4])
that the composition product {f} {g} is given by

II/j(t, :)g(:, c)d: for t->a,
{f}o {g}=

elsewhere.

It is clear that

{f}o {g} {fo g}, {f+ g} {f} + {g},

and {Af} A {f}, for A a real or complex parameter.
Therefore, the set of kernel-functions corresponding to the elements of

(Loc)t(L’oc)o (resp. (tl,m)) is a composition algebra. We denote by {(Loc),t(L’oc)o,} (resp.
(/2_ (/,
wtc }) this composition algebra.

2.2. The composition algebras Mat.,([+r,))(-r,)) and
[-r)). In this section we will extend the composition product to matrices whose

dements belong to the composition algebra (@[+r,) @-r)) (resp. to (@</r,) @[-r)).
We denote by Matnn(@[/r,) @(-r)) the class of square matrices of order n whose
elements belong to the composition algebra @[+r,)

For

all a12 aln)anl an2 ann

and

elements of Mat,(/r,) (-r)), the composition product M N is given by

MoN
an1 an2 a,,,, b, b,2 b,,,

d11 d12 din

dnl d.2 d/

where

(dii aik bgi) l<_i<_n,lj<_n,
k=l

belong to (+r,) ) @(-r). Therefore, M N belongs to Mat(+r,) @ (-r)).
It is clear that Matn(@+r,) ( @(-r)) is a composition algebra.
In a similar way, one can show that Mat,,(@(+v,) (R) N’(-r)) also is a composition

algebra.
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2.3. The composition bimodule Mat..(+r,)-r)). We denote by
Mat(+r) -r)) the class of square matrices of order n, whose elements belong
to the composition bimodule

It is easy to see that Mat(/r)(R) -r)) is a right (resp. left) module with
respect to the composition algebra Matn,(@(+r,)(R)@(-r)) (resp. Mat,((+r,)
(-))).
PROPOSITION 2.1. Let Q(t) be a n x n matrix whose elements (mii(t)), 1 <-i <-n,

1 <] < n, are multiplication operators in (+FD(-Fo,)"

rhen
(2.1) M (O(t)N)= (MO(a) N.

Proof. We have

m11(t)
O(t)N

mnl(t)

gll(t, ce)

gnl(t, oe)

ml(t)/. (b11(t,...a)
m(t)/ b,a(t, a)

b,,(t,)

bln(t, c))b(t,a)

where

(2.2)

whence

gii(t, a)= mik(t)bki(t, a),
k=l

o)
MoO(t)N)

\a,l(t,a)

c)

hnl(t, ce)

al,(t,.., a)) (g11(t,... a)a,,(t,a) g,(t,a)

hl,(t,

gl,(t,a))...g,,(t,a)

in which, by virtue of (2.2),

hii(t, a)= , ait(t, a)o gj(t, a)
k=l

ai(t, or)o mk(t)b<j(t, a)
k=l k=l

(
kx=l k=l

But, (cf. [1, 3.10, p. 304]) we have

ait(t, a) (mk,(t)btqi(t a)) (ait(t, a)mtq(a)) btqi(t

whence (2.1).
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2.4. The Dirac matrix l(t-). We say that the square matrix of order n

,5(t 0 0

(2.3) I(t-a)=
0 8(t-c) 0 0

o 0...0
is the Dirac n x n matrix.

It is easy to see that I (t a is a unit element for the composition with the objects of
Mat,,, (@+r,)(-r).

2,5, The Heaviside matrix o3(t- a). We say that the square matrix of order n

Y(t-a) 0 0

0 Y(t-a) 0 0(2.4) o21(t a

0 o Y(t-c)

is the Heaviside n n matrix.

(2.5)

r(t-a)p

o21(
0

0

0 0
Y(t-a)" 0 0

0 0 Y(t-a)"/
is the pth composition power of (t-a).

2.6. Derivatives of l(t-). The derivative of order , for j-> 0, is given by

(ti)(--Og)
(tD(t-Oz) 0(2.6) I(J)(t-a)

0 0

A similar definition holds for the derivatives with respect to the variable

2.7. Derivatives of o3/(t-). The derivative of order , j=>0, of (t-a), with
respect to the variable t, is given by

;- (t- c) 0 0

(2.7) )(t- a)
0 6<ti-a)(t-c) 0 0

0 0 a(’-) (t- a)
A similar definition holds for the derivatives with respect to the variable a.

2.8. Composition algebras ot kernel-matrices. Let {K} be the composition algebra
of kernel-functions which corresponds to the composition algebra K of functions of the
variables and . Let Mat.. (K) be the class of matrices whose elements belong to K.
Then for

M(t, a)

all(t, ce) al.(t, a) ta21(t, a) a2(t,

a,l(t, a) a,,(t,
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belonging to Mat,, (K) we denote by {M} the matrix which corresponds to M, given by

(2.8)

Let

/{aa(t,a)}
{M}= /{a21(t’ a)}

\{a,l(t, a)}

aaa(t,a)
a2(t,a)

a.(t,a)

{aa,(t, a)}
{az.(t, a)}

a,(t,a)

b,(t,a)

b, (t, c

b,(t,a)

be a second object of Mat..(K); one has

moN
Cll Cln I
Cn Cnn ]

where

(2.9)

Cij aik bki
k=l

,2= ait,(t, )bq(:, a) d.

Then we can write

(2.10)

and

(2.11)

M N f M(t, )N(, a) d Mat.. (K),

{M}o {N} {f M(t, tj)N(, a) d Mat,,({K}).

Therefore Mat,,({K}) is a composition algebra.

2.9. Derivatives of the composition products of matrices. Let M, N be arbitrary
objects of Mat,,(@+r,)(-r). One has

(2.12) I(t])(t-a)oM
Ot

(2.13) M i() (t-a)= (-1) OkM--
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and

(2.14)

I(t/) (t-a)o Mo I(t) (t-a)o No I(f (t-a)

(_l)t
a/+lM

)k akN
OtOao(-1 Oa -OM ol+N

These formulas are a consequence of the formulas (1.5), (1.6), (1.7) and of the
definition of the composition product of matrices.

Of course, the derivatives of kernel-matrices are given by the same formulas.
For the primitives of kernel-matrices one has

(2.15) (t-a)" {M} Ij (t-(p_)P-ll)! M(, a) d}
and

3. Algebraic method for solving systems of linear differential equations with
variable coefficients.

3.1. Fundamental matrices. Let us consider in @/r,(-r the system of linear
equations

(3.1) dT
ai(t)T $i, 1 <- <= n,

dt k=l

in which (aq(t)) 1<=,,1<__<__ are operators of multiplication and ($) 1__<i__< is a given family
of elements of

It is required to find the solution (T,.) l_<_g____, of this system by our algebraic method.
In this respect, using the fundamental identity (1.5), we transform the system (3.1)

into the equivalent algebraic system of composition equations

’(t-a)-ait(t)8(t-a)]o Ti- aik(t)8(t--a)o Tk=Si, 1 <i<n.
k=2

On the other hand, (3.2) is equivalent to the equation

(3.3)

in which we have set

[I’t (t a) M(t)I(t a)]o T S,

(3.4)

a!l(t)M(t)
a a(t)

T1

T= T

"".. al,(t)),
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Further, by composition to the left of both sides of (3.2) with (t-a) we obtain

(3.5) [(t- a) I (t-a)-(t-a) (M(t)I(t-a))] T= (t-a) S.

But we have (t-a) I’t (t-a) I(t-a), and (cf. 2, Prop. 2.1)

(3.6) (t-a)o (Mt)I(t-a))= {M(a)}
anl(Ce) ann(a)

Then (3.5) takes the form

(3.7) [I(t-a)-{M(a)}]o T= (t-a) S.

For solving (3.7), we will first determine the fundamental matrix, {E(t, a)}, the
solution of the equation

(3.8) ,r.E__,d {M(r)E} I (t a ),
dt

which is equivalent to the equation

(3.9) [I(t- a)- {M(a)}] {E} (t- ).

For determining {E}, we will proceed as follows.
Let {M(a)} be the uth composition power of {M(a)}, given by

(3.10) {M(a)}"
mnl(t, a) mn,(t, a

Then, by definition, for u 0, u 1, v 2 we obtain

-a) fori=],
rnoii(t, a)

0 for ],

tnaii(t, a) aii(o) for 1 _-< <- n,

whence

(3.)

and

l<=]<-n,

{M(a)}=I(t-a), {M(a)}l {M(ce)},

On the other hand, one has

mlik m2ki-- aik(a)o m2ki(t
k=l k=l

akkl(l) d:l akd(a) d
k=l k=l

k=l k=l
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Likewise, we have

m2i,(t, a)o ak,(a)= i f m2i,(t, j)a,i(o)d
k=l k=l

k=l k=l fc akk (’)dfe aikl(’l)

a3ii(t, o).

it is easy to show that we have the following formula,
:

Is akkl(’) d’ I aikl(’l) d’l-- Ia alkl(’)d, Ja akkl(’l) d’l,

which leads to the relations

m3ii-= i m2i(t, a)o ai(a)
k=l

a,(a)o m2k(t, a),
k=l

and

{M}o {M} {Mlo {M} {M)3

--{IM()dIcM(l)dlM(ol)}.
whence, by recurrence,

and

...ff’-3M(v_2)dv_2M(o)}"

(3.13) {M}o {M} {M} {M} {M}"+ 1.

Then for v N- {0, 1, 2, 3} we obtain

m,,(t, c)=
k1=1 kv_l=l

(3.14)

k=l k_=l
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which gives us

where we have set

(3.16) Gii(t, a)= E m,,(t, a).

From (3.16) we obtain

and, if we put

iGor(t, )l E ]m,,(t, a) < o,

we find that

Ap=Suplaij(t)] forl<=i<-n, l<=j<-n, ap<-a<-t<-bp,
peN _

(b. a.)
(,- 1)!

Therefore, (Gij(t, a))<__i<=n.l<__i<= are absolute and uniformly convergent series on each
compact subset of R 2

t, ce --<t.
This assertion holds also for the derivatives

(aGii/at)l <_i<__n,l<__i<__n.

(’) (resp.If the functions (aii(t))x<=i<=.<_i<__.. (resp. aii(a))l<=i<=n,l<=i<=n, are of class
c()) then (Gii(t, ce))X<-_i<-_n.X<-_i<-_n are of class

Then, by setting

(3.17)
a) Gl(t,

G(t,a)
\Gn(t, a) G..(t, a)

(. m,we see that G(t, a) belongs to Mat.. ,, and {G(t, a)} to Mat..t,tw("’’)}).
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On the other hand,

2 {M} [I(t a) {M}]
=0

(3.18)
=[Z(t-a)-{M}]o E {M}=I(t-a),

’=0

shows that E-_o {M} is the inverse of [I(t-a)-{M}] for the composition operation.
Then, from (3.9), we obtain for the fundamental matrix {E} the expression

(3.19) {E(t, a)}= E {M} (t-a).

But, by virtue of (3.15), (3.16) and (3.17), we obtain

(3.20) {E}= (t-a)+ (t-a),
G,l(t, a)

that is,

(3.21) {E} (t-a) +
Ell(t, a) El,(t,

E,l(t, a) E,,(t, a)

in which we have set

-a)+Gij(t-a)o Y(t-a)
(3.22) Eij(t, a)

Gii (t, a) Y(t a) for #/.

Then the solution T of (3.3) is given by

(TI_. {(Ell...(3.23) T
rn \Enl

equivalent to

}.
={E}oS,

4. Boundary-value problem for a system of linear differential equations with
variable coefficients.

4.1. Statement of the problem and its solution. In this section we will determine,
by means of our algebraic method, the solution of a boundary-value problem for a
canonical system of linear differential equations with variable coefficients. Let

(4.1.)
dt

bi(t) + E aii(t)xi(t), 1 <- <- n,

be a system of n linear equations of order 1, in which (ai(t))l<=i<=n,l<_jn and (bi(t))l<__i<=n
are given functions satisfying certain conditions of differentiability in a closed interval
[a, b] of the real line

Of course, (Eij(t, Og))l<=i_<n,l<=/<=n belong to 8, Consequently, {E(t, a)} is a
kernel-matrix which belong to Mat,,(@+r,)(-r)), and the solution (3.23) has mean-
ing, if (Sk)x<=k<=, are elements of the composition algebra

for j,

(3.24) Tg {Eik} Sk, 1 <-- <-- n.
k=l
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It is required to find the solution xi(t), l<-_iNn, of (4.1) which satisfies the
following conditions:

(4.2) Xi(tO) Ci, 1 <= <-- n,

at a fixed point to e [a, b], where (Ci)l<_i<=n are real or complex constants. To do this, we
will proceed as follows. Let

(4.3)

dxi
dt J dt

{x,(t)} Y(t-a)xi(t),

{b,(t)} Y(t a)bi(t),

be the kernel-functions of the bimodule +r,)(-r), which correspond to the functions
(dxi/dt), xi(t) and bi(t), <= <- n.

Further, let us transform (4.1) in @+r,)(-r) by multiplying both sides of (4.1) by
Y(t-a). Then, according to (4.3), the system (4.1) takes the form

(4.4)
dt J

{bi(t)} + {aii(t)xi(t)}, 1 <- <- n.
/=1

On the other hand, from the fundamental formula (cf. [1, 3.4, formula (3.2)]),

dxi} d{xi}
6(t-a)x;i(a) 1 < < n,(4.5) -d--J d-----

and replacing in (4.4), {dxi/dt} by the right-hand side of (4.5), we find that the
kernel-functions ({xi(t)})l__<i<__, are solutions in @i+r,)(-r) of the system

d{xi}
(4.6) E {dii(t)xi(t)}={bi(t)}+6(t-ce)xi(a), l<=i<=n,

dt j=l

which is a particular case of the system (3.1), where one has

T/={xi} and Si={bi}+6(t-a)xi(a),

Then, if we set

and

{x}

( {bl(t)}+8(t-a)Xx(a))){B}
{b,(t)}+6(t-a)x,(a

we obtain

(4.7) {x}={E}o{B},

equivalent to (of. formula (3.24))

(4.8) {Xi}-" {Fii}{bi}+ {i]}x](),
i=1 i=1

l<_i<_n.
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which for >_-a takes the form

(4.9) xi(t) "-IZ1"= Eq(t, )bj() d+
i=1

Eii(t, a)xi(a), l <=i <=n,

where, according to the formula (3.22), we have

1 + Gig(t,

(4.10) Egi(t, a)=

Hence

Eii(a, a)= l forl-<_i<_-n,
(4.11)

Egi(c,a)=0 forij, l<-_i<-n, l<-_j<-_n,

and

(4.12)

1 0 0

E(a, a)=
0 1 0 0

0 0 0 1

Remark 4.1. The fundamental formulas (4.9)-(4.12) hold for each finite interval
[a, b c R such that a <- a -<_ <- b.

Now, for determining the solution of (4.1) which satisfies the conditions (4.2), we
are led to assume that one has a =< a-< t-< t-< b, i.e., that our method gives us the
required solution (x/o (t))l<___n for -_> to. More precisely, a being arbitrary, this solution
is obtained by substituting to for a everywhere into the formulas (4.8)-(4.10). Then we
obtain for the solution of the problem (4.1)-(4.2)

(4.13) xi(t)-- It Eii(t,)bi(j)dlj+ Eii(t, to)Cj, l<-i<=n, fort>_-to_->ce.
/=1 i=1

The problem which may be stated now is the following: is it possible also to
determine, by our algebraic method, the solution for <-to <- a with the same initial
conditions at the point to? More precisely, is it possible to obtain the solution of (4.1) in a
neighborhood of to?

The answer to this question is affirmative. Indeed, in [1, 5], we have determined
the solution of a differential equation

d"-iyd"__y.y+ ai(t f(t),(4.14)
dt dt-i

which satisfies the initial conditions

(4.15) y(k)(to) Ck, 0 <-- k <-_ n 1,

by means of the composition product in +r,)(-r) defined by

(4.16) S(t, a)o T(t, a)= f, S(t, )T(, a) d,
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and of kernel-functions defined by

f(t, c) for -> c,
(4.17) {f}+= Y(t-a)f(t, c)=

0 elsewhere.

Thus, we obtain the solution for _-> to--> a.
Now let @-r,)(+r) be the locally convex space of distributions with support limited

to the right with respect to the variable and to the left with respect to the variable (for
the definition and the properties of this space cf. [4, 2, No. 5]).

Let @(-r,) (resp. @(+r)) be the locally convex space of indefinitely differentiable
functions with support limited to the right (resp. to the left) with respect to the variable
(resp. c).

We suppose @(-r,) (resp. (+r)) equipped with the topology induced by the strong
dual @i-r,) of @(+r,) (resp. by the strong dual @+r) of (-r)).

Let us consider, on the other hand the locally convex space @(_r,) ) @’ (resp(+F,)

@i-r,) @(+r)).
Then, for S, T elements of (-r,)( +r) (resp. of i-r,) (+r)), the

composition product

(4.18) So T= S(t, )T(s, ) d
also belongs to @-v,) @/r) (resp. to @-v,)@(+v)) which, therefore, is a
composition algebra.

It follows that -v,)+v) is a composition module over -v,) ’ (resp(+r)

-,) (+r)).
In order to obtain the solution of (4.14) satisfying the conditions (4.15) for

N t0 N a, we transform the equation (4.14) into the composition bimodule (-r,)(+r).
For doing this, we multiply both sides of (4.14) by Y(- t), and apply ater this

operation, the same algebraic method as for t0 but using the composition
product (4.18).

The important result of this method consists in the fact that the solution of
(4.14)-(4.15) is given, for tto by the same formula as for a tot.

In brief, by means of this method we obtain the solution in a neighborhood of the
point t0.

In our next papers we will show that this result is also or linear systems of
differential equations and for partial differential equations with variable coefficients.

4.2. Fundamental system of integrals of a system of linear differential equations.
The formula (4.13), which gives us the solution of the problem (4.1)-(4.2), holds for any
arbitrary functions (bi)l<_i<=n satisfying certain conditions of differentiability. In parti-
cular, this is true for bi(t)=O, l<=i<-n. In this case, (4.13) is the solution of the
associated homogeneous system of linear differential equations

dy_i(4.20) Y aij(t)yi, 1 <- <- n.
dt

From (4.13) and (4.19) we obtain

@__!(4.21) Z Cii
dt

dF-i]-- aii(t)( cEi(t, to)).dt i=1 k=l
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Then, if we put

Ei(t, to) \
(4.22) Yi E2i!t’ to)}, 1 =<j < n,

/
Eni(t, to) /

and if we identify the coefficients of ci, 1 <= <= n, in both sides of the second equality in
(4.21), we find that Y/is a solution of

(4.23) dye. MY, 1 <= j <= n.
dt

On the other hand, from (3.19) and (4.21) we obtain

(4.24) E(t, to)= (Ya(t, to),’", Yn(t, to)),

Hence, by virtue of (4.12),

(4.25)

and

1 0 0 0

E(t,o, to)=
0 1 0 0

0 0 0

(4.26) Det E(to, to)= 1.

Therefore, (cf. Bourbaki, [5, Chapt. IV, 2, No. 4, Props. 4, 5]), (Y)l-<i_-<, is a
fundamental system of integrals of (4.1).

4.3. Example. Assume n 2, and consider the boundary value problem xi (to) c a,

1 -< -< 2, for the system

dx=ba(t)+a12(t)x2,
dy

(4.27)
dx2=b2(t)+aza(t)xa.
dt

One has

I(t-) ( 6(t-a)O 0 ) M(ce)=( 0 alz())6(t- c) aa(a) 0

Gal(t, a)= Z (aaz(a)o a21(a))(p,
p=l

Glz(t, a)= E (a12(ce)o a:z1(ce))(P)oa12(a),

Gl(t, o)= (al(a)o al(a))( a(o),
p=O

G).).(t, a)= Z (a).a(a)o al2(Ce))(),
p=l
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where

and

(az(a) a21(o))(p)

ax2() d a2() d’l a12(2p-2)a21(a) d2p-2

(a12(ce) a2x(ce))(p) ale(a)

a12() d a21(:l) dl’" a21(2p-1)aa2(O) d2p-1.

Similar expressions are obtained for the terms G2 and Gzz.
Finally, the required solution is given by

+ b()d 1+ G(t,)d

+It b2()df Glz(t, 1)dl,

and

in which

Cl Xl(to) and cz-- Xz(to).
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FEEDBACK REDUCING SENSITIVITY BY A FACTOR k<l*

VACLAV DOLEZAL

Abstract. Necessary and sufficient conditions for a plant and controller are established under which
there exists a feedback reducing the incremental sensitivity by a given factor h < 1. It is understood that the
reduction occurs for all prescribed inputs and plant perturbations.

Introduction. The problem of reducing sensitivity by feedback is old and well
researched. Modern approaches to this area use operator theory for the description of a
system, and the sensitivity is defined in terms of norms. In this context, let us mention
works [1], [5], [6], and more recent papers [7], [8]. Basically, the known results concern
the case in which the error of an equivalent closed-loop system does not exceed in norm
the error of the open-loop system.

In this paper we discuss a stronger requirementwreducing the incremental sensi-
tivity by a factor A < 1. To explain the problem under consideration, assume that an
open-loop system (Go, Po} is given (see Fig. 1), where Go, Po are bounded, linear
(possibly causal) operators on a Banach space. Moreover, suppose that a number

H Ho H 2

GO Po
FG. 1.

0 < A < 1, a set U of inputs and a set 74/" of plant perturbations of interest is prescribed.
The question is whether there exists a feedback and controller described by a bounded,
linear (possibly causal) operator K and G, respectively, such that"

(a) The closed-loop system {G, Po, K} is equivalent to {Go, Po}; i.e. both systems
have the same input-output operator, (see Fig. 2).

(b) For every u 6 U and W Wwe have [lll <-- A I[0ll, where 8c and 80 are the errors
in the output of {G, Po, K} and {Go, Po}, respectively, determined by the input u and
the perturbation W of the nominal plant P0. It is understood that the errors 6, 6o are
given in terms of the Fr6chet derivatives of the corresponding input-output operators [2].

If the sets U and 7g’ are not too slim, i.e., if a certain set f depending on Go, U and
k//" is dense, we can give a necessary and sufficient condition for the existence of such a
feedback K and controller G. It turns out that this condition is the existence of a
bounded, linear (possibly causal) right-inverse of the operator PoGo.

Undoubtedly, this is quite a strong requirement. However, since this condition is
both necessary and sufficient, it clearly gives the limits for sensitivity reduction.

On the other hand, in the second part of the paper, we.examine assumptions on
U, and Go which guarantee the density of the set f. In particular, we study the case
where L2[0, o) is the underlying space. Surprisingly enough, the sets U, //V need not be
too large for f to be dense. For example, Theorem 4 shows that if U consists of a single
exponential ae -’t, a > O, a O, and /4/’ contains input-output operators of all stable
systems with constant, lumped elements, then l) is dense.

* Received by the editors May 15, 1979, and in revised form June 10, 1980. This research was supported
by the National Science Foundation under grant MPS 7505268.

Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, New
York 11794.
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In our setting, the causality does not play any essential role, but can be easily
incorporated into the considerations. As a result, our main Theorem 2 consists in fact
of two assertions: one ignoring causality, and the other taking it into account.

1. Results. We begin with some notations and definitions.
If Ha, H are Banach spaces over the same field of scalars, we let [H1, H2] be the

Banach space of all linear bounded operators A :Ha H2 equipped with the customary
norm IIAII- sup{llAx[l: x Ha, IIx[I- 1}.

If, in particular, Hi is a Hilbert space endowed with a resolution of identity
{P)" T e R 1}, 1, 2, and A e [Ha, HE], then A will be called causal [1 ], if

T T

for every T e R a.
Let L be a Banach space and let XeL, r>0; then we put B(X)

{X: X e L, IIx-xll < r}.
We introduce the (incremental) sensitivity as follows, [2]:
DEFINITION 1. Let H0, Ha, H be Banach spaces having the same set of scalars,

and let Xe [H0,.H]. For every fixed X e B,(X), r >0, let Sx be a system whose
input-output operator F(X) is in [Ha, HE]; i.e., Sx carries each input u e Ha into an
output y eH and y F(X)u. If the Fr6chet derivative OF(. of F exists at X, then it
will be called the (incremental) sensitivity of the (nominal) system Sxo at X.

As it was indicated in [2], for W e [Ho, HE] with Ilwll sman, the operator OF(W)
approximates F(X+ W)-F(X). Consequently, for any fixed input uoeHa, the
element OF(W)uoeHE is an approximation to the actual error a
F(X+ W)uo-F(X)uo. This fact justifies our definition.

In order to compare sensitivities of different systems, we introduce the following
definition.

DEFINITION 2. Let OF(. be the sensitivity of the (nominal) system Sxo, 1, 2 at
X, and let A > 0. Moreover, let U Ha and [H0, H2] be nonempty subsets. We
will write OF1(. )_<-, OF2(. with respect to (U, 7///’) if

(1) IlaF(W)ull <-_, IlaF=(W)ull for all u e U and W

This definition expresses precisely what we have said above about reducing
sensitivity by a factor . Indeed, assume that in both systems Sx and So the nominal
operatorX is perturbed by an increment W which is in the set of all perturbations of

2SX+Winterest If both systems Sxo/w and have the same input u e U (set of all inputs
of interest), then 8a aFa(W)u and aE aFE(W)u are the respective errors provided
second-order quantities are neglected. Thus, (1) means that

Turning now to our proper objective, let H0, Ha, HE be Banach spaces having the
same system of scalars and let G e [Ha, Ho], Poe [Ho, H2], K e [H2, Ha]. It is well
known [3] that any input u e Ha of the closed-loop system {G, Po, K} (Fig. 2) produces a
unique output y e HE <= the operator N I +KPoG e [HI, Ha] is invertible. In this
case, y Fu, where

(2) F PoG(I + KPoG)-a.
Referring to Figs. 1 and 2, we introduce the following terminology"
DEFINITION 3. Let Go, G e [H1, Ho], Poe [Ho, H2] and K e [H2, H1].
(i) The closed-loop system {G, Po, K} is called normal, if the operator N-

I +KPoG is invertible. If, in addition, Ho, Hi, H2 are Hilbert resolution spaces and the
operators G, Po, K, N-a are causal, then {G, Po, K} is called causal.
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H Ho

FIG. 2.

H 2

(ii) The closed-loop system {G, Po, K} is called equivalent to the open-loop system
{Go, Po}, if {G, Po, K} is normal and

(3) Go G(I +KPoG)-.
Several comments are in order. First, observe that in our setting N-1 is bounded as

a consequence of the open mapping theorem. Hence, the operatorF is bounded; i.e., a
normal system {G, Po, K} is stable. Second, if {G, Po, K} is equivalent to {Go, Po}, then
(2) and (3) show that F =Fo, where F =PoGo is the input-output operator of
{Go, Po}. Hence, these systems are indistinguishable if considered as black-boxes.

If an open-loop system {Go, Po} is given, we can readily single out all closed-loop
systems {G, Po, K} that are equivalent to {Go, Po}. To do this, we will need the following
well-known result (see [1], p. 64):

LEMMA 1. Let h, h’ be linear spaces having the same system of scalars, and let
A h’ h, B h h’ be linear operators. If the operator N I +AB h - h is invertible,
then M ! +BA h’ h’ is also invertible, and we have

(4) M-I=I-BN-1A,
(5) BN-I=M-aB, AM-I=N-aA.
If, in addition, h, h’ are Hilbert resolution spaces and A, B, N- are causal, then M-1 is
also causal.

LEMMA 2. Let Po [Ho, H2] and Go [Ha, Ho]. IfG [Ha, Ho] andK [H2, Ha],
then the closed-loop system is equivalent to the open-loop system {Go, Po}, iff

(i) the operator Q I-PoGoK [H2, H2] is invertible, and
(ii) G (I GoKPo)-Go.
Proof. (a) Assume first that conditions (i) and (ii) are satisfied. Note that (ii) is

meaningful; i.e., the operator R I GoKPo [Ho, Ho] is invertible by virtue of (i) and
Lemma 1.

Next, by (ii),

N I +KPoG I + KPo(I- GoKPo)-a Go.
Since R is invertible, the operator L I KPoGo is also invertible by Lemma 1, and (4)
yields

L-a I + KPo(I GoKPo)-aGo N.

Hence, N is invertible, and

(6) N-a I KPoGo;

i.e., the closed-loop system {G, Po, K} is normal.
Moreover, from (ii) we have Go(I + KPoG) G. Since I +KPoG is invertible, (3)

follows. Thus, {G, Po, K} is equivalent to {Go, Po}.
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(b) Conversely, assume that {G, Po, K} is equivalent to {Go, Po}; i.e., N is invert-
ible and (3) holds. Then, Q =I-PoGoK =I-PoG(I +KPoG)-IK. Since I +KPoG is
invertible, $ I +PoGK is also invertible, and by (4),

S-a I PoG(I +KPoG)-aK Q.

Hence, Q is invertible and

(7) Q-a I + PoGK3
i.e., condition (i) is satisfied.

Moreover, (3) yields Go (I- GoKPo)G. However, since O is invertible, Lemma 1
shows that I-GoKPo is invertible. Thus, condition (ii) follows and the proof is
complete.

REMARK 1. If we had defined the equivalence by equation F =F, i.e., via
equality of the corresponding input-output operators, then a result like Lemma 2 is still
true. The only difference is that condition (ii) has to be replaced by

(ii)* G (I- G’oKPo)-aG, where G Go + Uo with Uo [H1, Ho] being an
operator satisfying the equation PoUo O.

The next assertion is of crucial importance for our considerations.
LEMMA 3. Let Go, G [H1, Ho], Po [Ho, He], K [H2, Ha], and assume that the

closed-loop system {G, Po, K} is equivalent to the open-loop system {Go, Po}. Then:
(i) There exists r > 0 such that the operator I +KXG [Ha, H:] is invertible for

each X Br(Po) {X: X [Ho, H2], IlX Poll < r}.
(ii) The maps Fo, Fc Br(Po) [Ha, Hz] defined by

(8) Fo(X) XGo, Fc (X) XG(I +KXG)-a

are differentiable at Po.
(iii) For the sensitivity OFo(" and dec(. of {Go, Po} and {G, Po, K} at Po,

respectively, we have

(9) OFc (W) QOFo(W)

for all W [Ho, Hz], where 0 I-PoGoK.
Proof. By Definition 3, the operator N I +KPoG is invertible, and (3) holds.

Next, invoking the results on Fr6chet derivatives discussed in [2] we obtain that the
maps Fo and Fc are well defined on a ball Br(Po) with some r >0, and they are
ditterentiable at Po. Also, by (8) we have, for each W [Ho, H],

(0) 0Fo(W) WGo,

and

OFt(W) O[XG]( W)(I +KPoG)-1 + PoGO[(I + KXG)-a]( W)
(11) WG(I + KPoG)-a -PoG(I +KPoG)-aKWG(I + gRoG)-1

[I-PoG(I + KPoG)-aK]WG(I +gRoG)-a.
However, invoking (3) and (10), we get

aF W) (I PoGoK)WGo QOFo( W),

which confirms (9).
If U = Ha and 74/’ [Ho, H2] are given nonempty sets of inputs and plant per-

turbations of interest, respectively, and if Go [Ha, Ho], we denote

(12) fifo(U, /4/’)-- {WGou" W [/t/’, u U} HE.
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Then we have the following result:
T8EorzM 1. Let Go, G [H1, Ho], Po [Ho, H2], K [H2, H1], and let the closed-

loop system {G, Po, K} be equivalent to the open-loop system {Go, P0}. Moreover, let
U c H1, /4/’c [Ho, H] be nonempty, and let )t >0. If Fc(" ahd Fo(" are the
sensitivities at Po of {G, Po, K} and {Go, P0}, respectively, then Fc( <- , Fo.( with
respect to U, t’)

(13) r sup {llOxll" Ilxll-: x o(U, ), x 0} A,

where Q I PoGoK.
(The proof follows trivially from (9), (10), (12) and Definition 2.)

Let us consider now the following problem. Suppose that {G0, Po} and U, o/ are
given, and that 0 < A < 1. What conditions must be imposed on Po, Go under which
there exist G and K, such that {G, Po, K} is equivalent to {G0, Po}, and for the
corresponding sensitivities we have F(. )=< A 0Fo(. with respect to (U, o/)? It turns
out that such a condition can be found easily provided IGo(U, 7’) is dense in H2. Also,
in the next paragraph we will show that the density requirement is satisfied for quite
meager but reasonably selected sets U and

To pave the way towards the main result, we have to prove a few auxiliary claims.
LEMMA 4. Let l’to(U, bV) be dense in H2; then o" IIQII, where o- is defined by (13).
Proof. The function (x)= IlOxll. Ilxll is continuous on H2-{0}.
It is convenient to introduce the following two sets Yfx(T) and Y’* (T).
DEFINITION 4. If T [H1, H2] [is causal] and 0 < h < 1, let Yfx (T)[:)’fx* (T)] be the

set of all [causal] operators K [H2, H1] such that
(i) Q I- TK [H2, H2] is invertible [and Q-1 is causal],
(ii) IIQII--< A.
We will need the following assertion:
LEMMA 5. Let h, h’ be Banach spaces over the same field of scalars, let Ao [h, h’]

be invertible, and let 0 < a < 1. IfA [h, h’] and

11A-AolIIIA11[-1,
then A is invertible, A-1 [h’, h and

IIA- 11 (1 a )-IIA ff 11.
If, in addition, h, h’ are Hilbert resolution spaces andAl,A -Ao are causal, then A-1 is
also causal.
This is a standard result except, perhaps, for the second claim which follows easily by
realizing the fact that (A-Ao)A- is a contraction.

LEMMA 6. Let T e[H1, H2] [be causal] and let 0<h <1. Then {h (T)
[?7{* (T) ]: Tpossesses a linear, bounded [causal] right-inverse; i.e., there exists [a
causal] M [H, H1] such that TM L

Proof. (a) Assume that there exists M e [H, H1] such that TM L Choose a
number/x with 1 h <=/x < 1 .and put K =/xM. Then K e [H., H1] and O ! TK
(1 -/x)L Since 0 < 1 Ix -< , O is invertible and Iloll-- 1 -< A, so that K e ’/’x (T)
;. If, in addition, T is causal and the existing M is causal, then the above K is causal
and so is 0-1 (1 -tz)-lL Hence, ’c* (T) .

(b) Conversely, let $’/’x (T) . Choosing some K e 3’/’x (T), then (2 I-TK
[H., H2] satisfies the condition IIolI_-<A < 1, and consequently, by Lemma 5, the
operator I- O TK possesses a bounded inverse S e [H, H]. Hence, TKS I; i.e.
KS [H, H1] is a bounded right-inverse of T.

Finally, let T be causal and let 3’/’* (T) : . If we choose again some K e $’{x* (T),
the operator K will be causal; consequently, O I- TK is causal. From Lemma 5 it
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follows that (I-Q)- is causal, i.e., that TK possesses a causal inverse S [H2, H2].
Hence, KS is a causal right-inverse of T and the proof is complete.

Now we can state the main theorem.
THEOREt 2. Let Ho, H, H2 be Banach [Hilbert resolution spaces over the same

field of scalars, let Po [Ho, H2], Go [H, Ho] [be causal], and let 0 < h < 1. Also, let
U H and t4/’ [Ho, H2] be such thatthe set fo(U, l) defined by (12) is dense in H2.
Then the following two conditions are equivalent:

(i) There exist [causal] operators G [H, Ho] and K [H2, H] such that the
closed-loop system {G, Po, K} is [causal and] equivalent to the open-loop system
{Go, Po}, and

(14) OFt(. )<=AOFo(.

.with respect to (U, t’), where 3Fc(. and 3Fo(" is the sensitivity of {G, Po, K} and
{Go, Po} at Po, respectively.

(ii) PoGo possesses a linear, bounded [and causal] right-inverse; i.e., there exists a
[causal] M [Hg., H1] such that PoGoM L

Proof. (a) Assume that condition (ii) is satisfied. Then by Lemma 6, Y{x (PoGo)#, or Yf*x (PoGo) provided Po, Go are causal. Thus, choose a K Y{x(PoGo),
[K Y{* (PoGo)], and put

(15) O I PoGoK.
Then, O is invertible, [0-1 is causal] and Iloll <- x by Definition 4. Since O is invertible,
the operator !- GoKPo is also invertible by Lemma 1. Now, define G by

(1 6) G (I GoKPo)- Go.
Clearly, G is bounded since (I- GoKPo)-1 is bounded by the open mapping theorem.

Also, note that G is causal provided K ?{* (PoGo). Indeed, by (4) in Lemma 1,

(I GoKPo)-1 I + GoK(I PoGoK)-IPo,
so that

(1 7) G (I + GoKQ-1Po)Go.
However, since Po, Go, K, 0-1 are all causal, (17) shows that G is causal. Moreover, by
identity (6), (I+KPoG)-I=I-KPoGo, so that (!+KPoG)-1 is causal. Hence, by
Definition 3, the closed-loop system {G, Po, K} is causal.

On the other hand, if we recall Lemma 2, (15) and (16) show that {G, Po, K} is
equivalent to {Go, Po}.

Next, since fo(U, 74/’) is dense in H2, Lemma 4 shows that
consequently, by Theorem 1, OF(. )=< A 0Fo(. with respect to (U, 74/’). Hence, the
closed-loop system {G, Po, K} we constructed satisfies condition (i).

(b) Assume now that condition (i) is satisfied. Then (14) implies by Theorem 1 and
Lemma 4 that, with O =I-PoGoK, we have IIo11_<-; , Also, by Lemma 2, O is
invertible. Hence, by Definition 4, K ’{ (PoGo). Consequently, by Lemma 6, PoGo
possesses a bounded right-inverse.

If, in addition, Po, Go, G, K are causal, then identity (7) shows that 0-1 is also
causal. Thus, K {* (PoGo) so that PoGo has a bounded, causal right-inverse by
Lemma 6. Hence, condition (ii) is satisfied and the proof is complete.

2. Disettssion. Condition (ii) in Theorem 2 is a rather severe requirement. Indeed,
if {Go, Po} is a "practical" open-loop system, then PoGo is usually not an onto map and
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thus (ii) is not met. Consequently, by virtue of Theorem 2, for such a system {Go, Po}
with sets U, satisfying the density assumption, it is impossible to find a feedback K
and a controller G such that the equivalent closed-loop system {G, Po, K} would reduce
the sensitivity of {Go, Po} with respect to (U, W) by a factor A < 1.

On the other hand, it is clear that if the selected sets U and W are not too large, i.e.,
the set lo(U, 7g’) is not dense in H2, then such K and G might exist. However, as we
shall show below, U and o/g. can be quite small yet lqo(U, 7#’) can still be dense.

To begin our considerations note first the fact that lo(U, k//’) is the set of all errors
in the output of {Go, Po} that are determined by the sets U and W, i.e., by all inputs and
plant perturbations of interest, respectively.

LEMMA 7. Let U c H1, [Ho, H2], and let Go [H1, Ho]. If (i) Uis dense in HI,
(ii) GoHa is dense in Ho, (iii) (.J wWHo is dense in H2, then flao(U, t/’) is dense in Hz.

Proof. Without loss of generality we can assume that 0 W. Choose x H2, and let
e >0. By (iii) there exist W s and y Ho such that IIx- wyll< /3, By (ii) there
exists z H1 such that [ly-Gozll</311Wll. Finally, by (i) there is a u U with
Ilz-ull</3llwll. [IGo[I, Then x’= WGou fifo(U, W), and the triangular law yields
IIx-x’ll<,

LEMMA 8. Let H be a Banach space, and let An, Bn [H, HI, n 1, 2,. .. If
Anx --> x and Bnx - x ]’or each x H, then AnBnx - x ]’or every x H.

Proof. Since {Anx: n 1, 2,...} is a bounded set for each x H, the Banach-
Steinhaus theorem shows that IIAII <-- a for all n and some a > 0. Thus, for any x sH we
have

IIA,B,x xll [IA, (Bnx x )l[ + [IAx xll al[B,x xll + IlA,x xll- 0.

In the following considerations we will assume that Ho H1 H2 L2[0, oo), since
this is the most important case in our setting.

Let a > 0 be a fixed number; for n 1, 2,. ., and _-> 0, let e,(t) tne -n‘. Also, if
r is a positive integer, we let e* be the r-fold convolution of en.

It is clear that e* L2[0, oo) fq L[0, oo); moreover, we have
LEMMA 9. Let r >-- 1 be an integer, and let x L2[0, oo); then e *rn * X L2[0, oo) and

,ren * X "-> X as n --->oo.
Proof. Since en L2 f’) L1, the Fourier-Plancherel transform e*, of en coincides with

the L-Fourier transform of en, and we have n(iw)=an(an+io)-1 for oR. By
Parseval’s equality,

(18) Ile,*x xll= (2zr)-1’’’’ t [9..l:zIlenx-11== (2-)- le.- 1 do,

for every x eL[0, oo). However, ?n(iw)-l0 pointwise, and }.-112. 1lZ121z
L(-oo, oo). Thus, by the dominated convergence theorem,

as n c. Hence, by (18), en * x x as n
Finally, since each operator en * is bounded, Lemma 8 and the associativity of

convolution conclude the proof.
LEMMA 10. The set {e2q+l" q O, 1, 2,...} is fundamental in L2[0, ).
Proof. Using the substitution : e-’ we confirm easily that x(t)Lz[O,

-a/Zx(-1/20t ln:)L2[0,1]. Thus, choose x ffL2[0,00), and let e>0. By the
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Weierstrass theorem for the space L2[0, 1], there exists a polynomial p such that

2

In ) -p(:) d: < 2ce,

(19) x --aln _:/2p(:) :- d<2ae.

With the above substitution, (19) yields

Io Ix(t)- e-’p(e-2’)12 dt <

which proves our claim.
To simplify the wording ot the theorems, let us introduce the ollowing notation:

(i) Let be the set of all functions y,m__ P(t) e -a’t, where P are polynomials and
Re A > 0 or all i.

(ii) Let o be the subset of consisting of all functions k such that the Laplace
transform (s) of k has all zeros in the open right half-plane.

Note that, by virtue of Lemma 10, is a dense linear subspace of Lz[O, ).
THEOREM 3. Assume that

(i) U is a linear subspace of Lz[O, ) containing the elements e2q+, q
0, 1,2,...,

(ii) Go ko * with ko o, ko # O,
(iii) contains the operators e, for n 1, 2,....

Then the set o(U, ) is dense in L2[0, ).
Proof. By Lemma 10, U is dense in L2[0, ), i.e., condition (i) in Lemma 7 holds.

Next, since the Laplace transform 0(s) of ko is a rational function of s, denote
o P/Q, where P and Q are polynomials without a common factor. Clearly, for
degrees of P and Q we have OP<OQ. Now, choose fL2[0, ) and let f be the
Fourier-Plancherel transform of fi Choose a fixed integer r > 1 so large that oQ < OP + r,
and consider the function

Using the theorem on a transform of a convolution it follows readily that , is a
[. Thus, byFourier-Plancherel transform of some x, Lz[0, ), and that ko * x, e,

Lemma 9, ko * x, Gox, f. Hence, GoL2[0, ) is dense in L2[0, ); i.e., condition (ii)
in Lemma 7 is satisfied.

Finally, the assumption (iii) implies by Lemma 9 that condition (iii) in Lemma 7 is
fulfilled. Hence, o(U, ) is dense in Lz[0, ) as claimed.

Theorem 3 deafly shows that if Go is a convolution operator with kernel ko o, if
the set of inputs of interest U is as narrow as the collection of "polynomials"

=o c:zi+, and if the set of perturbations of interest consists only of the operators
e,., then the set of a11 errors o(U, ) is already dense in Lz[O, ).

It is interesting to note that if is suitably enlarged, then U can be as meager as a

singleton. Indeed, we have the following assertion:
THEOREM 4. Assume that

(i) U contains the :unction ae -’ with > 0, a 0,
(ii) Go ko * with ko o, ko 0,
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(iii) contains the collection {k ," k }.
Then the set flo( U, 1/’) is dense in L2[0, 03).

Proof. Choose x L2[0, 03) and let e >0. By Lemma 10 there exists a linear
combination f of el, e3, es," such that [[x-fll<e/2. Denote/ and ’o the Fourier
transform off and ko, resp.ectively. Since these are rational functions, put/o P/O and
=//0, where P, Q, P, O are polynomials.

Next, choose integer r >- 1 so large that 1 + OO +o< r + OP + 0, and put

(20)
an )rOa+iw’= aniw P a O"

From (20) it follows easily that/n is the Fourier transform of some kn , and, by
properties of a transform of a convolution, that

(21) k,, * (Gouo)= k,, * (ko * Uo)=e*.’ * [,

where Uo a e -st. Thus, by Lemma 9, k,, (Gouo)f; i.e., there is an n such that
!1-k ( ouo)ll< Hence, by the above, Ilx-k,, * (GoUo)ll< which completes
the proof.

Note that alternatives of Theorems 3 and 4 dealing with more general families of
exponentials can easily be obtained by using Miintz’s theorem, (see [4, p. 197]), but we
omit the rather obvious details.
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PERISTALTIC TRANSPORT OF A FLUID-PARTICLE MIXTURE*

M. C. SHEN," K. C. LINt AND S. M. SHIH:

Abstract. An asymptotic method is developed for the solution of the mathematical problem of peristaltic
transport of a viscous fluid with solid particles in a flexible tube of arbitrary cross-section. Under long wave
approximation, the coupled nonlinear equations governing the fluid-particle mixture are reduced to a
sequence of two-dimensional, linear boundary-value problems. The asymptotic method is justified rigorously
and the existence and uniqueness of the exact solution are proved.

1. Introduction. The problem of fluid transport through a flexible tube by peris-
taltic motion of the tube wall has attracted a great deal of attention in recent years. It has
played an important role in many physiological processes, biomechanical devices and
engineering applications. The early mathematical models for peristaltic transport are
based upon the Navier-Stokes equations subject to a prescribed transverse displace-
ment at the wall, and a survey of the research work on this problem up to 1971 was given
in [3]. Some recent work may be found in [7], [8], [9], [15] and others.

The early models become inadequate in applications when more than a fluid phase
is transported by peristalsis, and refined models have to be used. Hung and Brown I-2]
made an empirical study of the peristaltic transport of a fluid with solid particles based
upon a two-dimensional model. An axisymmetric model of this problem was analyzed
by Kaimal [5]. In this paper, we shall develop an asymptotic method for the three-
dimensional peristaltic transport of an incompressible viscous fluid with solid particles.
The governing equations for a liquid-particle mixture have been discussed by several
authors [10], [11], [12], [14]. The model we shall adopt is simply based upon the
two-fluid theory, assuming that constitutive equations for both fluid and particulate
phases are of similar forms and that the interaction forces between the two phases are
proportional to the difference of their velocities. Applications of this model may be
found in [2] and [5]. For simplicity, we shall neglect the pressure of the particulate
phase. However, our method applies equally well to the case in which this pressure is
present. To neglect the particulate pressure only simplifies the asymptotic scheme, but
has no effect at all upon the variational formulation of the problem. Some discussions on
omitting the particulate pressure based upon physical grounds may be found in 10] and
[11].

The basic ideas used in our asymptotic method are motivated by the study of
surface waves on a viscous fluid [13]. In general, there are three length scales at our
disposal; the amplitude A, the wavelength L of the prescribed peristaltic motion, and
the maximum diameter d of the tube. Within the framework of long wave approxima-
tion, a AlL is assumed to be a small parameter, but Aid is assumed to be of order
unity. In the problem, two Reynolds numbers, R, R., corresponding to the fluid and
particulate phases, respectively, will appear, which are also assumed to be of order
unity. We note that our results do not apply when l/R:=0, as is the case in [12].
However, by formulating the transport problem as a time-dependent problem, it can be
shown that under certain conditions the solution of the problem tends to the solution of
the governing equations with 1/R2 0 as Ra o. We defer the details to a subsequent
study. Furthermore, as shown in [3], the proper Reynolds number correctly describing
the ratio of inertia to viscous terms is aR; thus restriction of R to O(1) really restricts
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the proper Reynolds number to O(a). We formally expand the solution of our problem
in a power series of a and the successive approximations are determined by a sequence
of linear, two-dimensional, elliptic boundary value problems. Our contributions here
are to justify rigorously the asymptotic method and to prove the existence and
uniqueness of the exact solution of the problem. The methods of proof are extensions of
those given in [6], [13].

We formulate the problem in 2. In 3, a formal asymptotic method is developed
under the long-wave approximation and is rigorously justified in 4 under some
restriction on the two Reynolds numbers. Finally, in 5, we prove the existence and
uniqueness of the exact solution.

2. Formulation of the problem. We consider the motion of an incompressible
fluid of constant density p with particles of constant density p2 in a long flexible tube. A
transverse displacement in the form of a progressive wave of period T moving at
constant speed c in the axial direction is prescribed on the tube wall, and there is no
longitudinal displacement. Furthermore, we assume that the minimum radius of the
tube does not vanish. In reference to a coordinate system (x*, y*, z*) moving with the
wave, the boundary of the tube is stationary and the equations governing the steady flow
of the fluid-particle mixture are assumed to be the following, for i, ] 1, 2, # j’

(1) V* qi* 0,

(2) qi.. X7.qi. -6lV*p*/oi + oiA*q* +M/* (q*J- q*i),
(3) q*=q=(-c, cf*/L, cg*/L) attheboundaryH*(x*, y*,z*,)=0.

Here the scripts 1 and 2 denote the quantities pertaining to the fluid and particulate
phases respectively, q* are the velocities, p* is the pressure, oi are the kinematic
viscosities, M* are positive constants, f* and g* are two given functions of x*, y*, and
z*, 7" (O/Ox*, O/Oy*, O/Oz*), and 6il 1 for 1, 6il 0 for # 1. We now measure
x*, y*, z*, ]’* and g* in units of A, q* in units of c, p* in units of plC 2, and define
Ri cA/oi,M MA/c. In terms of the nondimensional variables without a star, (1) to
(3) become

(4) V. qi =0,
(5) (qi-i) Vq =-a,Vp +R-1Aq +M(qJ- q),
(6) q (O, ce[, ceg) at H 0,

where qi= qi*/c +i and is the unit vector in the x-direction. We note here that the
boundary condition given in (3) follows from the assumptions that there is no longi-
tudinal displacement and the fluid and particles satisfy the no-slip condition at the
boundary.

Let t2 be the domain defined by

fl {(x, y,z)[O<-x<=l/o, (y, z) O},

where 1 /a is the period of the progressive wave by nondimensionalization andD is any
open cross-section of the tube. We shall look for a solution of (4)-(6) with the same
period in some suitable function space. Let a(f) be the completion of a(t)), the space of
solenoidal c-functions of compact support in f and period T in x, with the scalar
product

(u, v)= In u" vdf.
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Let H(fl) be the completion of j(f) with the scalar product

(u, v), E E (u/x)(v/x) d,
i= i=

Vu. Vv d,

where ug, v are respectively the components of u and v. The space H xH is the direct
product of H and H with the scalar product

(U. V).. (u. v) + (u2. v)n.

where U (u, u2), V (vl, v2). A generalized solution of (4)-(6) is defined as a pair of
functions (q, q2), satisfying the integral identities

(7) fn[_qi+qi.Vqi+Mi(qi_q,)]..dn+]nR;Vqi..V, dn=O
i,j= 1, 2, i#L

qi a afor any sH and for smooth functions a, s H, where =q on , the
boundary of . In what follows, we shall develop and justify an asymptotic method for
finding an approximation to the generalized solution. The existence and uniqueness of
the generalized solution are proved in the last section.

3. Formal asymptotic expansions. In this section we formally set up an asymptotic
scheme to solve the equations (4) to (6). In doing this, we assume that a is a small
parameter, O/Ox O(a), and q’, p have asymptotic expansions

p=p-+po+p+"

where q (U W): O( k, v, ), q (u o, 0, 0), for 1, 2, and p O(a ). Substitu-
tion of the series for qi and p in (4)-(6) yields a sequence of equations and boundary
conditions for the successive approximations. The equations for the first approxima-
tions are

(8) UOx +Vy + Wz =0,

U)(9) R7 Au0 8ip- +(Uo

(10) p-y =p-z =0,

(11) Uo =0, v =af, w =ag on0O,

where Aa 82/Sy2 +82/Sz. By dividing (9) by Mi, setting i, j 1, 2, and adding the
equations, we obtain

)-u + (MaR2)-u] p-x/M(12) Aa[(MR

As seen from (10), p_ is a function of x only, and we may set
2(3) (Mn)-u+ (M:n)-Uo -Uo,_/M.

It follows from (11) and (12) that

(14) A2Uo =-1 inD,

(15) Uo=0 onSD,

where 0D is the boundary of D.
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(16)

Set

Let 2 in (9), and eliminate Uo in the resulting equation by (13) to obtain

R Azu [M2 +MaR/(M2R2)]u uoRp-x/M1.

The equations for the second approximations are

(23)

(24)

(25)

(26)

U lx q- l)2y "q- W2z --O,

RT, lu, i__ujl).4c_(u__l)bliox..l_t.)itil POx q- M/(u Uoy --t- w Uoz,

Poy Po O,

Ul /32 W2 0 on OD.

Assuming v 1, w have been found, by (24) and (25) we may set

(27) ui --UolPOx + U11

where u 11 satisfy

(28) R-lA2ull M/(u 11 lbloy+WlUoz,

(29) u 11 0 on tgD,

and uol are determined by (18)-(20); (28) and (29) can be reduced in the same way to
a Poisson equation and an inhomogeneous Helmholtz equation as before. To determine
pox we make use of the integral invariants

(30)

as a consequence of (23) and (26), where c are given constants. By adding the two

(17) u0

and from (11), (13), and (16) it follows that

(18) g1A2uzol -[M2 +M1R1/(M2R2)]u)I -uoR1/M1 inD,

(19) U2ol 0 on OD,

(20) ul M1Rl[Uo/M1 (MEgE)-lu2ol ].

Since the flow is steady, it is easily shown that

D
--1) dA c(21) (Uo o,

where Co are constants assumed to be given. From (17), we have

2+ uo +

By integrating the above equation over D, and making use of (21), we obtain
-1

(22) p_lx =-(Co+2A)[fD(Uloa +U2o2) dA]
where Co c+ Co2, and A D dA.
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equations in (27) and integrating the resulting equation over D, it is obtained that

(31) Po,, c- (ul + u) dA (uoa + Uo) dA

where c c + c.
The equations for the third and fourth approximations are

(32) "--0,U 2 "[-/)ly "1" W

U)+(U --1)U’(33) Rr, lA2u2 =3ilpx+Mi(u2- 0 x+UUox
.4r. i) lUly /)2U0y "q" W lU lz "[" W2UOz

(34) R[A2v 8py +M/(v -v),
(35) R? ZX:w w),8p+M(w

+M(v-v)+(Uo-1)Vx+Vv’+wv,(36) R A2v2 8iP2y
-1

W(37) Ri Azw2=Sip2+Mi( 2-w)+(Uo-1)w,+vwr+wWz,
il.(38) u2=Vk=Wk=0 on0D fori, f,k=l,2,

We now introduce functions Q i, k 1, 2, satisfying

ulk-lx in D,(39) A2Ok

(40)
O, a(fn + gn:z) on OD for k 1,

=0 on0D for.k=2,

where the subscript n denotes differentiation in the direction of an outward normal
(n, nz) to OD. Equations (39) and (40) are solvable because of (8), (11), (23), (26), (32)
and (38). It follows from (8), (23) and (32) that

(41) (Vk Ok,), + (Wk -Oz)z =0.

As seen. from (41), we may introduce functions ik, i, k 1, 2, such that

(42) v =i,z+O w =-O+O,ky

and r,eplace Vk, Wk in (34) to (37) by (42). Upon cross-differentiation of (34) and (35),
we obtain

(43) R- 2 Aa2 M, a(l-{).
Let

(44) /MR +/M:R2.
Then it follows from (11), (42) and (43) that

(45) 2A2 =0,

subject to the boundary conditions on OO,

(46) y (Olz -ag)/MiR +(Oz -a.g)/M:zR:,

(47) , (-Ol, + of)/MR + (-Oy + of)/M:R:z.

By using (44) to eliminate in (43) for 2, we have

(48) R -1 A2,,2,,- (M +R )a -Ma:,
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(49) qy Qz ag, qz 02+af on0D.

By the same token, it is easily obtained from (36) and (37) that . satisfy

i(50) R[A2u=MiA2(2 a)+[(u-l)v+vvy+wVz]
-[(u- 1)w’lx lWly W1Wlz]y

subject to

(51) i i2y Q2z, 2z --Q2y on 0D.

Here, (50) and (51) may be reduced to equations similar to (45) and (48) with additional
terms. If O, are obtained from (39), (40) and (44) to (50), then v will be
determined from (42) and p, p, from (34) to (37) by integration. Higher order
approximations can be found in the same manner and we shall not proceed any further.

4. Justification of the asymptotic method. Assuming that a generalized solution of
(4)-(6) exists, we shall show that the asymptotic solution found in 3 is indeed an
asymptotic approximation to the generalized solution. Let

(52) qi =q+q +q,, i= 1,2,

where

qk-’(Uk, l)k, Wk)-’(qkl, qk2, qk3),
(53) .q (q,1, q,2, q,3).

Since the components of q and qi are determined by solutions of elliptical boundary-
value problems and q+qi qb on 012, they are sufficiently smooth if the prescribed
displacements on 012 are sufficiently smooth. Hence, by definition, q e H. Substituting
(52) for qi in (7) and rearranging the terms, we obtain

(54) fO [__qi G,x+ (qo+q[ +q,) Vq, +q,’V(qo+q)+Mi(q-q,)]’dpdfl

+R- [ Vq. XT da 0,

where

-1A(q+(55 c.i=gi a-[(ag+a.v](a,+a+(a0+a+Mi(o+a-;-a.
By choosing q, in (54), performing integration by parts and making use of the
periodicity of q,, (54) becomes

IIq,ll- .q, dl)+ q,k(Oql/OXk)(qol+qll) dfl
I=1 k=l

(56)

where ]1" IIg is the norm on H. We shall estimate the right-hand side of (56) to get an
upper bound for [Iqll. First, we establish several lemmas.

LEMMA 1.

114,11--< KII4,11, for any d e H,

where g <- 1/, and [1’ is the L2-norm.
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Lemma 1 is the well-known Poincar6 inequality, and a proof may be found in [4].
kLEMMA 2. U0 O(1), Uk, Vk, Wk O(a )fork 1, 2, pkx o(ak+l)fork --1, O,

1, and O/Ox O(a).
Proof. The proof of Lemma 2 follows directly from the regularity of the solutions

of elliptical equations up to the boundary if qb, the prescribed velocity on 0f, is
sufficiently smooth [1] For example, Uo, u 2

01 are solutions of (14), (15), (18) and (19).
They are regular up to the boundary and O(1) for a fixed x in O<-x<-l/a. By
differentiating (14), (15), (18) and (19) with respect to x, and letting : ax, we obtain

A2Uo=0 inD for 0 _-< : <- l,

Uo Uo,f+ Uozg on OD,

RI A2 2 -uoR1/M1 in D for 0 < $ < 1,U01$ [M2 +M1R1/(MERE)]U2ol
2Uo, Uolyf+ Uolzg on OD,

-1 2 -1 2where Oy/Ox =-af, Oz/Ox =-ag on OD. Hence, Uoe=a Uox. uole=a Uolx are
regular and O(1) and u0x, u 2

olx are regular and O(a) for a fixed x in 0-_< x _-< 1/c. This
shows that both Uo and ugl are regular and O(1) in 1= f+Of, and O/Ox is O(a) as
applied to u0 and uol. To show p_l is regular, we need a different expression for p_,,
although (22) is more convenient for applications. From (13) and (21) it is obtained that

-1

P-lx -MI{(M1R1)-lc+ (M2R2)-lc2o+ [(M1R1)-I + (M2R2)-I]A},JD Uo dA)
where o Uo dA -o uoA2uo dA o (V:Uo): dA > 0, V: (0/0y, O/Oz) since the
minimum radius of the tube never vanishes. Therefore, p-l is regular and O(1). It
follows from (17) that Uo are regular and O(1). The rest of the lemma may be proved
similarly, and we shall not go into details.

Remark. If a function f(x, y, z) is regular in 11 and O(an), then
a-1 1/2

Hence, by the lemma,

1/2), k-1/2)
for k 1,2

LEMMA 3.
G

q. dII

where Ci are constants independent of a.

Proof. First we consider i= 1. Since q, H, we can add --7(p_1 + Po 4-pl) to G
without changing the value of Ja GI" tl df. By (9), (24), (33) to (37) and (55), we have

where i, and k are respectively unit vectors in the x, y and z directions.
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From Lemma 2 it is easily seen that ]GI O(a 2) and IIGII O(c3/). Similarly,

2 =i(RG2=G, A2u+R (Uo+U)xx-q’Vu)

+ I[(R- 2

+a[aw1+aia1 +(wl +I+(q+. V(wl + w1+M(w- w],

and by Lemma 2, again, [G2I O(a 2) and II[I o(/2), Hence,

G

q., dfl *" q, dlq

--< I11111q[I--< ci3/=l[qi,[l,

by Schwarz’s inequality and Lemma 1.
LEMMA 4.

where

l Ia q,ki (Oq,t/Oxk)(qiol + q ll) d’

]1/2Ilqg + qlL sup [ (qi 2
ok +qk)

II k=l

then

Proof. This lemma follows from Schwarz’s inequality and Lemma 1.
Now we are in a position to prove the following’
THEOREM 1. If

1 --(R1 + R2)/2 -(Rllqo + qllloo + R2llq + qlL)/4-(M1R1 +M2R2)/4 > O,

]]qi- q-qll O(c3/:)

Proof. It follows from (56) and Lemmas 2-4 that

3/llq 2

and by Schwarz’s inequality, Lemma 1 and ab (a+ b)/2,
2

(57)
+,(llqll+ IIqll)/4,

Let Q, (q,, q). Then, by adding the two equations in (57), we have

IIQ,II Ilqll+ IIq[[ (R + R=)C=a/2 + (R + R)IIQ,IIn/2
(58)

+ (gR1 +MR)IIQ,II /4,
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where C2= = c. If

1 -(R +R)/2 -(Rllq + qlll + Rellqg + qll)//- (MR +M2R2)/4 > O,

IIQ,II/ 0(c3/=),

which, by Lemma 1 implies

This completes the proof of the theorem.
COROLLARY.

I]U 1/2),--.Oil’= 0(.

Proof. Since

Ilui__Uo U 3/2),11, IIv -vo-vll, IIw Wo- wll-<llq -qo-qltl O(c

we have

1/2),ui Uoll < I[U UO u lll + IlU II- o(
3/2),IIv’-voll<-IIv -vo-vll+llvll-- o(
3/2),w wo II--< w wo w + w o(

by Lemma 2.
Remarks. (1) Under the same condition as in the theorem, error estimates for

higher order approximations can also be obtained, if the boundary condition is
sufficiently smooth.

(2) If R1, Rz O(c) and a is sufficiently small, then the condition on R1, R2 is
automatically satisfied and better estimates can be obtained. An asymptotic scheme
may be carried out by assuming

2 4uiU "--Uo’+’OI Ul’at-Ol 2"t-"

31)i 51)il) OlV o "q- Ol -t- Ol 2 q-

3 015W "-OIWo-’OI W1 "[- W2-[""
-2 2p=a po+Pl+Ce P2+’’’.

5. Existence and uniqueness of a generalized solution. In the following, it is
shown that there exists a unique solution Q, for (54) in H H. To this end, we shall
reduce (54) to an operator equation on HH. Let a q+q1; then (54) becomes

(59)
R-1 (q, )n (qx-ai. Vq-q. Vq,-q,. Va
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By integration by parts, Schwarz’s inequality and Lemma 1, we obtain

(qx-aiVq-q Vq,-q,. Ta -M/q,). t

fG

i" d ))GiII

By Reisz’s representation theorem, there exist operators A i, B on H and a fixed
element fi S H, such that

aq-ai. vq,-q,. q,-q,. v -Miq,. =Aiq,

i’d(i,)H, ’d(B],)H
It follows from (59) that

for any H. Hence,

(60)

Let

--1 iq(Ri q,, t)H (A q, +B + f, )H,

q Ri(Aiq _+_ Biq/, + fi).

(61) Q, =MQ,+F.

First we show that M is completely continuous on H H. The proof is essentially
the same as given in [6]; some of the derivations are omitted. We consider a weakly
convergent sequence {Q} in H H. Let Q, (ql,, q2,,). Then {ql,}, {q2,,} are weakly
convergent in H, and strongly convergent in L4(fl) [6]. Furthermore, for any element
q sLE(fl), liql[-< CIlIqlIL4 where C1 is a constant. By integration by parts, Schwarz’s
inequality and

u. V)v.w df _-< c=llulk411vll,4llWllH,

where C2 is a constant, it is shown that, for any H H,

I(MQ, MQ, @)H < C3(llq- ql]4 / IIq-
where C3 is a constant. It follows that {MQ} is strongly convergent in H H andM is
completely continuous. Next we show that all solutions of

(62) Q,-, (MQ, +F) 0,

are uniformly bounded for A [0, 1] if R1, RE satisfy the condition in Theorem 1.
However, this follows from the inequality in (58) to estimate IIQ,II-. We take the

and (60) may be expressed as an equation on H H,

M=[REA2, R2B1j, F= [2 Q,
q*
2q,



PERISTALTIC TRANSPORT OF A FLUID-PARTICLE MIXTURE 59

scalar product of (62) with Q,, and follow the same derivations as in Theorem 1 to
obtain

{1 A [(R1 + R2)/2 + (R lllq + q]ll / R211q2o + q211)/x/+ (M1R1 +
(63) <- (R + R2)C2ce3/2.
Therefore, Q, is uniformly bounded in H H if the same condition on R, R2 as in
Theorem 1 is satisfied. By the Leray-Schauder fixed point theorem [6], (61) has a
solution Q, in H H. Since qi qg + qi + q,, this also implies the existence of

Suppose now that there are two solutions q(1), q(2) of our problem. Let

q, q(- q(2.

Then, q H and satisfies the same equation (54) if we replace qo +q by q_). Since qz)
2satisfies (7), Gi= 0, and (63) still holds for Q, (q,, q,) except that the right side is

replaced by zero. Hence, under the same condition on R,Rz, Q, =0 and the
generalized solution is unique. In summary, we state our results as’

THEOREM 2. Under the same condition as in Theorem 1, there exists a unique
generalized solution (ql, q) of (4)-(6), such that qi_ qio_ tl H.
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STABILITY CONDITIONS FOR LINEAR HAMILTONIAN SYSTEMS
WITH PERIODIC COEFFICIENTS*

EARL R. BARNES"

Abstract. We begin with a system of k uncoupled harmonic oscillators =-toxk+, kk+i tox,

i= 1,’’’ ,k. We then couple the oscillators according to the equations Yq=--tOiXk/--,kl hk+i,j(t)xi,
q. -2kk/i iXi _= h(t)x, where H(t)= (hi(t)) is a 2k x2k symmetric matrix, periodic of period T>0. The

uncoupled system is clearly stable. We show that the coupled system is also stable if the nonresonant condition

+ 2n/T, , 1,. ., k, n =0, 1, 2, is satisfied, and if the interaction between each pair of
oscillators , , and all other oscillators in the system, is so weak that =., Jo

T min, 1 +,-2n/T[, This condition is sharp. For certain ’s, the theorem becomes false if the
inequality < is replaced by N. For other ’s, the theorem can be weakened slightly, but not significantly.

1. Introduction. Let J denote the nonsingular skew-symmetric matrix

(oJ=
-I, 0

and let H(t) be a real symmetric 2k 2k periodic matrix function of period T > 0. That
is, H(t + T) H(t) HT(t). Ik denotes the k x k identity matrix. We shall give condi-
tions on H which will guarantee stability of the trivial solution of the differential
equation

(1.1) J =H(t)x, -<t<.

Let hi/.(t) denote the ifth element of H(t) and introduce the Hamiltonian-- hi/.(t)xixj.
i,/.=

We can then write (1.1) as

a 2k

,i hk+i./.xj, 1,.’’, k,
tgXk +i

(9a 2k

k+i ., hi,x 1," k.
3Xi /’=1

Thus, (1.1) is a Hamiltonian system. For brevity, we shall call the matrix function H(t) a
Hamiltonian. We restrict our attention to the space M of Hamiltonians whose entries
h/.(t) are Lebesgue integrable over the interval [0, T]. We define a norm on M by

T

(x.2) Ilnll [ E [h,/.[ dt.
.o lii_2k

For second-order systems, our stability condition can be stated in terms of this norm.
DEFINrrION 1.1. The system (1.1) is said to be stable if all its solutions are bounded

on the entire line < < c.
DEFINITION 1.2. The system (1.1) is said to be strongly stable if there exists an

e > 0 such that the equation j Lx is stable for all Hamiltonians L M satisfying
IlL nil < e. That is, (1.1) is strongly stable if it is stable and remains stable under small
perturbations of H within the space M.

* Received by the editors September 27, 1979, and in revised form June 20, 1980.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10958.
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In some cases, we say that the Hamiltonian H is stable, or strongly stable, to mean
that the system (1.1) is stable, or strongly stable, respectively. The set of strongly stable
Hamiltonians will be denoted by O. O is open by definition. Moreover, it is known, cf.
[1], !,4] or [2, Chap. 3], that O is the union of a countable collection of simply connected
domains n 0, +/- 1, +/-2,. . The symbol (tr) denotes a signature. It is a sequence
of length k, made up of the symbols + and -. Thus, for each index n, O has 2k simply
connected components O)

In studying the stability of the system (1.1) we assume that H(t) can be written as
H(t) C + L(t), where C, L M and C is a constant strongly stable Hamiltonian. When
this is the case we can assume without loss of generality that C is a diagonal matrix of the
form diag (to, .., tOk, to,’ ", k) where the Wi’S, satisfy

(1.3) to+w, T ,,z=l k, n=0,+l +2

This is shown in [2, p. 263]. Thus, without loss of generality, we shall replace (1.1) by

(1.4) J2 (f + H(t))x,

where

This equation is to be thought of as a perturbation of the equation

(1.5) J fx,
2describing the motion of k uncoupled harmonic oscillators , + to,x, 0, v 1,. , k.

When the condition

2nTr
T

is satisfied for two oscillators u and/z, and for some integer n, we say the oscillators u
and are in resonance.

If the nonresonant condition (1.3) is satisfied, the system (1.5) is strongly stable. By
definition, the system (1.4) is also strongly stable for []H[[ sufficiently small. The purpose
of this paper is to determine exactly how small H must be to guarantee that (1.4) is
strongly stable, given that (1.5) is strongly stable. The answer is provided by the
following theorem.

THEOREM 1.1. Let fl diag (fox," ", Ogk, (.o1," O)k) and letH eMbe a Hamil-
tonian ofperiod T > O. If (1.3) is satisfied, the differential equation (1.4) is strongly stable
iffor every pair u, lz {1,. , k}

(1.6) Y’. 2 [hij[ + 2 [hk+i.j[ dt < r min to +to,-,
i=v,p, j= ji

where the minimum on the right is taken over n O, +/- 1, +/-2, .
Note that the coefficients hi, h+i., ,,/x, j 1,.. , 2k appearing in the left side

of (1.6) are precisely the coefficients which couple the oscillators r and/z with all other
oscillators in the system (1.5). The theorem gives a measure of how strong these
couplings can be, for each pair of oscillators u,/x, without destroying the strong stability
of the unperturbed system.
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2. Preliminaries. In order to prove Theorem 1.1 we need a few facts concerning
the multipliers of the Hamiltonian system (1.1). Let X(t) denote the fundamental
matrix for the system (1.1). Let REk denote complex 2k-space, with the inner product of
two vectors x, y REk defined by (x, y) y*x. The symbol * denotes complex conjugate
transpose. Introduce a new inner product [., in REk by the definition

[x, y] i(Jx, y)= iy*Jx.

It is easy to see that Ix, x] is a real number for each x R2k. Unlike the inner product
(x, x) the inner product [x, x] may be negative for certain x’s.

DEFINITION 2.1.
(a) Let p([p[ 1) be an r-fold eigenvalue of X(T) lying on the unit circle. Let Gp

denote the subspace of R2k spanned by the eigenvectors corresponding to p. If [x, x > 0
for each x # 0 in Gp, we say that p is an r-fold eigenvalue of the first kind, and if [x, x < 0
for each x 0 in Gp we say p is an r-fold eigenvalue of the second kind.

(b) Let p([p[ 1) be an r-fold eigenvalue of X(T) on the unit circle such that [x, x]
is not of fixed sign on the eigenspace Gp. Then we say that p is an r-fold eigenvalue of
mixed kind.

(c) Let p([p[ 1) be an r-fold eigenvalue of X(T). Then p is called an r-fold
eigenvalue of the first kind if IP] < 1 and of the second kind if [p[ > 1.

The eigenvalues of X(T) are called multipliers of the system (1.1). Multipliers of
the first and second kind are said to be definite. It turns out that definite multipliers
depend continuously on H (cf. [2, p. 191]). Thus, under small perturbations of H, a
multiplier of the first kind will not suddenly change to one of the second kind, and
vice-versa. When a multiplier of the first kind coincides with one of the second kind, a
multiplier of mixed (indefinite) kind is formed.

The following theorem from [2, p. 196] expresses stability conditions for (1.1) in
terms of its multipliers.

THEOREM 2.1. The HamiltonianHis strongly stable ifand only if all the multipliers
of (1.1) lie on the unit circle and are definite.

It is shown in [2, p. 258] that the multipliers of (1.5) are

-iw,,Tand p,,=e ,=l,...,k,

and that p is a multiplier of the first kind and a multiplier of the second kind.
Condition (1.3) states that no two multipliers p- e i’vT and e-iT of different
kinds coincide.

3. Second-order systems. In this section, we prove Theorem 1.1 for second-order
systems. For this class of systems the structure of the stability domains O(ff is much
simpler than in the general case. These domains have been described in fine detail in [2,
Chap. 8]. In particular, a three-dimensional model of the space M2 of 2 2 Lebesgue
integrable Hamiltonians is given in [2, Chap. 8]. This model provides a useful geometric
interpretation of Theorem 1.1 for second-order systems. We begin with a description of
the model.

In order to avoid the use of subscripts, let us agree to denote a typical Hamiltonian
in M2 by

a(t) [3(t))(3.1) H(t)=
/3(t) V(t)
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The differential equation (1.1) then becomes

Y1 --8 t)x 3’(t)XE,
(3.)

E= a(t)Xl + lg(t)xE.

The three-dimensional model of ME will be denoted by R 3. It consists of open
7r*- *+connected sets O,, H,, n 0, +1, +2, and closed connected sets r, ’,

n 0, + 1, +/-2,. ., and may be obtained by rotating Fig. 3.1 about a line through the
points zr,**, n 0, +1, +2,. .. The sets O, are domains of strong stability for 2 x 2
Hamiltonians. Here we have labeled these sets differently than they were labeled in [2,
Chap. 3]. The sets here labeled OE, would be labeled O(,+) by the labeling convention of
[2, Chap. 3], and the ones here labeled O.,/ would be labeled O(,-). The sets H, are
domains of instability. Each Hamiltonian in one of these sets is unstable.

+If H E 7r,*-L] r, for some n, then (3.2) has exactly one linearly independent
periodic solution (x(t + T)= x(t)) of period T if n is even, and exactly one linearly

**independent antiperiodic solution (x(t + T) -x(t)) of period T if n is odd. If H Er,

then all solutions of (3.2) are periodic of period T if n is even, and all solutions are
antiperiodic of period T if n is odd.

7rr+l 7r’n+ 2 "rrn+2
FIG. 3.1. R 3.

Consider the curved vertical lines in Fig. 3.1. The Hamiltonians on each of these
lines have the same multipliers. The positions of these multipliers on the unit circle are
indicated for each line in Fig. 3.1. A multiplier of the first kind is indicated by a black dot
and one of the second kind is indicated by a white dot. The arrows indicate the motion of

+the multipliers as one moves through R 3 from left to right. The sets zr*- or. contain
the Hamiltonians having multipliers e n 0, +/- 1, +2, . In particular, the set zr**.
contains the Hamiltonian (ncr/T)I2 where I2 denotes the 22 identity matrix.
Moreover, if to satisfies

nr (n + 1)r
(3.3) <(o<

T T
**then (oi2 lies on the line segment connecting zr,** and zr,/l. Thus, the Hamiltonian tolE

can be associated with the point to measuring Euclidean distance along the horizontal
line in Fig. 3.1. When this is done, the distance between a Hamiltonian toI2 s O, and a
vertical line such as cry’ in Fig. 3.1 can be obtained by measuring the Euclidean distance
between to and r along the (o axis. This result is the content of the following theorem.

THEOREM 3.1. If to satisfies (3.3), then tOI2 E On, and ifH is any Hamiltonian in the
+left boundary rr. of 0., then

(3.4) IIH-toI211>- T(to-.n.) =toT-nzr.
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Similarly, ifH is any Hamiltonian in the right boundary r*-,+1 of 0,, then

(3.5) [IH oIzlI > T[ (n + l)r ]T
-to (n + 1)zr- toT.

More generally, if H is any Hamiltonian on the curved vertical line zr containing
Hamiltonians with multipliers e ier, nTr/ T < < (n + 1)r/ T, then

(3.6)

Proof. The fact that to12 On is shown in [2, p. 659]. We shall prove (3.4) and (3.5)
for n _-> 1. The proof for n < 1 is similar.

+Let pn denote the distance from toI2 to the left boundary r*/ of On. Let pn/l

denote the distance to the right boundary r+l. For n ->_ 1, it is shown in [6] that

+(3.7) Pn toT- nr,

and

(3.8) p+l 2(n + 1) log
1 + cos

1 +sin-i +4(n +1)
cos 4( 1)

-sin toT

toT
-sin toTJ+cos

4(n + 1)

It is also shown in [6, Lemma 6.1] that for to nTr/T, p+l > r and limn_.
The same technique of proof can be used to show that for any to satisfying (3.3),
p+l > (n + 1)Tr- toT and p+l (n + 1)Tr-toT+ O(1/(n + 1)2’); cf. [7, p. 20]. Thus, if

,+Hzrn we have

-to p toT nzr,

and if H n/l, we have

IIH-,oI:ll->pL >(n + 1),rr- toT.

This proves (3.4) and (3.5) for n >= 1.
Now consider (3.6). First assume that T (n +p/q)z: where p and q are integers

satisfying 0<p<q. If Her the differential equation (3.2) has a solution x(t)
satisfying

x(t + T) e’erx(t).
It follows that

x(t + qT) (-1)’q+Px (t).

Thus, (3.2) has a periodic solution of period T1 =qT if nq +p is even, and an
antiperiodic solution of period T1 if nq +p is odd.

Let 6x denote the angle through which the vector x(t) rotates as goes from 0 to
Since x(T)= eix(O), x(2T)= ei2erx(O), etc., we have

kx (nq + p)r.
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Now consider the infimization problem,

(3.9) inf {[a(t)-o[+]13(t)l+l/(t)-ol} dt,

where the infimum is taken over the class of Hamiltonians (3.1) for which (3.2) has
a solution satisfying g,x =(nq+p)rr. This class includes, in particular, the set rr’.
Problem (3.9) is precisely the type of problem solved in [6, 4] in determining the
distances from o912 to the boundaries of On. If T> ogT, problem (3.9) corresponds to
the problem of finding the distance from o912 to the right boundary of On. If T< o9 T,
(3.9) corresponds to finding the distance from o912 to the left boundary of On. In either
case, the value of (3.9) can be obtained by replacing T by T1 and n or n + 1 by nq +p in
the appropriate formula for p+ or p/l. Let 8 denote the infimum in (3.9). Then, if n => 1
and o9T > :T, we obtain, by substituting in (3.7)

>q[(n +)T]7r-o9 =q(T-wT).

Similarly, if n < 1 it can be shown that 8 _>- q ]o9T T]. See [7] for details. Now ifH r
and is denoted by (3.1), we have

Ioqllg- o9/211 {l(t)-ol/l(t)[/l,(t)-ool} dt

>-_ 6 >- q lo9Z T[.
This proves (3.6) when set is a rational multiple of r. The proof for general T follows
by an easy continuity argument.

COROLLARY. Theorem 1.1 holds for k 1.

Proof. When k 1, we must take =/z andw w, o9 in (1.3) and (1.6). Then, if
H is given by (3.1), condition (1.6) becomes

T

m.}n o9 ---.rIIHI]- fJo {la (t)] + I/3(01 + [y(t)[} dt < T

If o9 satisfies (3.3), this can be written as

mrr { nrr (n +l)zr }Ilnll < T min,. o9 -- T min o9 T’ T
o9 <= min {0,+, 0 n+l }.

This says that the Hamiltonian o912 +H lies in the interior of a sphere about 0912 of radius
min {0 +n, O /1 }. This implies that o912 +H e On and is consequently strongly stable.

Remark. I n ___- 1 and if nzr/T < o9 < (n + 1/2)rr/T, then the distance from o912 to the
+boundary of On is 0 o9T- mr. Moreover, it is shown in [6] that there is a Hamiltonian
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+H zr, such that IlH-rohll coT-nr. The Hamiltonian H is not stable. Thus, for
certain co’s the inequality in Theorem 1.1 is sharp. On the other hand, if the difference
(n + 1)r/T-co is sufficiently small and positive, the distance from col2 to the boundary
of O, is p+l >(n + 1),r-coT= T min,, [co-mzr/T[. In this case, the inequality in
Theorem 1.1 can be improved. But the improvement will be very small for large values
of n, since p+l (n + 1)7r-coT + O(1/(n + 1)2).

A similar remark holds for n < 1. Also, it will be seen from the proof of Theorem
1.1 that a similar remark holds for inequality (1.6) for k > 1.

4. Proof of Theorem 1.1. For the proof of Theorem 1.1 for k > 1, we need one
more theorem from [2, Chap. 3];see also [4]. It has to do with the concept of directional
wideness.

Let K1, K2 be any two Hamiltonians. We shall write KI<-K2 if (Kl(t)X,x) <-

(K2(t)x, x) for any 2k-vector x, and for 0 <_- _<- T.
DEFINITION. A set d//M said to be directionally wide if, for any K1, K2 d//such

that K1 _<-K2 and

K + r/[K K] e d//,

for 0 -< r/-< 1, we have H dd for any Hamiltonian H satisfying the inequalities

(4.1) K <-H_-<K2.

Thus, dd is a directionally .wide set if the fact that the entire line segment with endpoints
K1 and K2 belongs to dd implies the Hamiltonians satisfying (4.1) belong to

The following theorem appears in [2, p. 239] and in [4].
THEOREM 4.1. The stability domains 0( are directionally wide.
Proofo[ Theorem 1.1. As a first step to proving Theorem 1.1 for k > 1, we consider

Hamiltonians of the .form

hlx(t) 0
0 h22(t)

(4.2)

H(t)
hk+l,l(t)

0

0

We denote this class of Hamiltonians by M’. The Hamiltonian 12 diag (co,..., (.Ok,

col, , cok) defined in Theorem 1.1 lies in M’, and since (1.3) is satisfied, it lies in some
stability domain O(. We must show that condition (1.6) guarantees that 1 +H O(.

ForH M’ the differential equation J2 (fl + H(t))x separates into the k second-
order systems

-h+,x,-(co + hk+,+)xa+,

’’k +v (coy + h)x,, + hv,k +vxk +,,,
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of the form

(4.3) J2y (lq2 + H2(t))y, v 1, 2,. , k,

which we treat as perturbations of the systems J2P l12y. J2, fl2 and H2 are 2 2
matrices.

Recall that the multipliers of the unperturbed system J fix are

Pu e i’’T and tS,, e -i’a’T u=l,...,k,

and that p is a multiplier of the first kind while flu is a multiplier of the second kind.
Represent the multipliers of the first kind by a black dot on the unit circle and those of
the second kind by a white dot. The nonresonant condition o +co, 2nzr/T, u,
/x 1,..., k, n =0, +1, +/-1,..., says that there are no multipliers of mixed kind.
Assume now that the system J fix is perturbed to the system

FIG. 4.1.

(4.4) J (l + H(t))x,

within the class M’. Assume further that ll + H(t) lies in the boundary of O(ff and that
(1.6) is satisfied. This will lead to a contradiction. Assume that during the perturbation
none of the intermediate Hamiltonians is on the boundary of O(ff). It is always possible
to arrange for this to be true since O(ff is open and connected. During the perturbation
of fl to fl + H, some multiplier p,., of the first kind and some multiplier tS, of the second
kind move along the unit circle until they collide at some point e i, on the unit circle.
Assume for the moment that e ir # +/- 1. Then u #/x. During the perturbation of 12 to
fl / H, the multipliers p, and iS,, remain on the same upper or lower half of the unit circle
as e. That is, during the perturbation no one of the subsystems (4.3) is allowed to go
unstable at an intermediate point.

Let H, and H,, denote the Hamiltonians defined by

/_/ (wj + hj- hk+j,i ), j u,/z.
hk +i,i ci + hk+i,k +i

Since (1.3) holds, there exist integers n, and n,, such that

n,Tr < o,T < (n, + 1)7r and n,cr < co,T < (n, + 1)Tr.

Since the point e ieT lies on the same upper or lower half of the unit circle as p,- e i-r

and is unchanged if we add any even multiple of zr to its argument, we may assume that

n- <T< (n + 1)zr.
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The multipliers corresponding to the Hamiltonians H, H, are e +i*T. It follows from
(3.6) that

T

(4.5)
[In. -,ohll I0 {Ihl + [hk+[ + Ih+.+l} dt

Similarly, there exists an integer m such that the point

-iT i(2mr-IT)e ’e

lies between e in’T and e i(n’+l)T and

Since e

(4.6)

+i(2m-T)

ngzr < 2mTr T< (n. + 1)m

are the multipliers of H, it follows from (3.6) that
T

IIH. o)./2ll Io {th.. 1/ l/ Ih+..+. l} dt

>= [(2mr ,T) o)TI.
Combining (4.5) and (4.6) we obtain

T

i=v, j=v,

->-I:T- oTI + [2mr :T- o.TI

>- T m.in o + w,-.

This contradicts (1.6). Suppose now that e iT 4-1. In this case, we can take/z v in the
above argument. The perturbed second-order Hamiltonian H then has multipliers
p +/-1. H therefore, lies in the boundary of O,. It therefore follows from
Theorem 3.1 that

TIo {Ih,,l+[h,+,,,l+lhk+,,+,l} dt >- T min Io-71’
and again we have a contradiction of (1.6). It follows that if (1.6) holds, then the system
(4.4) can have no multipliers of mixed kind. This completes the proof of Theorem 1.1
for Hamiltonians of the form (4.2).

Suppose now that H is any Hamiltonian in M for which condition (1.6) holds. We
shall show that 1" +H Off), thus completing the proof of Theorem 1.1.

Let Hs denote the portion of H given by (4.2) and let Hr denote the remaining
portion of H. Both Hs and Hr are symmetric and we have H Hs +

Let A (aij) be any real symmetric matrix of orderN and let x be an N-vector. We
then have

N N

(x, Ax)= ., ai]:ix] <- E [aiil Ixil [x,I
i,] i,]

1 N N- E lail(Ixil + Ixl=) 2 lael [x;[=,
2 i,]=l i,]=l
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by the symmetry of A. This says that A satisfies A -<_ A a, whereAa is the diagonal matrix

Aa=diag lal l, la2[, "", Y. [am
j=

Similarly, one can show that -Aa-< A.
If we apply this result to Hr, we obtain

where A is the diagonal matrix

2k 2k 2k

A=diag Y’, Ihlil, Ih2jl, "’", -j=l j=l j=l
jOl,k+l j#2,k+2 j#k,2k

Let K1 Hs A and K2 Hs + A. Then, since H Hs + Hr we have

(4.7) K _<- H _-< g2.

Moreover, K and K2 are of the form (4.2).
Let Hv and H, denote the 2 x 2 Hamiltonians formed from the nonzero elements

in rows u, k + v, and/x, k +/z respectively, of K2. We then have
T

j=v,p, j=v, l#j,k+j

+ ]h,+l + hk+i,k+i + Z [hk+i.ll[}’dt
lj,k+j

= r,, /=1

< T min Io + o,

(4.8)

Similarly, if H and H, are formed from rows of K1 we have

T

j=v, j=v,tz j,k +j
/lh;,+;I

(4.9) + lhk+i,k+i-- Y’. [hk+i,t[J} dt
lj,k+]

< T min ]tov+ to,

Since (4.8) and (4.9) hold for any pair v,/z e {1,..., k}, the Hamiltonians +K1 and
fl + K2 are strongly stable and lie in O(ff by the portion of Theorem 1.1 that applies to
systems of the form (4.2).

In the same way, one can show that the Hamiltonians

r/[l +K] + (1 r/)[fl + K2] f + r/K + (1 r/)K2

lie in O( for 0 _<- r/-<_ 1. In particular, these Hamiltonians lie in M’. Moreover, we have

fI + KI <= YI +H <-_ + Kz,

by (4.7). It therefore follows from Theorem 4.1 that 12 +H O(ff). This completes the
proof of Theorem 1.1.
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5. Classical results tor Hill’s equation. The equation

(5.1) y"+ p(t)y 0, p(t + T) p(t)

is known as Hill’s equation. It can be written as a special case of (1.1) by taking xl y’,
x2 y. A classical result due to Lyapunov states that all solutions of (5.1) are bounded
on (-, co) if

T

p(t){-->Oo and TIo p(t) dt<4.

This result was generalized by Krein in [8]. He showed that all solutions of (5.1) are
bounded if for some integer n >_- 1,

2 2 T

(5.2) p(t) >
n 7r I. 7r2 7r

T and T_ p(t) dt < n + 2n(n + l) tan
2(n + l.

Since 3

tan2(n +1 2(n +1+24(n + 1)3+... >2(n + 1’
it follows that all solutions of (5.1) are bounded if for some integer n 1 we have

2 2 T

(5 3) p(t) >
n fo 22 2

T2 and T p(t) dt<n +n

Moreover, this condition is only slightly stronger than (5.2) for large values of n. We
shall now deduce the stability condition (5.3) from results we obtained in 3. For this
purpose, we need a comparison theorem for second-order systems from [2, p. 682].

TEOREM 5.1. Let x(t) and x2(t) be solutions of (3.2) with Hamiltonians H(t)
andH2(t) respectively, and letx(O) x2(0) 0. Let Arg (xi(t)) be a continuous branch of
the argument of xi(t) satisfying Arg (x(0))= Arg (x2(0)). If H(t)H2(t), Ot T,
then x(t) rotates "ahead" ofx2(t) in the sense that Arg (x(t)) Arg (x2(t)), 0 T. If
there is a set of positive measure in the interval (0, to) on which H(t) > H2(t), then
Arg (x(t)) > Arg (x2(t)) for to.

From this theorem, it foltows that if H2 lies in one of the sets * in Fig. 3.1, and
Hi(t) > H2(t), 0 < < T, thenH lies in one of the sets ** O,, *- ** H,+ ton+l n+l 1

the right of * in Fig. 3.1.
Now consider Hill’s equation (5.1). Let p(t)=(n22/T2)+h(t), where h(t)O.

(5.1) is then equivalent to the Hamiltonian system.

n
0

T
h (t) 0

(5.4) j
x +
X2 0 X2

Since the Hamiltonian n
0

lies in **, and h(t)>0, the Hamiltonian in (5.4) lies in one of the sets **. O, *-n+l
,+, H,+, to the right of in Fig. 3.1. Thus, the Hamiltonian in (5.4) lies in ,
or in O, if the norm of the Hamiltonian
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is less than the distance from (nrr/T)I2 to the right boundary of On. It follows from (3.5)
that the distance from (nTr/T)I2 to the right boundary of On is => zr. Thus, the system (5.4)
lies in 7rn LJ On, and hence, all its solutions are bounded, if

T I rh(t) dt <
n77"

Since p(t)= (nZ2/T2)+ h(t), this condition is equivalent to
T

TI p(t) dt<n 2 2 2
7r + nTr

Thus, we have shown that conditions (5.3) imply stability of (5.1).
There are several similar stability conditions for Hill’s equation in [9, pp. 61-63].

These results are also very closely related to the conditions we derived in 3. Also,
results similar to ours are contained in [10], [11], [12] and [13].
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AN ORDERING OF OSCILLATION TYPES FOR y

GARY D. JONES,"

o,) +py 0*

Abstract. Assuming p is continuous and sign definite, we give an ordering of oscillation types for

y(n)+py =0.

1. Introduction. We will consider the differential equation

Y
(n) + PY 0,

where p will be assumed continuous and sign definite.
We will say that (a, b) is a (k, n-k) interval of oscillation provided there is a

solution of (1) which is positive on (a, b) with zeros of order not less than k and n k at a
and b respectively. If for every M>0 there is a (k, n-k) interval of oscillation in
[M, c), we will say that (1) has (k, n -k) oscillation type. If no such interval exists on
[c, c), we will say that (1) is (k, n k) disconjugate there. Equation (1) will be said to be
eventually (k, n-k) disconjugate if it is (k, n-k) disconjugate on [b, ) for some
large b.

Levin I-6] stated and Nehari [7] proved that if (1) has a (k, n-k) interval of
oscillation then n- k must be even or odd according as to whether p is negative or
positive, respectively.

If p is a constant, then (1) has every possible oscillation type subject to the
restrictions mentioned above. However, by considering equations (1) of the Euler type,
it can be shown that (1) can have some oscillation types but not others [3]. It is the
purpose of this paper to show that there is an ordering of the oscillation types for the
equations (1). That is, we will show that the existence of certain oscillation types implies
the existence of others.

Our method will be to use a characterization of eventual (k, n k) disconjugacy in
terms of the existence of certain monotone solutions of (1) due to Nehari [7] to develop
theorems comparing (1) to lower order equations. Our main theorems concerning the
ordering of oscillation types will then follow.

More comparison theorems of the type used here are contained in [2]. As a matter
of fact, Theorems 2 and 4 use the same idea as is used in [2, Theorem 6]. Also,
Theorems 1 and 3 can be proved using [2, Theorem 8].

2. Preliminary results. To prove our main result, we will need the following
inequality, which followsfrom an inequality due to Kiguradze [4].

c (i) > y(k+l)LEMMA. Let y /110, b) with y (x) O, (x) <- 0 on (0, b) for
0, 1,..., k and y(0)= y’(0) y(k-1)(0) 0,y(k)(0)= 1. Then

(2) y(x)/y()(x) >-_ (k -j)! xi/k
on (0, b) for]= 1, 2,. ., k-1 and k =2, 3,....

Proof. For k 2 the result is due to Lazer [5]. Suppose (2) holds for k < m.
Let

H(x) xy(x)-x’y("-l)(x)/m !.

* Received by the editors February 15, 1980, and in revised form June 6, 1980.
5" Mathematics Department, Murray State University, Murray, Kentucky 42071.
The author is indebted to the referee for pointing out reference [2].
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Then

H’(x) xy’(x)+ y(x)- x"*-ly ("-1) (x)/(m 1)!- xmy (m) (x)/m !.
By the inductive hypothesis (applying (2) to y’(x)), xy’(x)-x"-ly(’-l)(x)/(m 1)! =>0
and by Taylor’s formula y(x)-x’y(m)(x)/m!>=O. Since H(0) 0 and H is nondecreas-
ing, (2) holds for k rn and ] rn 1.

Now, assume that (2) holds for k < m and for k m and/" > r. Let

R (x) xm--ry(x)/(m r)!- x’y(")(x)/m!
Then,

R’(x) xm--r--ly(x)/(m r- 1)! + xm--ry’(x)/(m r)!
m--1 (r+l)-x yr(x)/(m-1)!-x y (x)/m!.

But x-r-ly(x)/(m-r-1)!-xmyr+l(x)/m!>=O, by applying (2) to y for k=m and
] r + 1. And x’-ry’(x)/(m-r)!-xm-lyr(x)/(m- 1)!-_>0, by applying (2) to y’ with
k m- 1 and ] r-1. Again, since R (0)= 0 and R is nondecreasing, (2) holds for
k rn and ] r. Hence, (2) is valid for all k.

3. Comparison theorems. Our main result" will follow from the following four
comparison theorems.

TI-IZORZM 1. If
(3) y-+ (xp(x)/(k )(k 2))y 0,

is eventually (n- k, k-2) disconfugate (with k odd [or p positive and k even ]’or p
negative), then (1) is eventually (n k, k) disconfugate.

Proof. If (3) is (n k, k 2) disconjugate, then there is a solution y of (3) such that

yi)(x) > 0 fori=O, 1,...,n-k-1,

and

(--1)iyi+n-k(x)>O for =0, 1,’’’, k-2

for all large x [7]. Since

lim y(n-k+)(x) 0 for j_-> 1,

and

lim y("-)(x)_-> 0

exist, we have upon integrating (3),
21 (t_X)k-3 Ip(t)lY"-k(x) =>

(k 3)’-’-- (k 2)(k 1)
y(t) dt

(4)
1 Ix -11 (t)l (t) dt.>_ (t-x) p y

-(k-)

Now integrating (4) from some fixed b to x, we have

(x -b)--y(x) => y(b)+ y’(b)(x b)+" +
(.n-k-l)!

(5)
+ (n-k-)i (k-)!

Ip(s)ly(s)dsdt.
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By the monotone convergence theorem there is a function z->0 that satisfies the
equality (5). Differentiating, we have

z(i)(x)>O for =0, 1,..., n-k,

and
(--1)iz(n-k+i)(x)>O for i= 1,..., k,

where z satisfies (1). Thus, by [I] (also see [3]) the result follows.
THEOREM 2. If (1) is (n -k, k) disconjugate on [0, c) (with k oddforppositive and

k even ]:or p negative), then
2

X
(6) y(,-2) +

(n k)(n k 1)
p(x)y 0,

is eventually (n k 2, k) disconfugate.
Proof. Since (1) is (n k, k) disconjugate on [0, ), there is a solution y of (1) such

that

y(i)(x) > 0 for 0, 1, , n k,

(--1)iy(n-k+i)(x) > 0 for 1, ., k,

for x >0 with y(/)(0) 0 for =0, 1," ", n -k- 1, and yn-k)(0) 1 [7]. Since

y(n) +py y)+ (py/y")y",

it follows that

(7)

has a solution z such that

z "-2) + (py/y")z =0

z(i)(x)>O for =0, 1,..., n-k-2,

(--1)iZ(-k-2+i)(x)>O fori=l,...,k,

for x > 0. It then follows 1 that (7) is eventually (n k 2, k) disconjugate. But by the
lemma,

y(x)/y"(x)>=x2/(n -k)(n -k- 1) for x >0.

Hence, by known comparison theorems [7], it follows that
2

y(n-2) X

+(n k)(n k 1)
p(x)y 0

is eventually (n k 2, k) disconjugate.
The following two theorems will be used in the case where (1) is of odd order. Since

their proofs are essentially the same as the proofs of Theorems 1 and 2, they will be
omitted.

THEOREM 3. If
y(n-1)+xp(x)

k_l
y=O

is eventually (n- k, k- 1) disconfugate (with k odd for p positive and k even for p
negative), then

yn)-py =0
is eventually (n- k, k) disconjugate.
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THEOREM 4. I]’ (1) is (n k, k) disconfugate on [0, c) (with k odd[orppositive and
k even for p negative), then

XyO-+ =0
n-k

py

is eventually (n k 1, k) disconfugate.

4. Case where n is even. The following theorem is valid whether n is even or odd,
but we will use it to give an ordering of the oscillation types in the case where n is even.

THEOREM 5. /f k -< (n -b 1)/2 and (1) is eventually (k, n -k) disconjugate (with
n k odd ]’or p positive and even [or p negative), then it is eventually (k 2, n k + 2)
disconfugate.

Proof. Suppose (1) is (k, n -k) disconjugate on [c, ). Then

(8) y(n)+p(t)y =0
is disconjugate on [0, c) where t- x- c. By Theorem 2,

2

y(n-2) +
(k)(k 1)

p(t)y 0

is eventually (k 2, n k) disconjugate. Since k <_- (n / 1)/2, k <- n k + 1 and k 1 -<_
n- k. Thus, by known comparison theorems [5],

2
(n-2 +

(n k + 1)(n k)
p(t)y 0

is eventually (k 2, n k) disconjugate. But, by Theorem 1, (8) is eventually (k 2, n
k + 2) disconjugate, and it follows that (1) is also.

Since (1) is self-adjoint when n is even, it is (k, n k) disconjugate if and only if it is
(n k, k) disconjugate. Thus, applying Theorem 5, we obtain the following ordering on
the oscillation types.

COROLLARY 1. If p is positive and n is even but not divisible by 4, then eventual
(n/2 + 2i, n/2- 2i) (n/2- 2i, n/2 + 2i) disconjugacy implies eventual (n/2 +
2(i+l),n/2-2(i+l))=(n/2-2(i+1),n/2+2(i+l)) disconjugacy ]’or i-
0,..., (n -6)/4.

COROLLARY 2. If p is negative and n is divisible by 4, then the same conclusion
as in Corollary 1 holds, except 0,. , (n , 8)/4.

COROLLARY 3. I]: p is positive and n is divisible by 4, then eventual (n/2 + 1 + 2i,
n/2-1 2i) (n/2-1 2i, n/2 + 1 + 2i) discon]ugacy implies eventual (n/2 + 3 +
2i, n/2 3 2i) (n/2 3 2i, n/2 + 3 + 2i) discon]ugacy ]:or 0,. , (n 8)/4.

COROLLARY 4. I]’ p is negative, n even but not divisible by 4, then the same
conclusion holds as in Corollary 3 except O, 1,..., (n- 10)/4.

As an immediate consequence of Corollaries 1-4, we have the following theorems:
THEOREM 6. Ifp is positive and n is even but not divisible by 4 or negative and n is

divisible by 4, then (1) is eventually disconfugate provided it is eventually (n/2, n/2)
discon]ugate.

THEOREM 7. ffp is positive and n is divisible by 4 or p is negative and n is even but
not divisible by 4, then (1) is eventually discon]ugate provided it is eventually ((n +
1)/2, (n- 1)/2) disconfugate.

5. Case where n is odd. In order to give an ordering of the oscillation types for the
odd order case, we will need the following theorem.



76 GARY D. JONES

THEOREM 8. Ifn is odd, k >- n/2 and (1) is eventually (n k, k) disconfugate (with
k odd for p positive and even for p negative), then it is eventually (k + 1, n- k- 1)
discon]ugate. If k < n/2, then eventual (n-k, k) discon]ugacy implies eventual (k-
1, n- k + 1) discon]ugacy.

Proof. Suppose (1) is (n k, k) disconjugate on [c, oo). Then, (8) is disconjugate on
[0, oo). Thus, by Theorem 4,

y(,-1) + (J LLki p(t)y O,

is eventually (n k 1, k) disconjugate. Since k -> n k, we have, by [5], that

y(n-l +- p(t)y =0

is also eventually (n k 1, k) disconjugate. Thus, by Theorem 3,

y")-p(t)y =0
is eventually (n -k- 1, k + 1) disconjugate. Thus, (1) is (k + 1, n -k- 1) disconjugate.

The second half of the theorem can be obtained from the first by applying it to the
adjoint of (1).

COROLLARY 1. Ifp is positive, n and (n + 1)/2 are odd, then eventual ((n 1)/2-
2i, (n + 1)/2 + 2i) disconfugacy implies eventual ((n + 3)/2 + 2i (n 3)/2-2i) discon-
jugacy for 0,.. , (n 5)/4. Also, eventual ((n 1)/2 + 2i, (n + 1)/2- 2i) discon-
jugacy implies eventual ((n 1)/2-2i, (n + 1)/2 + 2i) disconjugacy for
1,..., (n-5)/4.

COROLLARY 2. If p is negative, n odd and (n + 1)/2 is even, then the same
conclusions hold as in Corollary 1, except that 0,..., (n- 7)/4 in the first case and

1, ., (n 3)!4 in the second.
COROLLARY 3. If p is positive and (n + 1)/2 is even, then ((n + 1)/2 +

2i, (n 1)/2- 2i) eventual disconjugacy implies eventual ((n 3)/2- 2i, (n + 3)/2 + 2i)
disconjugacy for 0,. , (n 7)/4. Also, eventual ((n + 1)/2- 2i, (n 1)/2 + 2i)
disconjugacy implies eventual ((n + 1)/2 + 2i, (n 1)/2-2i) disconjugacy for
1,..., (n-3)/4.

COROLLARY 4. Ifp is negative and (n + 1)/2 is odd, then the same conclusions hold
as in Corollary 3, except 0,.. , (n 5)/4 in the first case and 1,. , (n 5)/4 in
the second.

As for the case when n is even, we obtain the following theorems about eventual
disconjugacy.

THEOREM 9. lfp is positive and (n + 1)/2 is odd or ifp is negative and (n + 1)/2 is
even, then (1) is eventually disconjugate if it is eventually ((n 1)/2, (n + 1)/2) discon-
jugate.

THEOREM 10. Ifp is positive and (n + 1)/2 is even or ifp is negative and (n + 1)/2 is
odd, then (1) is eventually disconjugate if it is eventually ((n + 1)/2, (n 1)/2) discon-
jugate.

That none of the implications of Corollaries 1-4 of Theorems 5 or 8 are reversible
in general can be seen from examples like those given in [3].
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ON THE INTERVAL OF DISCONJUGACY OF LINEAR,
AUTONOMOUS DIFFERENTIAL EQUATIONS*

I. TROCHt

Abstract. A lower and an upper bound for the maximum length of an interval of disconjugacy are given
which depend only on the maximum eigenfrequency of the differential equation. These bounds are shown to
be best possible in case no further information on the zeros of the characteristic equation is available. Further,
a procedure is given which allows one to calculate the length of a maximal interval of disconjugacy from
determinants of order <=n/2, where n denotes the order of the differential equation or system. Applications of
these results are to be found in control theory, mathematical system theory and approximation theory.

1. Introduction. Optimal control problems often result in bang-bang controls, i.e.
controls which are, roughly speaking, piecewise constant and of maximum value. The
switching times are determined as the zeros of certain functional relations. In the case of
linear autonomous systems these relations are of the form z(t)= bT.exp (At).c,
where A is a constant square matrix and b and c denote constant vectors (for further
details see [2], [6], [8]). It is not only of theoretical interest to have some information
about the possible number of switchings, but of importance, also, for the practical
computation of such controls.

Further, in mathematical system theory the questions whether a linear system can
be controlled by impulses or piecewise constant functions or, conversely, can be
observed by sampling the output, lead to similar problems [10]-[13].

These remarks may illustrate the practical importance of the availability of good
estimates on the number N of zeros in an interval I of an arbitrary solution of a linear
autonomous differential equation

(1) M[z] z n) + an_lz
-1 +.. + a2 + aoz O,

with characteristic polynomial (equation)

(2) m(A)=An+an-lAn-a+ "+air +ao= 0,

where a0, ’, a,_x are real constants. One possibility of getting the desired estimates is
by determining the possible intervals of disconjugacy of (1)" in such an interval, any
solution of (1) has at most n 1 zeros.

For systems (1) having only real characteristic roots (these are the zeros of
m(A)=0), it is well known, [8], [4], that (-, +) is an interval of disconjugacy.
Therefore, only the case where (2) has at least one pair of nonreal characteristic roots
will be investigated further. In the following, the maximum imaginary part of these
characteristic roots, i.e., the maximum eigenfrequency of (1), will be denoted by to.

Equation (1) is autonomous, and therefore the greatest possible length r/o of an interval
of disconjugacy does not depend on the location of that interval on the real axis. Such a
maximum interval will be denoted by I0.

In the following, estimates for r/o will be given which use only the maximum
eigenfrequency to of the system described by (1). They can be applied also in case only
bounds for to are available. Results in [1] that offer a possibility to determine r/o

exactly are used for this purpose as well as for the derivation of results which are of
more theoretical interest, such as continuous dependence of r/o on parameters.

* Received by the editors April 2, 1980, and in revised form June 2, 1980.
f Technische Universitit Wien, Karlsplatz 13, A-1040 Vienna, Austria.
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Finally, the dependence on the number r of real roots of (2) is investigated. It turns
out that r has only little influence on ri0. Nevertheless, knowledge of r can be of great
importance and help when bounds on the number of zeros within an interval of given
length greater than rl0 are to be given.

2. Main results. As has been pointed out, the maximum length rio of intervals of
disconjugacy for (1) will be investigated. The estimate

r/to <= ri o <- n -1)cr/to

has been known for a long time, and Hijek made in [3] the conjecture that this
inequality is best possible at this state of generality, i.e., without detailed knowledge
about the characteristic roots of (2). This is clarified in Theorems 1 and 2. Further, in
Proposition 1 a simplified "test for disconjugacy" is presented, which allows the
computation of ri0 from inspection of at most n/2 Wronskians of order <-_n/2, instead of
n Wrongkians up to order ri as in the case of nonautonomous equations.

THEOREM 1. Let to and Io be defined as above. Then:
(a) For every equation (1) the maximum intervals of discon]ugacy are half-open

intervals, [a, a + rio) or (a, a + ri0] respectively, with length rio independent of the real
constant a.

(b) For every equation (1) of second order,

(3) ri0 r/to.

(c) For equation (1) with n >-_ 3 the maximum length satisfies

(4) r/to < ri <= n -1)rr/ to

The earlier results [3], [11 cited in the introduction, are improved only slightly by
this. In fact, only an equality sign has been removed. But Theorem 2 shows that (3) and
(4) are in fact best possible estimates at this state of generality. These results allow us
further to consider in the following only intervals with one endpoint equal to zero.

Proof. Assertion (a) is a consequence of Proposition 1 and Lemma 1 in connection
with the autonomy of (1). Assertions (b) and (c) are consequences of Propositions 2
and 3.

It should be mentioned that an upper and/or lower bound for to can be used to
derive bounds on ri0 also.

THEOREM 2. Let the notation be as in Theorem 1. Then:
(a) For any natural number n >= 3 and every constant which satisfies (4), there

exists at least one differential equation (1) of order n, such that rio holds for it.
(b) Let the coefficients in (1) be continuous functions of a real parameter s. Then

rio rio(S) is also a continuous function of s.

Proof. This is a consequence of Theorem 1 and Propositions 4 and 6.
The statements above imply the continuous dependence of rio on the coefficients of

(1), or, equivalently, on its characteristic roots. These results may also be used to
improve a result of Hijek [3], on the number N of zeros of an arbitrary solution of (1)
on an interval of given length T. Let n => 3 and denote by r the number of real zeros
of (2), which, therefore, can be rewritten as

(5) m(A)=q(A)p(A),
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where q (.) is of degree r and has only real zeros. Consequently, p (.) is of (even) degree
n r and has only nonreal zeros. The differential operator corresponding to p shall
be denoted by P[. ]. Further, let [x ]* be the smallest integer k -> x. Then the following
holds:

THEOREM 3. Assume that (5) holds for (2). Then any solution of (1) has in an
arbitrary nonclosed interval of length T > 0 at most N zeros, where

N <- r + (n r- 1)[T/q61]*,

with qol being the maximum length of an interval of discon]ugacy of the differential
equation P[z O.

With this the result given already in [3] is a consequence of inequality (4):
COROLLARY. With the notation from above,

N <-_ r + (n r- 1)[Tto/rr]*.

The proof of this theorem as well as those of the propositions cited are given in 4
in detail. They show that the number of real roots of (2) has a somewhat unexpected
influence on the size of r/o. From the knowledge that for r n the interval I0 equals the
real axis, one might expect that for given n and to the length r/o would be, roughly
speaking, an increasing function of the number r. But, on the contrary, the lower bound
for r/0 is proved by the investigation of differential equations which have only one pair of
purely imaginary and n 2 real characteristic roots. Moreover, the upper bound in (4) is
reached by equations which have only pure imaginary characteristic roots of multi-
plicity one. Further, it seems that the resulting trigonometric polynomials are the only
examples for

Nevertheless, the knowledge of the number of real characteristic roots will be
advantageous whenever the number N of zeros in an interval of given length T must
be estimated. The straightforward inequality

N -< (n 1)[T/rio]* <= (n 1)[Tto/r]*

is improved greatly by Theorem 3 and its corollary.
Finally, it will be pointed out that Lemmas 4-6 of 3 provide some information on

the relation between the numbers of zeros of a rather arbitrary function b(. and a
differential expression L[4] + 26 + (62+ to2)0 with real 8 and to. Further, some
reflections on the dependence of ro on the order n of (1) will be given.

3. Preliminaries. During these investigations the terms "disconjugacy,"
"Chebyshev-system," etc., will be used as defined in [1]. There, it is also clarified that
for nonclosed intervals I the property "(1) is disconjugate on I" does not depend
on whether the zeros are counted according to their multiplicity or not. A useful test
for disconjugacy based on Wronski-determinants is given in [1, Chapt. 3], and is cited
in Lemmas 1, 2. The following notation for the Wronskian will be used:

W(x(t)) W(x)= W(x, , x(-)

(k -1)
X X

(k)2 // x

X
(k-l)

X
(2k-2)

l<_k<_n-1.

Further, a nontrivial solution of (1) will be said to have property (k, a, b), 1 <_- k _-< n 1, if
it has a zero of multiplicity ->_k at b and a zero of multiplicity _->n- k at a.
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Now, the solution zn(t, to) (zn(t)iff to=0) of our standard initial value problem
(tik is the Kronecker symbol)

Z
(n) + an_lZ

(n-l) d- d- aoZ O
(SIVP)

z’)(to) 6,n_x, k O, 1,. , n 1

is of great importance"
LEMMA 1 [1, p. 99]. Equation (1) has a solution with property (k, a, b) if and only if

Wk(z,(b, a)) O.
LEMMA 2 [1 ]. The number 1o defined earlier is given by

r/o min {T>O[Wk(z,(T))=O ]’or at least one k with 1 <-_k <=n 1}.

As is well known, [5], solutions of autonomous differential equations are invariant
under shifting (i.e., under transformations of time t’= t- to). By definition, a solution
has property (k, a, b) iff it has property (n k, b, a). Thus, from Lemma 1 follows that

Wk(z,(b, a))=O iff W,-k(Z,(a, b))=0.

Making use of the autonomy, we see that this is equivalent to

Wk (Z, (b a, 0)) 0 iff W,-k (z, (a b, 0)) O,

or

Wk(z,(T)) 0 iff Wn_(z,(-T)) =0.

Combination of this with Lemma 2 yields a test for disconjugacy which requires only the
calculation of Wronskians with order <=n/2 and, consequently, has considerable
advantage.

PROPOSITION 1. The number 1o is given by

r/0 min {IT[ #O[W(z(T))=O for at least one k with 1 <=k -< In/2]},

where [a denotes the largest integer f <-a.
The next assertion allows important simplifications in the following considerations.

It is an immediate consequence of Leibniz’ rule for (uv)(j) and the definition of the order
of a zero.

LEMMA 3. Let z(t) be an n times continuously differentiablefunction on I with a zero

of order k < n at to L Then, for any real ,
w(t) := z(t) exp (/3t)

has a zero of order k at to.
The following Lemma 4 is a rather trivial but useful reformulation of a result of

Hijek [3], whereas Lemma 5 generalizes these results to the case of multiple zeros. Its
proof uses rather straightforward modifications of the ideas used in [3].

LEMMA 4. Let a real twice differentiable function O which is not a simple harmonic
with frequency o r/(t2-tl), have two consecutive zeros tl < t.. Then, at some inter-
mediate point t’ (t, t2),

2&(t’)/&(t’)<-a
holds for all 0 < a <= w.

Proof. In [3] the existence of such a t’ with (t’)/&(t’) < -w is proved. Combining
2 2this with -w <--a < 0 gives the assertion.

LEMMA 5. Let a twice differentiable real function & have N zeros (counting
multiplicities) on [0, zr/to] L Then, L[O]= +to-O has at least N- 2 zeros in L
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Proof. In the case where b is a simple harmonic with frequency f on a subinterval
of ! with length <-7r/f, the assertion is trivial. Therefore, this can be excluded. Assume
that there are M distinct zeros tk with multiplicities ink. According to Lemma 4 there
exist intermediate points Sk,

0 <= tl < S < t2 <" < SM- < tM- <= 7r/to,

at which bL[ < 0. Note, that for mk 2, L[& has a zero of multiplicity mk 2 at tk.
The case mk= 1 has been treated in [3]. Observe that /b and bL[b] have the same
sign whenever b 0. Therefore, bL[b] < 0 at t, Sk.

Assume first, that mk >- 2 is not even. Then & and Limb] both change sign at tk.
Differentiating L[4,] mk- 2 times shows that either both functions are increasing or
both are decreasing in a neighborhood of tk. Now, from &L[b < 0 at Sk-1 and Sk we can
conclude that L[b has a zero in (Sk-I, tk) and one in (t, Sk) and consequently, that it has
mk zeros in (s_x, Sk).

Secondly, assume mk to be even. Again, Limb] has a zero of order mk- 2 at
Comparing the derivatives of order mk- 2 shows that the functions $ and L[b have
either both a minimum or both a maximum at tk. But these two functions are of opposite
signs at Sk- and Sk. Again, Limb] must have a zero in (Sk-, tk) and one in (tk, Sk).

Consequently, L[$] has mk zeros in each interval (Sk-1, Sk), (at least!), and ml- 1
zeros in [h, s2) and raM-1 zeros in (st-, tt], that are in total N-2 zeros in
[tl, tt].

COROLLARY 1. The assertion remains valid for operators L[b] b" + a with
0<a_--<to.

Proof. Lemma 4 guarantees the existence of the intermediate points Sk where
bL[b < 0 holds.

COROLLARY 2. Let k, to, N be as in the lemma, and L2 the differential operator
associated with p2(A) A 2_ 28A + 82 + a 2 with arbitrary real 8 and 0 < a <-_ to. Then
L2[b has at least N- 2 zeros in L

Pro@ This is an immediate consequence of L2[b]=exp (-St)Limb exp (t)],
Lemma 3 and Corollary 1.

LEMMA 6. Let a twice differentiable [unction c have N zeros (counting multi-
plicities) in I =[a, b]. Let r be the maximum distance between two consecutive zeros.
Then, L[4 + a2 has ]:or any a < zr/r at least N 2 zeros in L

Proof. The same arguments as in the proof of Lemma 5 will be used. Thus, it
remains to show the existence of the intermediate points Sk. Lemma 4 states the
existence of points t, at which

2t/b < -(’rr/(tg+x- tk))2 --(7"/’/7")2 --0

Application of Lemma 6 requires additional information, but allows the use of
relatively high frequencies in the operator L.

COROLLARY. Let the notation be as in Lemma 6, and again L2 the operator
associated with p2(A) A 2_ 26A + 82 - o 2. Then for every real 6 and every a with
0 < ct <- r/r the function LE[q has at least N 2 zeros in I.

It is important to note that an upper bound on the frequency of the operator L
cannot be avoided. This is demonstrated by the following simple example.

Example 1. The function b-sin t-sin 3t has four simple zeros in [0, zr] and
seven zeros (kTr/4, k -0, 1, 3, 4, 5, 7, 8) in [0, 2zr]. Lemma 6 gives a -<_ 2, whereas
Lemma 5 only allows conclusions for frequencies c -<_ . But the condition a <_- zr/z of
Lemma 6 is also only a sufficient one: the function + 5b 4(sin +sin 3t) has three
zeros in [0, zr] and 5 zeros in [0, 2zr]. In the case a > zr/r, the total length of the interval
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in question might be of importance" b has ten zeros in [0, 37r], but ; + 5b has only
7<10-2.

Take now, as a slight modification, the function b sin t-A sin 3t with A > 1,
and consider the interval I [0, 27r]. Each function of this type has exactly seven zeros
in I with - 7r/3 as A . Therefore, Lemma 6 allows for conclusions in the case
a-< 7r/" 3 as A c. Thus, the maximum frequency of b seems to be of some
i..mportance. One might suppose from this that a statement like "for a-> tomax, t--
b + a has at most N- 2 zeros in 1" for functions which are solutions of an equation
(1) holds. In fact one can find examples where this is true, but it is not so in general, as can
be seen from the next example.

Example 2. Equation (1) with characteristic polynomial p(A (A 2 ._ 1)k(A 2 + -2)
has z6 [-12(3- fla) sin + fl(1- lqE)t cos +2 sin flt]/(2O(1-1q2)2) for k 2 and z4
’6+ z6 (-lq sin +sin lqt)/(fl(1 I12)) for k 1 as solution of the SIVP. The first zero
of z6 (z4, respectively) determines r/o */0,6 (r/o,4 respectively), and it is easy to verify
that

/0.4 7.9604 > 7.775 ’00,6 for f 0.35,

and

T/0,4 27r < 7.1073 ’1)o,6 for 0.5..

This example demonstrates further that for a fixed set of characteristic numbers,
is in general not a monotone function of the order n of (1).

4. On the first conjugate point ot (1). As has been pointed out, one can restrict the
consideration to the characterization of the first conjugate point of to 0. Further,
Proposition 1 has r/o r/ /(0) -r/ -(0) as consequence. Here, r//(rt -) denotes the first
right (left) conjugate point of 0 as defined in 1 ]. Therefore, the following investigations
try to characterize rt

+ and to give best possible bounds for it.
PROPOSITION 2. Every differential equation of second order with nonreal charac-

teristic roots has

I0=[0, 7r/to) or (0, 7r/to] respectively

as maximum interval of disconjugacy.
Proof. Lemma 3 allows reduction to the case k" + to2z 0, and from this the result

follows trivially.
PROPOSITION 3. There is no differential equation (1) of order n >= 3 that has

I0 [0, 7r/to) or (0, 7r/to respectively, as maximum interval of disconjugacy.
Proof. Only equations with at least one pair of nonreal eigenvalues need to be

considered. Without loss of generality it may be assumed that m(A)= (A 2+ to2)p(,),
where all eigenfrequencies of p(A) are -<to and deg (p) -> 1. Now, induction arguments
are used. Assume first that for some n > 3 there is an equation (1) havingN _-> n zeros in
[0, 7r/to]. The function w:=’+to2z is a solution of the (n-2)th order equation
P[w] 0. From Lemma 5 it can be deduced that w has at least N-2 >-n- 2 zeros in
[0, 7r/to]. Therefore, it is left to show that the assertion is true for n 3, 4.

For n 3 one can restrict to functions z(t)=A sin (tot+ y)+exp (St). Then,
7r/to follows immediately from the positivity of exp (6t) for real 8. For n 4 a careful
investigation of the various possibilities shows again that there is no solution of (1) with
four zeros in [0, 7r/to ]. The results of these simple but somewhat lengthy investigations
are given in Fig. 1 and Fig. 2. One obtains that r/0 approaches 7r/to only in case the real
parts of both characteristic roots of p approach
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FIG. 1. o as a [unction of f and 6 for equations (1) with characteristic polynomial p(h)=
+ oo)(- 2,a + 6 + 1).

.,

O000 -0.7500 -0.5000 -43.2500 0.0000 0.2500 0.5000 0.7500

FXG. 2. rio as a function of and 6 ]’or equations (1) with characteristic polynomial p(h)=
(2 + o)(a t)(a a).
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A rather trivial reformulation of this result is the following.
COROLLARY. r/o zr/to iff n 2.
PROPOSITION 4. For every n > 2 and every s > 0 sufficiently small, there is an

equation (1) with
Proof. Lemma 3 together with a transformation of time t’= tot allows reduction to

systems (1) with characteristic polynomial

p() (; + )&().

Let P, be the differential operator associated with p, (.), where

/(,)=(-a)(,-2c)...(-na), n=1,2,..., areal.

Then we have for the solution z of the SIVP

P[z]=O, z()(O)=3,+, k=O, 1,’",n+l,

the representation

zn(t) An cos + B. sin + a.i exp (iat), n 1, 2,....
i=1

Now observe that z. is also a solution of. ncz z._l, z(O) O, n l, 2,

with z0=sin t. This allows us to derive the following recursion formulas for the
coefficients of

A. -(naA._l + B.-1)/(1 + n2a 2),
B. (A._- naB._x)/(1 + nZa2),

ani --an-l,i/((n -i)a)
n--1

a.. =-A.- Y ani,
i=1

with starting values

Now, rewrite zn as

(6)

1,... ,n-l,

Ax=-l/(l+a2), Bx =aA1, all=-A1.

zn =(A +B)ale sin (t +/3.)-qn(exp (at))

n =2,3,...,

Here, q. (.) is a polynomial of degree n, and the phase/3, is determined by

tan/3. A./B., 18. <-_ r/2.

Let a < 0. Then we have

(7) /3.<0 and lim /3.(a)=0.

This is shown as follows. For [a[ sufficiently large we have B, > 0 for all n 1, 2,. .
Then by induction arguments (O is the Landau symbol)

as well as

forlcr[cc, n=l,2,...,

sgn (A./B.)=sgn (a)=-1, n 1, 2,..,,
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can be deduced easily. Consequently,

tan ft, O(la 1-1)
holds. This finishes the proof of (7). From this follows further that the first expression in
(6) is positive for < rr -/3, and negative for > rr -/3, > rr and/3, < 0 arbitrarily close
to 0 for a sufficiently large.

The second term q, in (6) is a polynomial with argument exp (at). Now take -> rr
and a < 0 with sufficiently large. Then, again by induction arguments, it can be
deduced that sgn(-q,)=sgn(a,1)=l. From this q,<0, follows. Further, a,1 is
bounded (in fact a.1 O(la]-(n+l)), and from this

q./(z. + q.) 0 for # r -/3. and a

follows. Therefore, z, + q, and q, must have a point of intersection T T(a) > rr B,
with T(a) 7r-,(a)- r for a -o, according to (7). This terminates the proof, the
idea of which is illustrated in Fig. 3.

FIG. 3. The geometric idea of the proof of Proposition 4. Full line: a =al; dashed line: a =a2; with
az<a<0.

We remark that the functions used in this proof are not the only possible ones. For
example, equations with a set of characteristic roots equal to {ka+/-’,/---[k=
0,. , m} S for n 2m and S {0} for n 2m + 1 can be used in a similar manner.

Propositions 3 and 4 prepare the results on a lower bound for r/0, whereas
Proposition 5 guarantees that for every order n there is a differential equation such that

rio equals the well-known upper bound (n- 1)rr/to. In order to relieve the proof of
unessential but necessary calculations, a useful result on trigonometric functions will be
given first.

LEMMA 7. (a) Let z(t) {sin t, sin 3t,. , sin (2k- 1)t}, where stands for
"linear combination o". Then the Wronskian of order m, W,,, is again a linear
combination oftrigonometric functions. The frequencies are either all even (m even) or all
odd (m odd) and bounded by m(2k- m).

(b) Let z(t)= {1, cos 2t,. , cos 2kt}. Then W,, is a linear combination of tri-
gonometric functions. The frequencies are either all even (m odd) or all odd (m even) and
bounded by m (2k + 1-m).

Proof. The proof uses induction arguments and is based on the elementary
formulas for the addition of trigonometric functions. It is given for the first assertion and
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m even only. The Wronskian Win, with S := {1, 3, , 2k 1}, is of the form

Wm= {sin olt" sin omtloi S} {cos (601 -1" 602 "+’" "-t" Ogm)t[09i - S}.

From this the first part of the assertion is evident. It is left to show that the maximum
frequency tOk.m of Wm has the given bound. For k 1 this is trivially true. The solution
of the SIVP with characteristic polynomial p(h) (h 2 + 1)( 2 + 32)... ( 2 + (2k + 1)2)
can be written aSZzk/2 X + a sin (2k + 1)t =: x + u, where x is a solution of the same
differential equation of order 2k as Z2k, whereas u is a solution of//+ (2k + 1)2u 0.
The Wronskian Wm(z2k+2) can be represented as sum of Wronskians of order m:

Wm(Z2k+2) Wm(X 31- U) Wm(x)31 W(x, ,... ,x (m-2), u (m-l)) q_. _[_ Win(u).

Here, only those determinants do not vanish identically which have at most two rows
containing u or derivatives of it and at most 2k rows built with the function x. We
consider three cases.

(i) Let W have two rows built with u
follows that W is a sum of terms

(s)

W(x, x(_), u
(s+h)

U

and u (r). From Laplace’s theorem it

u(r)
U(r+h) 1 <- h <- m 1.

The first determinant is a linear combination of trigonometric functions with frequen-
cies --<tOk.m-2, whereas the second factor is a constant.

(ii) In case W contains only one row built from u, W is a sum of terms with
frequencies --<(tOk.m-1 + 2k + 1), where rn =< 2k holds also.

(iii) If W contains no row built from u, frequencies --<tOk.m may appear with
m<-2k.

Putting the pieces together now results in

-<max {to.,-2, tOm, tO.m- + 2k + 1}

max {(m- 2)(2k-m + 2), m(2k- m), (m- 1)(2k-m + 1)+ 2k + 1}

max {(m (2k- m), m(2k + 2-m)}= m(2(k + 1)-m),

and this terminates the proof.
PROeOSTION 5. For every n >-2 there is a differential equation with

(n 1)Tr/to.
Proof. Consider (1) with characteristic polynomial

p,(,) (,+ )(+3)... (,+(2g- ))
p, (,) (, 2 + 22)(h 2 + 42)... (h 2 + (2k)2)

for n 2k,

for n =2k+1.

Proposition 1, requires that none of the Wronskians Wm(zn), 1-<m _--<[n/2], vanish
for some with O<t<rr=(n-1)zr/to. The solution Zn of the SIVP is a linear
combination of trigonometric functions of the form

k

Y ai sin (2i- 1)t, n 2k,
i=1

zn(t)
k

Y bi cos 2# n 2k + 1,
i=0

where the coefficients ai and bi can be characterized as quotients of certain Vander-
monde determinants. By definition, zn (t) has a zero of order n 1 at 0, and because
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of sin 0 sin/’zr 0(j e N) and cos 0 cos 2jr 1, it has a zero of the same order at
t--o

Now by Lemma 7 every Wronskian W,, is a linear combination of trigonometric
functions with frequencies

re(n-m), re(n-m)-2,..., (1-(-1)’)/2, m=l,2,...,n-l,

with only sine or cosine terms appearing. The derivative of order j can be written as

W( {W(z( (
,’",zn ")} withsl+...+s,=f+m(m-1)/2,

and can differ from zero only when at least one Wronskian in this sum differs from zero.
At 0 or rr, this is for the first time true for s, s,_l + 1 sl + m 1 n 1.
Consequently, f m (n m).

By a well-known theorem, see, e.g., [4], no linear combination of the functions 1,
cos t,...,cosMt, sint,...,sinMt has more than 2M zeros in [0,2rr), because
they build a complete Chebyshev system over this interval. In our terminology this
is equivalent to "Equation (1) with characteristic polynomial p(h)=
(h 2 + 1)(a 2 + 22) (a 2 +M2) is disconjugate over [0, 2rr) for every natural number
M". W,, is a function of this type withM m (n m) which hasM zeros at 0 andM
further zeros at 7r. Therefore, W,, cannot vanish at any point of (0, rr). This
completes the proof.

PROPOSITION 6. Let (1) depend continuously on a realparameters. Then 7o ?o(S)
is a continuous function of s.

Let us remark, first, that this result is already known [9] and is valid even for
nonautonomous differential equations. Nevertheless, we shall present here a proof
which is probably more simple than the one given in [9]. It is pointed out that it
can be used for the general case of [9] in a straightforward way. The proof is based again
on the strong connection between disconjugacy properties and the concept of
Chebyshev system.

Proof. From standard theorems about differential equations, e.g., [5], it follows
that not only z, but also the zeros of z or one of the Wronskians W,, (z) are continuous
functions of s, as long as there is a real zero. But it might happen that for some 9o 7o()
all Wronskians having a zero at o have a zero of even order there. Consequently, the
possibility that all these zeros disappear simultaneously has to be taken into account.
Therefore, we have to show that no pair s, o- /o() exists such that all Wronskians
which vanish at/ :-(g, o) are sign-definite in a neighbourhood U of/. Assume now
that W,, and Win+ both have a zero of even order at 16, and that Wm+l [: 0 at/3 (remark
that in case W, has a zero of order > 1 W,,+I must also vanish at this point), and

(i) I/V, has in/ a zero of odd order, and therefore a real number a can be found
such that

w(g, t):= W.(g, t)+aliV.,(g, t)

has a zero for r with (g, z) e U (in fact z can be chosen arbitrarily close to o). Now,
from w(g, z)= w(g, 0)= 0 and continuity of w(.,. ), it follows that numbers zl, z2,

can be found such that (g, zi) U for i= 1, 2 and w(g, -)= w(g, z2)= 0.
(ii) On the other hand, the assumption that W,/ is definite in U is equivalent

to the definiteness of W.I,, .2W.,, since [7, VII, Problem 59] W,.ff’,. -W.=2
W,.-1W.,+I. Consequently, W., and the Wronskian W2(W.,) W(W.,, ].,) are both
definite in U. This means that every function v(s, t):= alW.,(s, t)+a2liC.,(s, t) has at
most one zero in U for any s g. But from this follows that w(g, t) as defined in (i) can
have at most one zero in U. This contradiction terminates the proof.
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Finally, we present the proof of Theorem 3.
Proofof Theorem 3. The representation (5) of the characteristic polynomial allows

us to write the solution to be investigated as [5]

z(t) x(t) + y(t), with P[y] 0 and Q[x] O.

Here, P and (2 are the differential operators corresponding to p(. and q(. ). From this
it follows that x can be written as

x(t) , pi(t) exp (A/t),
i=1

where f is the number of distinct zeros of q(. ), and pi(t) are polynomials of degree ri
(corresponding to the multiplicities of the real zeros A) with rx +’" + r. +/" r. By
Lemma 3 Wx(t)= exp (-Xxt)z(t) has the same zeros (and of the same multiplicity!) as
z(t). Consequently, if z(t) has N zeros counting multiplicities on L then the (rx + 1)th
derivative of wx(t) has at least N-rx-1 zeros on L Multiplying again by exp (-A2t)
and differentiating yields finally that a function of the form

exp (-h it) exp (-hit)(boy(t)+... + by()(t))
has at least (N- r) zeros on I. From this follows that

w(t) bo y(t) +.. + bry((t),
which is again a solution of Ply] 0, has at least (N r) zeros on I. And from Theorem 1,
w(t) has at most [T/r/ox] zeros. Therefore,

N r -<_ (n r- 1)[T/

which yields the desired estimate.
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A QUADRATIC TRANSFORMATION TECHNIQUE FOR THE
SOLUTION OF NONLINEAR SYSTEMS*

ROBERT A. HOWLAND, JR.’["

Abstract. A new technique is developed for the formal analytical solution of systems of differential
equations through an easily invertible Lie transform method. It is based on an approach due to Kolmogorov
and Arnol’d and features the ability to determine the transformed equation to twice the order of explicit
transformation, particularly useful in the solution of nonlinear systems. Van der Pol’s equation is treated as an
example in which a single transformation results in a second-order explicit periodic solution with frequencies
accurate to fourth order.

1. Introduction. It is a fact which must be lived with that few differential equations
can be solved exactly, and fewer still which mathematically model, even approximately,
physically meaningful systems. On the other hand, many systems can be described
through a small function perturbing an otherwise soluble system, and there are various
techniques used to obtain at least formal solutions to such problems, as power series in
the magnitude of the perturbation. Some deal with the original system (iterative
successive approximation techniques, for example), others with a transformed (and
hopefully soluble) system in new variables; in the latter case, the original variables’
solution can then be found through the inverse transformation from the soluble
system’s variables. To be useful, however, the transformations involved must a) give a
predictable form for the transformed differential equation, b) be manageable, and c) be
easily inverted.

Hamiltonian systems exemplify this latter approach. Their form under canonical
transformations is invariant, and the sufficiency condition for such transformations is
sufficiently general to be practical, satisfying criteria a) and b); unfortunately, the
traditional transformations involve expressions in mixed (transformed and untrans-
formed) variables, making inversion difficult. In the past decade, however, a new easily
invertible canonical transformation, the Lie transform (expressed in homogeneous [all
old or all new] variables) has met with some success in methods by Hori [1], Deprit [2],
Kamel [3], and Henrard [4], [5], and has been generalized to non-Hamiltonian systems
by the latter two [4], [6] more for its pleasing inversion properties.than for its canonicity.

The solutions obtained by these methods, each of which determines sequentially
orders of a generating function transforming the original system and thus may be
termed linearly transforming, are purely formal asymptotic series; mathematical con-
vergence is generally not only unable to be demonstrated, but may even be violated (see,
for example, Siegel’s results regarding Hamiltonian systems [7, 3(a)], although a
theorem by Poincar6 [8, VIII, 3] justifies their use over short intervals Of time. Yet
another approach suggested by Kolmogorov [9] and generalized and proven con-
vergent by Arnol’d [10] for the solution of Hamiltonian systems does give convergent
series solutions under certain circumstances; the technique relies on determining a
sequence of complete transformations, and results in quadratic transformation and
convergence. As originally presented, their approach utilized the traditional mixed-
variable generating function, making it especially impractical for application, but a
recent method proposed by the author 11 ], and subsequently modified in the interest of
greater efficiency [12] utilizing Lie transforms makes their approach a viable technique
for the solution of Hamiltonian systems. (Unlike previous linear perturbation methods,

* Received by the editors October 2, 1977 and in final revised form October 16, 1978.
f Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana,

47803.
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this technique relies on a demonstrably convergent mathematical approach and might
thus have some appeal. Convergence, however, requires imposition of the irrationality
condition [10, V, 3.2] which, in practical problems, is impossible to verify as
discussed by the author [11, 1.1]; no claim, then, can be made regarding convergence
of these solutions.)

Not all systems can be represented by a classical Hamiltonian" dissipative systems,
for example, involve an additional nonconservative work term in the momentum equa-
tions of motion whose mere transformation does not simplify. Kamel 13] has proposed
a formal Hamiltonization procedure applicable even to dissipative systems, but it might
be deemed preferable to work with the original non-Hamiltonian systems. In such
cases, the non-Hamiltonian formulations [4], [6] could be utilized, but, like their
Hamiltonian counterparts, these methods are only linearly transforming. (The formal
Hamiltonization procedure and most of the linear techniques, though none of the
quadratic schemes, cited above are described in Nayfeh’s survey of perturbation
methods [14, 5.7].)

The present paper, then, generalizes the author’s Hamiltonian quadratically
transforming technique, resulting in an algorithm for the formal asymptotic solution of
such non-Hamiltonian systems. It might be expected to be more efficient in many cases,
but in any event has a special feature which might recommend its use in some
applications: the ability to obtain nonlinearly perturbed frequencies of vibration to
exceptionally high accuracy. Basic theory of the vector generalization is developed in
the next section; application of the method, an example (van der Pol’s equation), and
comparisons with linear counterparts are made in subsequent ones.

2. Basic theory. Consider a vector function f(x; K, e) of the vector variable x and
the two scalar parameters K and e, analytic in x at 0 and e 0. (With the exception
of exponents and indices, Latin letters throughout this paper will denote n-vectors
unless otherwise stated.) Then, for the [vector] C function W(x; e), define the formal
Lie operator

L vj w

(where (Of/Ox) in this matrix product is the Jacobian of f with respect to x, and W is
represented as a column vector), and its iterate

i-1

Now defining the Lie transform off under W,
2

r,
Li _= _L2wf+.exp (:Lwf) =-- Y’. -[-( wf f+ Lwf+

i>=o 2.

we can make the formal transformation x (y; K, e)

(I) x =exp (Lwy)

where now W= W(y; e). (Note that if W=J(y,y), where J is the symplectic matrix
and S S(y, Y; e) a scalar function, this transformation reduces to the canonical
transformation (I) in the author’s treatment of Hamiltonian systems [11]).

The following theorems can be proven about the transformation (I):

Equations fundamental to the technique are identified with Roman numerals.
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(II)

THEOREM (Transformation). Under (I),

f*(y; , e) =f(exp (Lw(y; )y); e) exp (tcLw(y; )f(y; e)).

Proof. Expanding f(exp (KLwy); e) about K 0, we get

/(x(y; , e); e)--f*(y; , e)= Y d
i_->0 i! -- K--0"

But

and Lwy is a function of y and e only. Thus, by (I),

dx E (i-l)Lwy=Lw E Ly Lwx m(2.2)
d il ]0

so direct calculation gives

Of WLwL

and, inductively, ,
But, then, from the form of the explicit transformation (I),

dif*]--- Lvf(x(y," O, e) e) L’wf(y e),
d =o

from which the result follows.
THEOREM (Inverse). The inverse of transformation (I) is generated by (-W); i.e.,

(III) /*(y(x; K, e); :, e) exp (L-w(x;)f*(x; , e)).

The proof is the same as ones by Deprit [2, 2] and the author [11, 2] for this
property in their Hamiltonian developments.

The basic theory presented here compares directly Deprit’s development of his
linear technique for Hamiltonian systems [2, 2] in which the generating function is
independent of the small parameter in terms of which expansions are made. In common
with the other linear Lie transform techniques cited in 1 of this article, however, he
chooses to develop transformations (as well as the generating function) in powers of the
original small parameter, e, necessitating additional differentiation with respect to this
parameter, and expansions are generally implemented through the use of auxiliary
functions. In these methods, then, the coordinate transformation (I) assumes the form

x(y; e)=exp (eLw(y;)y),

so that x becomes the solution of the differential equation ([6, 2])

de
W(x e)

indeed, this equation is the starting point for Henrard’s developments of both his
Hamiltonian and non-Hamiltonian methods. In the present approach, expansions at
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each transformation "step" are made in terms of a second parameter K, functionally
independent of e, introduced to measure the magnitude of the perturbation at that step;
the resulting transformation (I) can then be interpreted (see (3.1.5) below) as the
solution to

dx
dK

W(x e)

The functional independence of the right-hand side of this equation of effects
considerable simplification.

3. Application of the transformation to differential equations.
3.1. Transformation of differential equations under (I). Consider a system of

differential equations in vector form,

(3.1.1) 2 =f(x; , e) }-’, %(x; e).
j_>-o

Under any transformation x -. (y; , e),

e)=
ox(y; ,e)

Oy
3) =f(x(y; , e); t, e),

so that

=(Ox(y; :, e)) -1

Oy
f(x(y; , e); :, e)=---g(y; K, e),

or, for f*(y; K, e)=--f(x(y; u, e); K, e),

(3.1.2)
8y

g=f*’

in which all functions are expressed in (y; x, e).
Under the particular transformation (I), write g (after Henrard [4])

(3.1.3) g(y; u, e)= E ’gi(Y e (. W)f)(y , e).
i>=o

Then, by (I),

while, by (II),

Ox= :i 0

K
f*=exp (Lwf) Y’, Lw , ’fi,

i.o j>=o

so (3.1.2) becomes

k>=O = (k-j)! k>-_o = (k-j)!
k-j

Thus, equating orders of K, using (2.1), and noting that Lwy W, we obtain finally for
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the gi in (3.1.3):

(IV)

k=0: (Lvy) go go=fo,
Oy

k=>l:
k-1 1

gk=fk+ o= (k-j)!
(Lkw-]) Lg(Lkw-l-l w)

Observe that, unlike the other non-Hamiltonian Lie transform techniques [4], [6],
the recursive relation for k >- 1 in (IV) does not involve the calculation of intermediate
functions resulting from recursive applications of the Lie operator, subsequently to be
operated upon again by Lie operators to determine the transformed differential
equation (cf., e.g., Henrard’s Algorithms II and IV [4], which also describe Kamel’s
technique). Required only are the iterates Lvf. and LiwW, the latter of which it is
advisable to retain for later applications of Lgj. It should also be kept in mind that W, fi,
and gi are, in practice, all (vector) power series in e.

Note that as a special case of (IV),

(3.1.4) ((w)w)(y; )= w(y; e);

indeed, for f= W in (3.1.1), fo W while f.=0 for j->l, and inductively gk =0 for
k => 1. Thus, using (3.1.3) to write (3.1.2) in the form

0x(y; o, e)
(.5(W)f)(y Ko, e)=f(x(y; o, e); e)

Oy

and using the result (3.1.4), we get

Ox(y; , e) Ox(y; , e)
((W)W)(y; e)= W(y; e)= W(x(y; 0, e); ).

8y Oy

But then, by (2.2), x(y; , e) under (I) satisfies

dx 8x
(3.1.5)

d: Oy
W=W(x,e).

Such an equation is the starting point for Kamel’s and Henrard’s developments [3],
[6] leading to their transformation algorithms; in the present case the transformation (I)
itself has been. But having established (3.1.5) it is possible to obtain an initially
appealing result regarding the composition of transformations (I) analogous to one of
Henrard’s ([4, 4]):

THEOREM (Composition). The mapping

x exp (xoLwoz),

giving the composition of the two successive mappings

x exp (oLwly), y exp (K1Lw2Z),

generated by the two C vector functions Wa(y; e) and W2(Z; E) for K1--KI(K0) is
generated by

d: (Ko)
W0(z; K0, E)-- Wl(Z; E)+ (,-l(Wl)W2)(z; E).

d0
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Proof. The proof follows exactly as Henrard’s, showing through direct differen-
tiation that x(y(z; KI(KO), e); Ko, e) satisfies (3.1.5),

dt(o
Wo(x; o, e),

for the Wo above.
Since the application given in the next section relies on successive transformation

of the original differentiation equation, this theorem would appear to be useful in
recovering the original variables’ solution from that of the transformed variables; but
implementation of this result would require additional transformation of W2 under the
inverse of that generated by W1 (transformation repeated for successive trans-
formations) and more importantly, development of the inverse operator and general-
ization of the entire transformation algorithm to allow dependence of the generating
function on the perturbation parameter . A similar occurrence in the author’s
Hamiltonian scheme 12, 3] led to investigation of the advisability of such generaliza-
tion (which ultimately would reduce to adapting one of the available linear schemes in
which generating functions depend on the small parameter in terms of which expansions
are made) merely for use in solution inversion. Consideration of the number of Lie
operator applications required for a composite generating function of requisite length
suggested that more effort would be required to apply the composite to the variables
than to use the separate generating functions of shorter length successivelyma result
ignoring the additional transformations of the generating function itself ([12, 5]).

3.2. Application of the basic method. Consider a vector system of differential
equations

(3.2.1) i =fo(x; )+’%(x; ),

in which fo and fp are assumed of order unity and equation A fo is soluble, though the
full system is not. If, furthermore

fp f or-fl or- 8 mE2,

in which ,/= fo(x; e) + e "fl (x; e) f (x e) is soluble, the efl can be said to produce a
"perturbation of order m [in e ]" on f. One endeavors to transform x -+ (y; , e) to
eliminate the part

Since the perturbation is of the given magnitude, this suggests introducing a new
"perturbation parameter" e and writing F2 in the form (3.1.1)"

m-1

e’F2 emi efit,(x) =- 2 Kif.(x; e).
i>=2 k =0 j2

A transformation (I) results in the equation for k 1 in (IV) (using the fact that fo go)
of the form

gl= f"l +l +Lwfo-Lfo W.
If now W, assumed of the form

(3.2.2) W(y; e)--- 2 eW(Y),
i=0
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satisfies the differential equation

0 o. +(v) LoW-Lco--y. o- y

there results

(3.2.3) gl fl g mR,

and the new differential equation for y becomes

R(3.2.4) 3) =f0(Y, e)+cfl(y, e)--Ke (y, e)+ Y Kkgk(y, e)
k2

in which the g, k 2, are calculated using (IV), including e in (3.2.3) in Lg, in
particular. Now it can be recognized that e "in value", so (3.2.4) can be written,
for f g:- R, f g, k 3

=(/o+f)+ E
k2

and the system is soluble to order 2m, rather than just m + 1 as with a linear method,
through an equation of the original form (3.2.1). The process can be repeated with a

2mnew * e to determine a new transformation generated by W* say, resulting in an
equation soluble to order 4m; iteration of the process effects quadratic transformation
and can be cried through the desired order. The solution for the original variables can
be recovered by applying directly the sequence of separate transformations generated
by W, W*, etc. through (I) and (II) to express the orisinal in terms of the transformed
variables’ solution; initial conditions for the latter may be found by transforming those
of the original variables through the inverse transformation (III) (in reverse order).

It is perhaps advisable to collect the results of the development (equations
(I)-(III) from 2 and (IV) and (V) above) in one place"

(I) Coordinate Transformation" x(y; , e)=exp (Lw(y;)y).

(II) Functional transformation"
f(exp (Lw(y;)y); e)=exp (KLw(y;)f(y; e)).

(III) Transformation Inverse" [exp (xLwf*)]-= exp (L-wf*).

(IV) Differential Transformation" K fi K gi, where

go =fo,

gk fk + k-i k-i-1(L L,(L W)).
=o (k-/)t

(V) Determining Equation LzoW Lwfo fl + e

At this point, two questions might be raised: 1) why the remainder term, R in (V),
and 2) why not determine higher orders of W than required to eliminate only f?
Although the two matters are related, the answer to the first lies in the fact that a W
(3.2.2) satisfying (V) with R 0 would generally require a power series extending to the
ultimate order of transformation reduced only by the order of perturbation at that
stage, a power series which must be appli to the . and W through (IV). But assuming
that no higher orders of generating function are to be foundand this has still to be
justifiedperturbation is eliminated only to order 2m, and only m orders of generating
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function effect this elimination; more would result merely in unproductive effort. It is
just this observation which led to modification [12] of the author’s original technique.

This can be demonstrated, and the calculation of the explicit R assisted, by noting
that for

m--1 m--1 m--I

fl 8. fxi, W 6. fo e kfok,
=o /=o k =0

it is possible to express (V)

/=0 ]=0 \ 0y

2m-2 m-1 (C3 W. Ofo(i_J) Wi)m-1
i=m ]=(1--m)+i Oy i=0

the first (double) summation can be recognized as that determining the W., 0-</" =<
m 1; the second is just the explicit expression for

Again, the fact that W, fi and gi are power series in e bears mention. In particular,
using the transformation equation (IV), it is a simple matter to prove inductively that
the gk in (3.2.4) are of the form

(k+l)(m--1)

gk e igki (y)
i=0

thus, for K e ’n, Kigi has terms from order im to (ira +(i + 1)(m- 1)) inclusive (in e),
and there is an "overlapping" in magnitude with later such terms.

The second question will be answered in the next section.

3.3. A special feature of the method for nonlinear vibrations. In any trans-
formation method for the solution of differential equations, the solution for the original
variables is found by transformation of the final solution (known to the order of the
transformed differential equation) through the explicit transformation (to its order).
The method developed above has the ability to eliminate perturbation to twice the
order of that present at a given step; in particular, at the last step of this procedure,
perturbation would comprise half the terms in the differential equation, and the
subsequent determination of an appropriate generating function would eliminate these.
In this assurance, one can merely drop the perturbing terms at the last step without
explicitly determining the generating function; but then the transformed differential
equation (and its solution) is known to twice the order of the explicit transformation
(and the original variables’ solution).

This apparently self-defeating feature has important applications in the solution of
nonlinearly vibrating systems, in which transformation generally is utilized to force the
system, through averaging, to assume the form of a linear oscillator whose frequencies
can then be determined. These frequencies should be determined as accurately as
possible, for an error in the frequencies generates a time-linear (secular) "drift" away
from the "actual" solution visa vis the purely periodic error generated by truncation of
the generating function (generally periodic in form). In a given problem, furthermore,
the frequencies of vibration under perturbation can be more important than the actual
solution. Thus it is typical in a linear method to average the next order in the
transformed equation above the last explicit generating function’s in the assurance that
any periodic perturbation could be removed to that order, and resulting in a frequency
known to one order higher than the transformation, and thus solution. But for times on
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the order of the inverse square of the [original] small parameter, the secular error in the
frequencies will already have encroached on the highest order of explicit solution,
independent of the order to which transformation has been made. In the present
technique, terms in the transformed equation can be averaged to twice the order of
perturbation at the last step, and for times on the order of the inverse of the
perturbation parameter at this last step (as opposed to the original perturbation
parameter), secular error will still be of the same order as the periodic error from the
generating function termination. In any event, the frequencies of the perturbed system
have been determined to very high accuracy relative to the solution--an accuracy which
increases with the order of transformation, in contrast with a linear method.

Though in principle higher orders of the generating function could be determined
in a given transformation, it is the use of separate complete transformations which
effects the continual redoubling of transformation elimination in the above technique
(and the approach of Kolmogorov and Arnol’d on which the method is based), advising
against finding such higher orders at each transformation step.

The efficiency of the present method in determining frequencies of nonlinear
oscillation is exemplified in the next section.

4. Example: van der PoPs equation. In illustration of his generalized Lie trans-
form technique, Kamel [6, 4] considers the one-dimensional second-order van der
Pol equation

q + q ( q).
(Note that in this equation q is a scalar; so also in the subsequent discussion will be the
quantities A, B, and C, which, along with , 4’, and r, will be components of the 2 vectors
x, y, and z respectively.)

Through a variation of parameters, letting

q A sin , A cos ,
he puts the original equation in the form

__)i
/ A A3

d A -(1- [ C2+--ff-C4
0 1(7--") -S4

2

$2
1

=--fo + e(f-(A) +[I(A, )),

in which Ci-= cos i, Si---sin iCma two-dimensional, first-order system. By applying
the present method to this problem, some comparison of the linear quadratic tech-
niques can be made. As with Kamel, we shall transform this to new variables y (B, )T

in terms of which the new differential equation is free of b. The procedure outlined
above will be used to find the explicit transformation and solution to second order while
determining the transformed equation to fourth.

Elimination of to second order. We start, of course, with the fact from (IV) that

go=fo= (0).1

That C-dependent termsmfor us the "perturbation"are present to order e
recommends the perturbation parameter for the first step to be : e. The determining

(W1) at this step by (3.2.2),equation (V) to be satisfied by the generating function W
W2
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since Lwfo =- 0, becomes

where now Ci --cos i, Si -= sin i@. Thus,

B B3

(4.1) W= --$2 q--$4

_1 C:z + ---and

In this case, since the e-power series for both fo and fl have only the single zeroth order
term, the determining equation is satisfied exactly, so that R -= 0 and gl also has only a
single term.

Calculation of the frequencies to fourth order. With only the explicit generating
function W, we shall calculate the transformed (angle-independent) equation to fourth
order, that to which a subsequent explicit transformation would be expected to
eliminate the angles. Since we already have gl above, this will involve determining
the angle-independent parts of both g2 and g3. By (IV), the latter in particular
requires operation on g2 by Lw, periodic with arguments 26 and 46; thus, both secular
and periodic terms with these arguments will be found for g2.

From (IV), since f2 =- O,

1 2 1
g2 0 +-.. (Lfo Lgo(LwW)) +. (Lwf Lg, W).

But L2wfo =-0, so the first term

Similarly

Lwf =afx W
Oy

(B 23B2 B) ( B 5B3 3Bg 128 +1- $2+ --+ 64 256/$4+’’"

( ( (284)1 3B2 1.1B4.’ 7B2 3B4 1 B-g+ +
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and finally

Thus

-LgW
OW
Oy

(B B3) (3B3--- S2+\ 64

+ C+
8

t256/

7B3 3BS B3

---+64 1-]S2 -" (-- ")s4 ""
11B4] Be B4 B2 B4

We are now prepared to calculate g3. Again by (IV) (and f3 -= 0),

1 1 1
g3 0 + -g-;(O Lgo(L2wW)) + -, (L2wf Lgl(LWw)) + ", (LwO Lg W).

Here only purely secular terms need be found. Routine calculations yield that

Thus, finally

1 Lgo(L2wW (purely periodic)"
3!

3B 17B 3

1 2 128 256
..Lcf

3B 15B3

1
w,,srglCrwTXZ 128 512

2!

3B 3 7B5

-Lg2W=-
512 2048

239B5 91B7
8192 g-7-]

+ (periodic)

(periodic)

83B 35B7
8192 2--81 + (periodic)

(periodic)

97

28!04/+ (periodic)

(periodic)

- + (periodic)
32 64 4096/

(periodic)

Through third order, then, the transformation generated by W, (4.1), yields the
new differential equation

d B

+ e 2(periodic).

B3 B5
0 -- 9B7

2
-1-" 83 64 4096

1 3B2 lib /+ 16 - -/ 0

2But since the ’perturbation" is of order e the next transformation, expected to be of
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the form

y exp (K*Lw,z),
(4.3) . 2 W*(z; e)= W (z)+ eW (z)

4(by (3.2.2)) for z (C, 0.)r, would eliminate such terms to e thus the secular terms in
the above expression (4.2) will represent the transformed equation after this second

4transformation to e The ordinary differential equation for the new variable C would
be

C4 9e C6(4.4) d’ e 1 + C2+- 2048

which could be solved by quadrature for C(t), also reducing 0. to solution by quadra-
ture.

The above equation, due to the linear factor of C, will generally yield a solution
exponential in the time. If, however, (7 0, (4.2) shows that the solution for 4’ will be
linear in t, and thus, through purely periodic transformations, x(z K, e) will be periodic.
Assuming C to be of the form

C 2 + ae + be z + ce 3

and substituting this into the differential equation for C, (4.4), gives the condition that C
is constant if C (2-e2/32); this value of C then determines 6- (1 -e2/16)uitself a
constant. Note that both of these are accurate to fourth order and check with classical
results ([6, p. 103]).

The transformation generated by the explicit W, (4.1), gives q(x(y;,e)).
The subsequent transformation giving y in terms of z, generated by W*, has not
been calculated explicitly, however; thus q is known only to second order by (4.3).
(Recall that only a single explicit transformation step has been made.) To this order,
then, q can be found by the mere substitution of z for y in W:

where

q**(z , e) q(exp (Lw(z)z)) exp (Lw(z)q(z)) q(z) + KLw(z)q(z),

But e here, and

Thus

where

q(x) q((A, b)r) A sin 4.

Lw(z)q(z) - 1 cos o---3 cos 30-.

q** C sin 0- + e 1 cos 0---3-- cos 3

0-= 1- + 0.0.

The use of hand computation in the above example advised against explicit
calculation of the second transformation (involving terms to eighth order); as presen-
ted, it does illustrate the ability of the proposed method to obtain transformed
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differential equations (and thus their solutions) to twice the order of the transformations
themselves and at least indicates the accelerated transformation property of the
method. Comparison with Kamel [6, 4] indicates the importance of the former
property.

In his determination of the value A (corresponding to C above) giving periodic
solution, Kamel neglects a third-order averaging despite knowledge of the explicit first-
and second-order generating functions; since its time derivative is factored by (cf.
(4.4)), this third order is required to obtain the value of A to order 2, and not doing so
produces an acknowledged periodic error of second order in a solution ostensibly
accurate to that order. Fortuitously, the form for both C and 6- (corresponding to
Kamel’s p) in even powers of e avoids a corresponding third-order error in the
frequency in this case.

Contrast this with the present example, in which although an explicit solution is
known only to second order (the explicit W* above required to bring it to fourth)
both C and 6- are known to order 4; the same device employed after a second explicit
transformation would give the explicit solution to order 4 and frequency to order 8. In
addition, this solution erring periodically at order 2 avoids secular error for times

--4,comparable with e-2, and a second transformation would do so for e Kamel’s---or
-1any linearmmethod can only hold for times on the order of e before suffering such

secular error.

5. Comparisons with available techniques. Attention will be limited to methods
using Lie transforms, in order to maintain the inversion properties used to obtain the
original solution in terms of the ultimately transformed one.

In this regard, the linear methods of both Kamel [6, 3] and Henrard [4,
Algorithm IV] are highly efficient due to the fact that only nonvanishing terms in the
original perturbed differential equation generate the intermediate functions mentioned
in 3.1 above; previous algorithms, like their earlier Hamiltonian counterparts,
generated the same number of these functions independent of the form of the original
equation (cf., e.g., Kamel [6, 2] or Henrard [4, Algorithm II]). Henrard [4] shows the
vector formulations of both these techniques to be straightforward generalizations of
the respective scalar developments (his Algorithms I and III), justifying comparison of
the scalar methods as an indication of the efficiency of the vector ones.

The author [12, 5] has made a detailed study comparing his Hamiltonian
quadratic formulation with the "inverse algorithms" of Kamel [3] and Henrard [5]
(which are generalized to their efficient vector methods) and more traditional linear
methods, using the number of Lie operator applications as a criterion. Briefly stated, the
("nondegenerate") results indicate that to obtain the original solution to the same
order as the transformed equation for starting Hamiltonians with very few terms, the
inverse algorithms require fewer Lie operator applications both to transform the
Hamiltonian and to invert the transformed solution for that of the original variables;
but for starting Hamiltonians with second- or third-order terms, the quadratic tech-
nique becomes significantly more efficient in transformation. Both are more efficient in
both transformation and inversion than previous linear methods.

But the present technique also allows the option--not available in any linear
method---of determining the transformed differential equation to twice the order of
solution (cf. 3.3 above). Thus to find the perturbed frequencies in a nonlinear system
to a given order requires some fewer Lie operator applications than needed to find both
the frequencies and solution to the same order ([12, 5]) and might be desired
independent of the effort in any event.
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REGULARITY OF SINGULAR
TWO-POINT BOUNDARY VALUE PROBLEMS*

ROBERT SCHREIBERf

Abstract. Two-point boundary value problems like (p(x)xu’) =f(x) on (0, 1) have a regular singular
point at the boundary, and solutions that are not smooth but behave like x1- near 0. Bounds on weighted
Sobolev norms of their solutions, essential to the theory of finite element approximations for such problems,
are obtained here.

1. Introduction and main results. In this paper, we prove a regularity theorem for
the singular two-point boundary value problem

(1.1a) -D(p(x)Du) + q(x)u f(x), 0 < x < 1,

(1.1b) u(0) u(1) 0,

where

and

(1.2a)

for some 0 _-< r < 1,

(1.2b)

and

p(x)=x(x),

d

q(x)=xv(x),

P(X) Pmin > 0,

(1.2c) f H’, p W +1,oo, "},’ Wm,z,
for some integer rn _-> 0. Here, W"’p denotes the usual Sobolev space of functions with
weak derivatives of order up to m in Lp (0, 1), with norm

,.p =- I[DJu [l.p(0,1).
1=0

We letH Wm’z and [[. Jim [[" 1[-.2. H01 H consists of theH functions which vanish
at 0 and 1. We denote by (/, g), the inner product of H’.

Problems of this type arise in the study of generalized axisymmetric potentials [7],
[4]; their numerical solution by finite element methods is discussed by the author [6].
That paper assumes the bounds on the solution to be proved here.

Let S be the weighted Sobolev space of absolutely continuous functions u such that
u(O)= u(1) 0 and x’/2Du L2(O, 1). The solution u of (1.1) is in S but is not always in
Ho [1].

We note that the form

a (u, v =-- Io (pDuDv + quv dx,

* Received by the editors January 23, 1980. This work constitutes part of the author’s doctoral
dissertation at Yale University, New Haven, Connecticut.

f Computer Science Department, Stanford University, Stanford, California 94305.
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is positive definite over $, and therefore, there exists a unique u e S satisfying

a(u,v)=(f,V)o,

for all v S, which we call the generalized solution of (1.1). The solution is bounded by
the right-hand side,

(x.3) Ilullo--< Collfllo,.
where Co is a constant independent of u and f.

MAIN THEOREM. There exists a positive constant F independent of u andfsuch that,
if u is the generalized solution of (1.1), then for all 0 <= <- m,

IlO(x=Ou)ll, =< rllfll/.
2. Proof of main theorem. The proof requires three lemmas.
LEMMA 1. If gCm+l[O, 1], g(0)=0 and f(x)=-g(x)/x, 0<x_-<l, then f6

C"[0, 1] and

lim Df(x) Dt+ig(O)
-,o /+1

for all 0 <= <- m.
Proof. It is clear that f C" (0, 1 ]. A simple computation shows that

Dlf(x) x_(+l l!
i=o(-1)l-ixiOig,"

for all x > 0. Taking limits with the aid of L’H6pital’s rule, we obtain

limDlf(x)=lim’=(l!/J!)(-1)l-(Jx-Dg+xD+g)-limD+lg 71
-o -o (I + 1 )x -o -----’1+1

Hardy’s inequality [3] states that when g H and g(0)= 0, then IIg/xllo
We now generalize to the case g s H’+.

LEMMA 2. If g H’+, g(O) 0 and f(x) =- g(x)/x, then f H and

2 [Dl+lg(2.1) IlDlfl[o<=2-[ Iio.

Proof. We shall show (2.1) for g Cm+. This will suffice, since {g s cm+lq(O) 0}
is dense in {g s H"+[q(O) 0} by Sobolev’s inequality [2].

A routine computation shows that, for 1 _-< _<- m,

(2.2) xOlf Olg- 1ol-lf.
Since for 0 the result is just Hardy’s inequality, we assume -> 1. Integrating by parts,

]]Dt 2 Io$11o= dx

-x-[xDf] + 2 | DfD(xDf) dx.
o ao

The integrated term is nonpositive, since at x 0, D lf is finite (by Lemma 1). Thus,
by (2.2)

lID z Iof[Io=<2 D’f(D’+Xg-lD’f),



106 ROBERT SCHREIBER

whence, by the Cauchy-Schwarz inequality,

(21 + 1)llDtfll <-_ 211D fllollD + gllo. [3

The next lemma is of interest for its own sake, as it shows that if D(xDu) is
smooth, then u is of the form x-%, with v smooth.

LEMMA 3. If u S, andD(xDu) Hm, then xu H"/2, and there exists a positive
constant F1 independent of u such that, for 1 <- <- m + 2,

(2.3) liD (x  u)ll0 _-< FIlID t-1 (x Ou)llo.

Proof. Define

and, for 1 _-< _-< m + 1,

Vo(t) tDu(t), 0 <= <-_ 1,

(Vi-(t)--Vi-l(O))
vi(t)--" 0<t----<l.

By hypothesis, v0 H"/1", furthemore, it follows from Lemma 2 that vi nm+-i and,
for < -<_ m + 2,

(2.4)
]=l--i--1

We now show by induction on that

(2.5) 01(XU) DI-lvo + ClDI-2v + + CI-1DVI- + ClX- l-l-vl- (t) dr,

k-1
where c

xu(x) x t-(tDu(t)) dt,

and

D(xu) Vo + rx-1 t-Vo(t) dt,

which is (2.5) for 1. For the induction step, first note that the last term on the
right-hand side of (2.5) satisfies

fr-! tl-1 Xr-IX -r/P/-l(t) dt tl-l-cr[Dl-l(O + tvl(t)] dto

Now assume (2.5) holds for I. Differentiating, we obtain

Dl+l(xu) Dlvo + ClDI-Io1 +" + Cl-lDVl-1

+ cv + (o"- l)cx-- t-v(t) dr,

which is (2.5) for + 1.
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Inequality (2.3) now follows from (2.4) and (2.5) provided we can show that

cr--l I-
X -%,_(t) dt <- CIIvl-llo,

0

for all 1 -< -< rn + 2, with C a constant independent of v. Let

I(x)=-- l-l-0.v-I (t) dt.

Integrating by parts, we obtain

2o"-211i ]2[[x’-’I(x )ll x (x dx

20.-2l+1
X f0-2or-21 + 1

x )x v_(x) dx.

If the integrated term is nonpositive, then, by the Cauchy-Schwarz inequality,

[Ix-’/(x)ll <-
2l- 2or 1

[Ix (x)llollv,-l[[0.

As for the integrated term, at x 1 it is negative, except (possibly) when 1. But in
that case,

I(1) Jo Du(t) dt u(1)-u(0)= 0,

so the integrated term vanishes.
At x 0 it vanishes, too. For, by the Cauchy-Schwarz inequality,

2

-v_(t) d(I(xll

X21-20.-1 IO<- 2z--_- 1
v_(tldt,

whence, since v_ La(I),

lim x-l+(I(x)) <-
1 Io

Proof of main theorem. We start by showing that D (x0.Du H and

(2.6) IID(xDu)ll,
where C > 0 is independent of f.

Following Reddien [5], we explicitly construct the generalized solution. First, let

Clearly, g L and

Ilglkoollf -qullo.
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Next, let

and

Finally, let

g(x) _g(x)
h(x)==x

p(x) (x)’

r(x) h(t) dt.

w(x) (x)- (1) Y(x),

where Y is the solution of the problem

-D(pDY)=O,

Y(O) O, Y(1) 1.

We claim that w S and, moreover, w u, the generalized solution. Clearly,
w (0) w (1) 0. Moreover, the construction shows that

x/2Dw x-(/2) g--- v (1)x/2D Y,
p

which has finite square integral; hence w S.
The construction also shows that

(pDw, Dv)=(f-qu, v)

for all v $, whence (p D(u w), D(u w)) 0, i.e., u w.
To obtain the bound (2.6), note that

DI+I(xD@)= DI+I(-), 0 <= l<m,=

whence,

liD(xDr)[I/ -< Co[[glll+

<-- callf- qul], 0 <= <- m,

where cl depends only on and IIllw+,. Furthermore,

a--k-Ilglk Io[(1)l <= x dt <= cllf -qullo.
Pmin

Thus,

]]D(xDu)]II [[D(xD@)]]/ / ]v(1)l IlD(xDY)[I/

Now we show that there exist constants M/such that

(2.7) Ill- qull, <- Mll[fll,.
We proceed by induction on l. For 0, the a priori estimate (1.3) yields

Ilullo Coll[[o,
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whence,
I[f- qul[o--< (1+ Collq[[L)llfllo

Since D(xDu)H, we can apply Lemma 3, which yields

u =x v, vn
and

IIv I1= --< FllD (x Du)llo -<- FMollfllo,
Thus, qu (x’y)(x-’v yv and

<--M=IIII=,
where c2 depends on Ilrll, and Ma 1 + c2F1 tMo).

We reiterate this argument for 2, 4, ., m (if m is even) or 2, 4, , m 1
(if m is odd). To obtain (2.7) for odd values of l, possibly including m, we apply Lemma
3. Since D(xDu) nl-l, u x-’v, where v H/1 and

I111,/ -<

Thus,

Ill- quill <= Ilf[[l "al-

Ill[l/+ Cl[Iv Ill
<= Ilflll + Cl[Ivll/

<----Mill flit,
where Cl depends on [[yllw, and Me 1 + ClFMI-. 1"1
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PIECEWISE MONOTONE INTERPOLATION IN POLYNOMIAL TIME*

L. RAYMON?

Abstract. There are presently in the mathematical literature constructive proofs of the existence of
algebraic polynomials P that interpolate given data and remain monotone between the data points, together
with upper bound estimates on the degree of P as a function of the data. These constructions, however, are

impractical for large numbers k of data points, since P is obtained as a linear combination of 2 polynomial
approximations. A constructive proof of the existence of such a piecewise monotone interpolating polynomial
is given here, with P obtained as a linear combination of k polynomials, together with an upper bound on the
degree of P.

1. Introduction. Let X {xi}o where 0 Xo < xl <" < xk 1, and let Y {yi}ok

be real numbers such that yg-1 yi, 1, , k. An algebraic polynomial P(x) with the
properties

(i) P(xi) yg, 1 <- <- k, and
(ii) P(x) is monotone on the interval (Xi-1, Xi), 1 <-_ <-_ k, is said to interpolate YatX

piecewise monotonely. It is a result of W. Wolibner [4] and S. W. Young [5] that for each
X, Y there exists a polynomial that interpolates Y at X piecewise monotonely. The
smallest degree of a polynomial that interpolates Y and X piecewise monotonely is
called the degree of piecewise monotone interpolation of Y with respect to X, and is
denoted by N-N(X, Y). Estimates on the degree of piecewise monotone inter-
polation are seen to depend on the "degree of comonotone approximation", which we
proceed to define.

A function f(x) on [a, b] is said to be piecewise monotone if [a, b] may be
partitioned into a finite number of subintervals on which f is alternately nondecreasing
and nonincreasing, f(x) and g(x) are said to be comonotone on [a, b] if they are
piecewise monotone and are alternately nondecreasing and nonincreasing on the same
subintervals. If f is piecewise monotone on [a, b] we denote by * (f) the set of all
polynomials of degree _-<n comonotone with f on [a, b]. The degree of cornonotone
approximation of f, E* (f), is defined by

E* (f)= inf
P

where I[" denotes the sup norm. If S is a set of comonotone functions, the degree of
comonotone approximation to the set S is given by

E* (S) sup E* (f).

Let

A-A(y)- min ly,-y-ll,
lik

and

Yi--Yi-llM- M(X, Y)- max
l--ik Xi Xi--1

As a consequence of a result of Passow and Raymon [3, Thm. 1], connecting
the degree of piecewise monotone approximation to the degree of comonotone

* Received by the editors March 17, 1980.
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122.
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approximation, one obtains the following estimate on N(X, Y): There is an absolute
constant C such that

CM
() N(X, Y) -<_.

(Although this estimate on N(X, Y) is somewhat better than that claimed in 3, it does
follow immediately from Theorem 1 in that article together with the now improved
estimates of Newman 2 and Iliev l-1 on the degree of comonotone approximation.)
The estimate (1) is satisfying in the sense that it is neat" and reasonably small.
Furthermore, the proof is constructive. The rub is that the desired interpolating
polynomial is a linear combination of 2 polynomials, each of which is a comonotone
approximation of a designated function. This exponential growth of the number of
polynomials required as a function of the number k + 1 of interpolation points
obviously limits the practical value of the result for anything but relatively small values
of k. In the spirit generated (or, at least, accelerated) by the celebrated result of
Khachian in linear programming, the purpose of this article is to reduce the exponen-
tial time" required for the production of the interpolating polynomial to polynomial
time." We are in fact able to reduce the number of polynomial approximations, of which
the desired interpolating polynomial P is a linear combination, to exactly k. In order to
gain this advantage, the construction is more complex, and the estimate on the degree of
P is not quite as small. Here, however, the net result is, nevertheless, far more efficient
time-wise" than the previons construction, except for special cases. We summarize the
result and proceed with the construction.

2. The result. LetX {xi}o (where 0 Xo < Xl <" < Xk 1) and Y {yi}ko be real
numbers such that yi-1 yi, 1,..., k. Then Y can be interpolated at X piecewise
monotonely with an algebraic polynomial P(x). P(x) may be constructed as a linear
combination of k polynomials, each of which is a comonotone approximation to a
piecewise linear function determined by X and Y. The degree N ofP satisfies

Av
(2) N<

--A6’

where A is an absolute constant,

A A(Y) min ly;-

v the total variation,

(as above ),

6 (X) min (xi xj-1).

3. The construction and the derivation of the degree bound. Let Sk be the set of all
continuous piecewise monotone functions f increasing on each of the intervals [xi-1, xi]
for which yi-yi-1 >0, decreasing on each of the intervals for which yi-yi- <0,
1 =< =< k, such that

f(b)-f(a)J<sup
O<=a,b<=l b a

By Newman’s theorem [2] lim._.E*(Sk)oO. For each r/>0 the smallest degree n
such that E* (Sk)< r/will be denoted by n(k, rl). We will construct a polynomial P that
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interpolates Y at X piecewise monotonely and of degree

(3) N <-
k\3v].

P{x) will be the desired polynomial, a linear combination of k polynomials. The desired
estimate (2) will then follow from (3) and estimates on the degree of comonotone
approximation.

There is no loss of generality if it is assumed that y0=0. Each vector Y=
(0, yl,..., yk) may be corresponded to a point in E as follows"

T: Y=(0, Yl,"’’, Y)-+ (Yl, Y2--Yl,""’,

Let X=(2o,... ,) and Y=(0, 1,’’’, 5;k) be given. Let S be the set of all
vectors with the same monotonicity as Y (i.e., all Y=(0, yl,...,y) such that
(y;-y;__l)(/-p,._l)>-0, j=l,2,...,k). Then T represents a one-to-one corre-
spondence between S and the open orthant O in E" determined by the signature of
{i:1, 5;2-371, 5;-7__1). Let M(N) be the subset of O which corresponds under
T to vectors in S with degree of piecewise monotone interpolation <=N with respect to
X. It is then sufficient to show that N=[nk(Aa/3v)]:: T(Y)M(N).

If O M(N), then aO M(N) for every a >0. (Indeed, if p(x) interpolates Y
piecewise monotonely, ap(x)interpolates a Y piecewise monotonely; also, T(Y)=
0 => T(a Y)= aO). If O, O’ M(N), then 0 + O’ M(N). (If Y, Y’ e S, then Y + Y’ e
S, and p(x)+p’(x) is a piecewise monotone interpolation of Y+ Y’, where p(x),

T(Y)=O}p’(x), respectively, interpolate Y,Y’ piecewise monotonely; then
T(Y’) O’

T( Y + Y’) O + O’.) Hence, M(N) is a convex cone in O. Let a; e; sgn ()s- 15,-1),
]’ 1, 2,..., k, where the e/. are the ordinary e-vectors spanning E. The points ,; are
not elements of O, but are boundary points of O. Let H be the standard (k 1)-simplex
determined by ,.,/" 1, 2,..., k (i.e., the convex hull of the a;.) H is also the set of all
points (pl, p:,’’" ,p)=PO such that Ipll+lp21+’’ .+lpl=l; that is, all points
Y (yl, Y2-yl,’’’, y- yk__l)such that v [yl+ly2-yll+... +[y-y_l 1. Thus,
-1

t’ Y H, and
-1Y c M(N) Ca v Y M(N).

We shall complete the construction of the polynomial for (3) by finding approximations
.,’a to Aj in H M(N) sufficiently close to ; to ensure that v Y is in the convex hull of

a/.,/=l,’’ ’,k.
For each j, we may define a piecewise linear function Li(x) with the following

properties’
(i) Lj(x) is continuous;
(ii) L; is increasing and linear on each subinterval [2i-, ii], i= 1, 2,..., k on

which 35i-35i->0; Li(x) is decreasing and linear on each subinterval on which
;- ;_ < 0;

(iii) L.(2.)-L.(2._,)= 1; g:j Li(i)-Li(i_l)l<=(A/3v. (L,(x) may be
obtained by defining it to have appropriate values at x o, ,’ , 2k, and defining it
linearly in between.) Observe that 5L.iSk. Hence, there is a polynomial q(x) of
degree _<-n nk(AS/3V) comonotone with 8L,(x) such that

liP 5Ljll <- E* (&) <_---
3v
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then 8-q(x) is a polynomial of degree =<n comonotone with Li(x) such that

Let p(x)= 6-[q(x)-q(O)]. Then,

A
(4) f lp(.gi)-P(Yi_l)[ <-- 1

A A

Now

and

Also, by (4),

(P(o)--0, p(.ll), p(.l2),"" ", P(.k))E S

j--(p(.l), p(.l2)--p(.),""’, p(.k)--p(.k-l)EM(N).

(where II<z,, Z2, zk)ll max Izil).
l<=ik

-1Thus, A lies in O and in the k-dimensional cube centered at ai with side 2Av (and
diameter 2k /2Av-1); i.e., , lies in the k-dimensional rectangular parallelopiped/-i
determined by the intersection of O with this cube. Multiplying A by the appropriate
positive constant (the total variation of X i), we obtain a point A of M(N) in

HI =/-)i f"l H. H is then the regular (k- 1)-simplex whose k vertices are A. and the
k 1 points on the edges of H at a distance k /2Av-1 from a. (i.e., it is a simplex which
is a "truncated tip" of the simplex H at a with diameter k 1/2Av-). Since a M(N)
may be selected in H for each j, j 1, 2,..., k, we conclude that M(N) includes all
positive linear combinations of a . If {ix}= is a sequence of points such that Ix. H
and is otherwise arbitrary, we let H{ixi} denote the convex hull of tx 1, Ix2, , Ixi. Then
H* c M(N), where

H*= 71 H{ixi}.

This intersection H* is seen to be the regular (k- 1)-simplex embedded in H of all
points of H whose distance from the boundary of O is -->Av -’, that is, a point
P= (p,..., p of O is in H* if and only if minlik IPi]---->Av -. In particular, the

--1 H* -1minimum modulus of the coordinates of v I7 is Av- Hence, v I7" v
M(N), Y M(N), and P is the desired polynomial satisfying (3).

We now note that as an immediate corollary of Newman’s construction [2] there is
a constant C such that for n > k

i.e., that

C
En* (&)_-<-,

C
(5) n, (r/) <-

Combining (3) and (5), we get (2). Q.E.D.

4. Remark. If in the construction of P satisfying (3) the normalization to the
-1)standard (k- 1)-simplex (by multiplying Y and v is replaced by a normalization to
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the k-dimensional unit cube (by multiplying Y by V where v0 maxj [Yi- Yi-l[), then
the dependence on the total variation v is ostensibly replaced by a similar dependence
on the smaller Vo. However, if this is done, a dependence on k is necessarily introduced,
and the resulting estimate on the degree of P is of the order kvo/AS, which is clearly
weaker than (3). Nevertheless, this estimate is a bit easier to compare to (1) and helps
demonstrate the time advantages of the method introduced in this article.
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THE CHARACTERISTIC-RESISTANCE METHOD FOR GROUNDED
SEMI-INFINITE GRIDS*

A. H. ZEMANIAN

Abstract. A variety of existence and uniqueness theorems for the current flows in infinite electrical networks
have been previously established, but there is virtually no information on how to compute those current flows
under the practical requirement that the power dissipated and energy stored in the network be finite. This
problem is addressed herein. It is shown that the characteristic-impedance method of analyzing lumped
transmission lines can be adapted to semi-infinite half-plane resistive grids and to three-dimensional
half-space resistive grids. The method yields the one and only current flow within the grid for which the total
power dissipation is finite. It also yields a practical procedure for computing the currents and voltages in the
grid. That procedure is remarkably efficient and uses very little computer time. Moreover, semi-infinite grids
whose branch impedances are positive real functions can also be analyzed in a similar way. This allows the
computation of transient behavior in the presence of energy-storage elements, but the required computer
time is now considerably longer. Nonlinear grids can also be encompassed by an approximation technique.
These results appear to provide a basis for the numerical analysis of certain boundary value problems of
practical importance in engineering and the physical science.

1. Introduction. Existence and uniqueness theorems for the current flows in
infinite electrical networks have been the subject of rigorous analysis for almost a
decade, starting with the seminal work of Flanders [4] and continuing with the efforts of
Doleza! [2] and the author [21], [23]. However, except for some highly particular cases
such as the lumped transmission line, there have been very few results concerning the
actual computation of the current flows in an infinite electrical network under the
practical requirement that the total power dissipated and the energy stored in the
network be finite. A notable accomplishment in this regard is Flanders’ justification [5]
of the various analyses of the constant-resistance square grid. If the assumption of finite
power or finite energy is dropped, a method [22], [23] becomes available, but it requires
the a priori assignment of the currents in certain branches called "joints". How to
compute the current flows to ensure finite power or finite energy remains an open
question for general infinite electrical networks.

The principal result of this paper is that the characteristic-impedance method of
transmission line theory can be adapted to half-plane resistive grids (Fig. 1) and to
three-dimensional half-space resistive grids (Fig. 6). The method yields the one and
only current flow within the grid for which the total power dissipation is finite. The proof
of this assertion is rather long and appears in 2 through 5. It also yields a practical
procedure for computing the currents and voltages in the grid ( 6 and 7). That
procedure is remarkably efficient and uses very little computer time. Moreover, our
characteristic-resistance method extends to RLC grounded grids wherein each branch
is a positive real impedance ( 8). This allows the computation of transient currents and
voltages in the presence of energy-storage elements, but the required computer time is
considerably longer ( 9). Nonlinear resistive grids can also be encompassed if a
linearization technique due to Dolezal [3] is employed.

In addition, our results appear to be useful to the numerical analysis of certain
boundary value problems of practical importance in engineering and the physical
sciences. For example, a currently active area of research in semiconductor devices is

* Received by the editors January 8, 1980 and in revised form August 2, 1980. This work was supported
by the U.S. Air Force Office of Scientific Research under Grant F49620-79-C-0172.

" Department of Electrical Engineering, State University of New York at Stony Brook, Stony Brook,
New York 11794.
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FIG. 1.

the numerical computation of the currents, potentials, and minority carrier densities in
various doping configurations. More particularly, one configuration for an n-p-n lateral
transistor is shown in Fig. 2 where we assume that there is no variation in the direction

Depletion regions-
Emitter Base Collector

]// \ \ \ n-typen-type
-./.,I,]_

p-type
A-- B Bz

Line Lj)

FIG. 2.

perpendicular to the plane of the page; that is, we assume a two-dimensional variation
only. The two edges of the depletion regions bordering the p-type region are denoted by
B1 and B2. Let n np- npo, where np is the free-electron density in the p-type region
and np0 is the equilibrium value of np for the unbiased transistor, n varies in general with
the spatial coordinates. If known biases are applied to the emitter and collector, then
the values of n along B1 and B2 are easily determined [15]. If in addition, the locations
of B1 and B2 can be estimated, then the following question arises: What are the values
of n throughout the p-type region? n is governed by the partial differential equation
[15, p. 99]:

V2n_ n

anT’
where V2 is the two-dimensional Laplacian operator, D, is the electron diffusion
constant, and z is the electron (minority carrier) lifetime. A difference equation
approximation of this equation yields the resistive grounded-grid representation,
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shown in Fig. 1, for the p-type region with the node potentials being the discrete values
of n and with given voltage sources at the nodes along B1 and B2 being the discrete
boundary values for n.
But now we are faced with a dilemma. Ordinary circuit analysis does not permit us to

compute the node voltages in the case where the p-type semiconductor of Fig. 2
extends infinitely downward. On the other hand, truncating that material at some
vertical distance downward leads to analyses requiring impractically long computer
times if the truncation occurs at realistic distances from the top surface. Truncations
that are sufficiently close to the top surface to allow practicable computer times are too
close to be representative of the actual configuration. This proximity of the truncation
distorts the variations in n .from their actual values. A possible alternative, one that
would not introduce unacceptable distortions, would be to allow an infinitely deep
configuration in Fig. 2.

Here is where our method for analyzing the semi-infinite grid becomes useful. We
can represent all the material below a horizontal line L passing along the lowest
horizontal portions of B1 and B2 by an operator-valued characteristic resistance and
then analyze the p-type region above that line L. This determines n in that region and
along L. Then our characteristic-resistance technique can be used again to determine n
below the line L with comparatively little additional computer time. This numerical
technique will be the subject of a subsequent paper.

Heat flow in thin films is another physical situation for which our characteristic-
resistance method provides a numerical analysis [24]. Still other physical phenomena
whose difference equation approximations lead to uniform grounded grids are dis-
cussed in the many papers of Kron; see, for example, [8] and [9]. These latter cases lead
to RLC grounded grids, rather than purely resistive ones. Nevertheless, our method
extends to this case too, as was mentioned before.

Our method also works for networks with more complicated graphs than the one
shown in Fig. 1. We can allow each node of that figure to be adjacent to more than two
nodes in the same horizontal row. We need only require that each node have a finite
degree and that the grid remain uniform. (See [18, Fig. 5].) Moreover, the element
values and the graph can vary from horizontal row to horizontal row and even in the
values of Zb SO long as some periodicity in these variables occurs along the vertical
direction and there is no variation in the horizontal direction. In short, the grounded-
grid computations established in this work may become of considerable value in the
numerical analysis of certain boundary value problems over half-planes or three-
dimensional half-volumes, a matter that is currently under investigation.

2. An existence and uniqueness theorem. We will need an extension of the
existence and uniqueness theorem of 19] to the case where the currents and voltages
are Hilbert-space-valued and the branch conductances are positive invertible opera-
tors. In this section, we will state what alterations are needed and then will prove a
simplified version of that theorem that is appropriate to the grid of Fig. 1. We continue
to use the terminology of algebraic topology as introduced into the subject of infinite
electrical networks by Flanders l-4]. In the following, Hr denotes a real Hilbert space
with the inner product (., .).

Conditions A. LetN be a connected countably infinite electrical network having no
self loops. The currents and voltages of N are members of H, Each branch B. of N is a
parallel connection of a (possibly zero) current source hj Hr and a (nonzero) conduc-
tance g. which is a positive invertible operator mapping Hr into Hr. There are no other
current sources and no voltage sources.
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B1, B2, B3, denote the branches in N. The typical branch Bi, which we take to be
oriented, is illustrated in Fig. 3. The branch voltage (drop) vi H, and the branch

h

FIG. 3.

current Hr are measured with respect to the orientation of Bi. Thus, givi- hi,
i=iiB is the 1-chain of branch currents, v=viB is the 1-cochain of branch
voltages, and h hiB is the 1-chain of current sources. Kirchhoff’s node law states
that is a cycle, and his loop law states that v is a coboundary. At this point, nothing is
gained by requiring that N be locally finite. This will be required later on, the ground
node excepted.

A 1-cochain w’= wiBi, where wi H, is defined as a functional on a 1-chain
x= xiBi, where x Hr, by (w’, x) (wi, xi) whenever (wi, xi) exists. The latter will
certainly be the case when x is a finite 1-chain (i.e., when all but a finite number of the

xi are zero). We now let 7/" be the Hilbert space of all coboundaries v’= Y vi B such that

(2.1) 2(vi, givi) < oo.

The inner product of two cobotindaries v’ and w’ in 7/" is defined to be (vi, giwi). Thus,
the norm of v’ is

Finally, we define the conductance operator G of N to be the mapping of any
1-cochain v’= viBi into the 1-chain Gv’= giviBi.

All the arguments of [19] carry over to this case of an operator network. They
establish the following existence and uniqueness theorem.

THEOREM 2.1. Let N satisfy Conditions A, and let its branch parameters satisfy

(2.2) (g-hi, hi)< oo.

Then there exists a unique v’ such that

(2.3) (w’, h- Gv’) 0,

for all w’ V.
This theorem states in effect that four conditions determine a unique set of branch

voltages: Kirchhoff’s loop law (v’ is a coboundary), the finite-power dissipation
condition (2.1), the finite-power-available condition (2.2), and a generalized form of
Tellegen’s theorem (2.3), which encompasses Kirchhoff’s node law and Ohm’s law as
consequences.

Our infinite grids possess two more properties that will be worth exploiting. They
lead to a special case of Theorem 2.1 (namely, Theorem 2.2 below) that is more
convenient for our purposes than the global condition (2.3).
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Conditions B. (i) N is locally finite except possibly for a single ground node,
which may be of infinite degree.

(ii) There are two positive numbers P and Q such that IIgll <_-P and IIg-[ <--Q eor
all f.

It follows from B(ii) and the spectral mapping theorem for positive operators that
-1/2 1/2Ilg/21l<-P’/ and Ilg <- Q

We can now identify 72 with a certain subspace of all coboundaries as follows.
LEMMA 2.1. Conditions B(ii) and the positivity and invertibility ofeach gi imply that

v’= Ev.B 7/" tf and only i the vi satisfy Kirchhoff’s loop law and Ellu;II= < oo.
Proof. Kirchhoff’s loop law is equivalent to the assertion that v’ is a coboundary.

Also,

1/2Conversely, since gi is positive and invertible, it has a square root g with the same
properties. Then

/2gi vii <=QE[lgi  ;112 OE(vi, givi).211v 112 2llg,.- 1/2 12 1/2

This proves the lemma.
In the following, 12(Hr) will denote the space of all sequences a {ai" j 1,2, 3...},

where a. Hr and Ylla;ll2 < , with the inner product (a, b)= (ai, bi).
LEMMA 2.2. Under Conditions A and B, (2.3) is a consequence ofKirchhoff’s node

and loop laws, Ohm ’s law, and the finite-power conditions (2.1) and (2.2).
Proofi Kirchhoff’s loop law and (2.1) assert that v’= v.B is a member of 72. We

now show that, for every w’ 72, the series

(2.4) (w’, h- Gv’) (wi, h- gvi),

converges absolutely. By Schwarz’s inequality,

21(wi, hi- givi)[ <=
Zl(g,)/Zw, g, hi)l + 1 wi, g]/2vi)[1/2 1/2

,gi

1/2<= Zllg /Zwzll Ilg f /Z hz[l / 2llg /Zwil[

All four series in the last expression converge by virtue of (2.1) and (2.2). This verifies
our assertion concerning (2:4). Consequently, we may rearrange and sum (2.4) in any
fashion.

So, let no denote the ground node of possibly infinite degree. Let nk, where k
1, 2, 3, ..., denote all the other nodes. Let Wk be the node voltages measured with
respect to no and resulting from the branch voltages w of w’ wiB 1/’. Consider any
node nk other then no. Let Bi"., where m 1, ..., p, be the branches incident to nk.
Corresponding to each Bi"‘, there is a term +/- Wk W,, h girl) in the right-hand side
of (2.4), where Wk and W, are the voltages at the nodes of Bi" q is a nonnegative
integer. We have W0 0. The + sign is chosen if Bi. is oriented away from (toward)
nk. Now, gather all the terms in (2.4) having the factor Wg; we get

P

(2.5)
rrl=l

By Kirchhoff’s node law, (2.5) equals zero. (2.4) may be rearranged to get a sum of
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terms like (2.5), with one such term for each node other than no. We can thus conclude
that (2.4) equals zero; that is, (2.3) holds. This completes the proof.

THEOREM 2.2. Let Nsatisfy Conditions A and B. Assume that {hi}e/2(H,). Then,
there exists a unique vector v /2(Hr) ofbranch voltages vi such that Kirchhoff’s node and
loop laws and Ohm’s law are satisfied. Those branch voltages v are identical to the branch
voltages dictated by Theorem 2.1.

Proof. By Condition B(ii), gl <__ Q for all/’. Therefore, with regard to the current
sources, we may write

> OE[Ihi[{z>- El[g,a I{h.[[2 _-> (g;lhi, hi).

So (2.2) is satisfied. By Theorem 2.1, there is a v’ satisfying (2.3). Lemma 2.1 now
implies that Kirchhoff’s loop law is satisfied and that the vector v of branch voltages vi is
in I2(Hr). (2.3) implies that Kirchhoff’s node law and Ohm’s law are satisfied. There
cannot be two such voltage vectors in I2(H,,), for, if there were, then by Lemmas 2.1 and
2.2 the corresponding members of 7# would both satisfy (2.3), in contradiction to the
uniqueness assertion of Theorem 2.1. This completes the proof.

As an application of these results, we can specify a unique solution for the
half-plane grid of positive resistances indicated in Fig. 1. First note that that grid
satisfies Conditions A and B. We now let 12r denote Hilbert’s coordinate space of doubly
infinite vectors; that is, the vector [..., a_, ao, a, ...]7- (the superscript T denotes

2matrix transpose) is a member of 12 if all its entries a are real numbers and ",a < zx3.

Let us assume that the vector of current sources in Fig. 1 is a member of Izr
(2.6) H=[... H-1, Ho, H1, "]r Izr.

Since these are the only sources in Fig. 1, the quantity y,(gl hi, hi) in Theorem 2.1
becomes Y- k=_H, which is finite by virtue of (2.6). Upon numbering the branches
of the entire grid appropriately, we can conclude from Theorem 2.2 that there is a
unique branch-voltage vector in Izr for which Kirchhoff’s node and loop laws and Ohm’s
law are satisfied. This branch-voltage vector determines and is determined by a unique
node-voltage vector in lzr.

3. A ladder network of Hilbert ports. Our objective is to derive a set of equations
from which the currents and voltages in the infinite grid of Fig. 1 can be numerically
computed. This will be accomplished by replacing the infinite grid of Fig. 1 by a ladder
network each of whose branches is a Hilbert port 17] with respect to 12, obtained from a
subnetwork of the grid. We need, in fact, only two different Hilbert ports, those shown
in Figs. 4(b) and 4(c). Fig. 4(a) is a vector-valued current source whose value is given by
(2.6). As we shall see, the Hilbert port admittance Y of Fig. 4(b) and the Hilbert-port
impedance Z of Fig. 4(c) are continuous linear mappings of 12r into 12, given by certain
Laurent matrices. A Laurent matrix is an infinite matrix of the form A [Aik ], where
j, k -1, 0, 1,.. , such that Ai,k Ai+l,k+ for all/, k [1], [6, p. 135]. Thus, all its
rows are the same except for horizontal shifts. To specify a Laurent matrix, it suffices to
specify its row for/’ -0; we call that row the principal row and denote it by

At=[’’’, Ao.-1, (A0.o), Ao.l’’’]

where the parentheses are used to identify the j 0, k 0 entry in A.
Because of the disconnected form of the Hilbert port of Fig. 4(c), only one current

vector can respond when a voltage-source vector in 12 is connected to that Hilbert
port. Moreover, will also be in 12 because of the constant value of Zb of the impedance
therein. Thus, the impedance Z of that Hilbert port is truly a Laurent matrix, in fact, a
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H. Ho H

(a)

(b)

(c)

FIG. 4.

diagonal matrix with the principal row

(3.1) Z*=[..., 0, 0, (z), o, o, ...].

On the other hand, many different responding (node) voltage vectors are possible
when a current-source vector in Izr is impressed upon the Hilbert port of Fig. 4(b).
However, since Fig. 4(b) with that current source satisfies Conditions A and B, it follows
from Theorem 2.2 that only one of those vectors, say, v will be in Izr. A nodal analysis
(that is, the application of Kirchhoff’s node law at every finite node) indicates that the
admittance Y of the Hilbert port that maps v Izr into Izr is the Laurent matrix
whose principal row is

(3.2) Y*=[..., O, O, -Y,, (Yc+2Y,), -Y,, O, O, ...].

To verify that Y yields the correct behavior dictated by Theorem 2.2, we need merely
show that Y is invertible on 12r. It truly is’ y-1 is the Laurent matrix whose principal row
is

1(Y-’)*= [..., A 3, A z A, (1); A A e A 3 ...],
Y,.,/a2-4

where

a -+ 2, a>2,
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and

A =1/2(a -/a-4), 0<h<l.

Since a > 2, 0 < < 1. That this expression for Y-a is truly the inverse of Y can be
verified by a direct multiplication of Y and Y-a.

Because of the common ground and the disconnected form of Fig. 4(c), we can
connect these Hilbert ports together, without violating the port conditions, to get the
network of Fig. 1. The resulting ladder network of Hilbert ports is shown in Fig. 5. The

H

Zo Zo

FIG. 5.

source current H, the node voltages V1, V3, Vs, (measured with respect to ground),
and the branch currents I1, I2, I3, are each members of lzr. We can invoke Theorem
2.2, this time in its operator-network form, to conclude that there exists a unique set of
node voltages, and thereby branch currents as well, dictated by the conditions of that
theorem. We shall prove subsequently that the components of these lzr-valued voltages
and currents are identical to the voltages and currents of Fig. 1 dictated by the scalar
version of Theorem 2.2. But, to do so, we will first develop some expressions for the
voltages and currents of Fig. 5 based upon the characteristic-resistance approach to
periodic structures.

4. The characteristic-resistance method. We wish to determine the 12r-valued
currents and voltages in the ladder network of Fig. 5, where H is a given/2r-valued
current source. We shall use the standard characteristic-resistance method for periodic
transmission lines, which now requires our extension of it to the case where the line’s
parameters are operators rather than scalars.

We will show later on that the characteristic-resistance operator Z0 indicated in
Fig. 5 is invertible. Assume this to be true for the moment and set Y0 Z1. Then, by
the usual argument that the characteristic resistance is not altered if a single Y and a
single Z are removed from the beginning of the ladder structure, we have

(4.1) (Yo- Y)(Zo+Z) 1.

Here, 1 denotes the identity operator on Izr.
This equation has more than one solution Z0. Let us argue heuristically for the

moment to see which solution we should seek. Z0 should describe the behavior of the
network of Fig. 1. By the symmetry of that network, a shift of the set of current sources
Hk to the right or left should result in the same shift in the responding node voltages.
That is, Zo should commute with the bilateral shift. This means that Z0 should be a
Laurent matrix [1, Theorem 2], [6, p. 135]. Moreover, the solution dictated by
Theorem 2.1 disallows any energy being injected into the network from infinity.
Moreover, the ladder network is passive. This suggests that Zo should be a positive
operator.
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To find such a Zo, we shall make use of the natural isomorphism between 12r and
the space L2(0, 2zr) of (equivalence classes of) quadratically integrable functions on the
unit circle. Specifically, a -{ak},=_o 12r corresponds to the Fourier series

8(x) E ak e ikx,

where, convergence in L2(0, 27r) is understood.
Now, a Laurent matrix L defines a continuous linear mapping of 12r into lEr if and

only if its principal row

L*=[..., -l, (o), t, ...],

is such that

(x)= Z le -ix,

is an essentially bounded integrable function of x [1, Theorem 3], [6, p. 135]. Such a
Laurent matrix L acting on a 12r corresponds to the multiplication of d(x) by the
function (x). In addition, L is positive and invertible if and only if (x) is positive and
uniformly bounded away from zero for almost all x (0, 27r). Note that, because of the
negative sign in the exponents of our expression for (x), the Fourier coefficients of
(x) are the entries of L* taken in reverse order. Of course, if L* has even symmetry
around its central entry, theorder of those entries need not be reversed in order to get
the Fourier coefficients of (x).

All of the aforementioned restrictions on L are satisfied by Y, y-i, and Z. Under
the stated isomorphism, (4.1) transforms into

(4.2) 9o(x)- ?(x)] [o(x)+(x)] 1,

where by (3.1) and (3.2)

Z(x)=&,

Y(x)= Yc+2 Ya(1-cosx)= Ya(a-2cosx),

a=y 2.

In view of the remarks of the preceding paragraph, we seek the positive solution Zo(x)
of (4.2) where ITo(X)= o(X)-1. It is

(4.3) Z’o(X) -fl(a -2 cos x) + [/32(a -2 cos x)2 +4fl(a -2cos x)]1/2

2 Y,(a -2 cos x)

where fl Y,,Zb. Since a > 2, o(X) is clearly positive, even, continuous, bounded, and
bounded away from zero for all x. (The other root of (4.2) is negative for all x).
Moreover, IT"o(X) is given by

(4.4) o(X fl (e 2 cOs x) + [fl2( 2 cOs x )2 + 4fl (ce 2 cOs x)]I/2
2Z

and has the same properties. Thus, Zo and Yo are the Laurent matrices whose principal
rows are the Fourier coefficients of the functions o(X) and IT"o(X), respectively.
Therefore, upon reverting to the Laurent-matrix expressions corresponding to (4.3)
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and (4.4), we obtain

(4.5) Zo (2 y)-l[_ YZ +(Y2Z: +4 YZ)I/2],
and

(4.6) Yo= (2Z)-1 [YZ +(Y:ZZ+4 YZ)I/].
By the aforementioned isomorphism, Zo and Yo are positive invertible operators on l:r.

Laurent matrices commute. Also, the square root and the inverse of a positive
invertible operator A commute with every operator that commutes with A. These facts
allow us to manipulate Y and Z in much the same way as one might manipulate scalars.
It follows from Fig. 5 that

V1 Zo H.(4.7)

Thus,

Alternatively,

I2. H- 11 H- YZoH (1 YZo) H.

We set

(4.8)

/2 (Zo "- Z)-1 Vl (Zo -t- Z)-1 ZoH (1 + YoZ)-IH,

0 1 YZo (Zo + z)-lZo (1 q- YoZ)-1.

In general, for n 1, 2, 3,... and Io=H,

I2n (Zo -[- Z)-1V2n-1 (Zo nt- Z)-lZoI2,,-2 OI2,,-z,

and

By induction,

g2n+l Zol2n Zo(Zo -[- Z)-1 g2n-1 Og2n-1.

(4.9) I2n OnH,

(4.10) g2n+l-- Ongl

Equations (4.5) through (4.10) coupled with [2n-1 YV2,,-1 determine all the branch
currents and node voltages in Fig. 5 for a given H e 12r.

LEMMA 4.1. 0 is a positive, invertible, strongly contractive operator. Thus, there exist
numbers e and 6 such that 0 < e <-_ 6 < 1 and e[la 1[2_<_ (Oa, a) <- lla = for every a 12,
Moreover, II01l <-- a.

Proof. Zo, Z, and Zo +Z are positive and invertible. They also commute. There-
fore, O=Zo(Zo+Z)- and Z(Zo+Z)- are positive and invertible too. Hence,
(Oa, a) >- ellall for some e > 0 and (Z(Zo+ Z)-aa, a) >- (1 -,s)lla[[2 for some a < 1.
Moreover,

(Oa, a) (Zo(Zo + z)-la, a)

((-Z +Z + Zo)(Zo + Z)-a, a)

-(Z(Zo+Z)-la, a)+llall2

<= (1 6)l[a 2 + [la 2
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Finally, the norm of a positive operator equals its numerical radius [11, p. 145], and
therefore, It011 .

This lemma allows us to prove
THEOREM 4.1. The solution for the network ofFig. 5 given by (4.5) through (4.10) is

precisely the solution dictated by Theorem 2.2.
Proof. We shall show that the solution given by (4.5) through (4.10) satisfies the

conditions of Theorem 2.2. First note that the network of Fig. 5 satisfies Conditions A
and B. Number and orient the branches in accordance with the currents in Fig. 5 and let

v. be the branch voltages (i.e., voltage drops). Since the V2n+l are node voltages,
Kirchhoff’s loop law is automatically satisfied by the corresponding v.. The branch
currents, as determined by Ohm’s law in its operator form, satisfy Kirchhoff’s node law.
Indeed, for every n,

=on+illI2n+2 + Ian+ + YV2,+ on+ill + YOV
0 (OH + YZoH) 0 (0 + YZo)H.

By (4.8), 0 + YZo 1. Hence,

12n+2 +/2n+l O"H I2n,

which fulfills Kirchhoff’s node law.
Finally, we have to show that the vector of branch voltages is in 12(I--It), where

Hr 12r. For the vertical branches in Fig. 5, we may invoke Lemma 4.1 to write

=0 =0 =-0

The right-hand side is a finite quantity because 0 < 6 < 1. Similarly, for the horizontal
branches of Fig. 5 we have

E IlZZz.ll2<-Ilzll E IlO’Hll<--IlzltZliHll E 2n <00.
n=l n=l n=l

This completes the proof.
It is worth noting at this point a commonly occurring lacuna in the many

expositions of the characteristic-resistance method for infinite resistive ladder
networks. Namely, the total power is tacitly assumed to be finite; that this assumption
eliminates all but the one solution dictated by the characteristic-resistance method is
not obvious. Theorem 4.1 shows that this is so. Theorem 8.3 below implies a similar
result for infinite ladder networks of impedances.

5. Verification of the two-step procedure. So far, we have developed a two-step
procedure for determining all the currents and voltages in the half-plane grid of Fig. 1.
First, we decomposed that grid into a ladder network of Hilbert ports (Fig. 5) whose
port-voltage and port-current vectors are members of 12r, and noted that within each
Hilbert port the voltages and currents are those indicated by Theorem 2.2. The second
step was to determine the/2r-valued voltages and currents in that ladder network by
using the characteristic-resistance method. These vector-valued voltages and currents
were shown by Theorem 4.1 to be identical to the voltages and currents dictated by
Theorem 2.2. Once/2r-valued port-voltage and port-current vectors are so obtained,
the scalar voltages and currents within each Hilbert port, and thereby on each branch in
Fig. 1, are immediately determined.
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But a lacuna remains. We have yet to show that the voltages and currents of the
grid determined by this two-step procedure are identical to the voltages and currents
dictated by Theorem 2.2. This is asserted by

THEOREM 5.1. The voltages and currents in the grid of Fig. 1 determined from the
components of the voltage and current vectors specified by equations (4.5) through (4.10)
and the given vectorH {Hk}k=- 12r are identical to the voltages and currents dictated
by Theorem 2.2.

The proof of this theorem is quite straightforward and is therefore omitted. Its
details are given in 24; 5].

6. The computation of the voltages and currents in the grid. We can use the
Fourier series representation of the members of 12r to convert the equations of 4 into a
form that is convenient for numerical computation. We have already noted that the
periodic function Z0 corresponding to the Laurent matrix Z0 is given by (4.3). Similarly,
we can use (4.8) to compute the periodic function , which is the multiplier correspond-
ing to the Laurent matrix 0. We obtain

(6.1) (x)= l+1/2B(o-2cosx)-1/2[B:z(a-2cosx)Z+4 B(a-2cosx)]1/2.

Moreover, (4.7) and (4.10) transform into

(6.2) rl (X) 20(X)II(x),

and

(6.3)

where

ri’2n+l(X [(x)]nrI(X), n=1,2,3,...,

/-(X)-- E Hneinx.

So, given the current sources Hn of Fig. 1 such that {Hn},_-_o 12r, we immediately have
the functions I7"2,+1(x), where n =0, 1, 2, .... It follows then that the Fourier
coefficients of V1 (x),

12zr
Q’l (x )e-inxdx’

are the node voltages of the nodes in the uppermost horizontal row of Fig. 1, when the
nodes are numbered in accordance with the H,. Similarly, the.F0urier coefficients of
the functions "Q2,+(x) are the node voltages for the nodes in the (n + 1)st horizontal row
from the top of Fig. 1, when the same numbering system is used. Once these node
voltages are determined, all the currents and voltages in the grid of Fig. 1 can be easily
computed (except of course for the fact that limited computer time limits the number of
currents and voltages one can compute). According to Theorem 5.1, these are precisely
the currents and voltages specified by Theorem 2.2.

An alternative computation is the following. We need only compute the Fourier
coefficients of (6.2) to get the node voltages in the uppermost row of nodes in Fig. 1.
Then, by successively applying Kirchhoff’s node and loop laws and Ohm’s law, we can
compute any desired branch voltages or branch current (within the capabilities of our
computer budget) by progressing downward from row to row in Fig. 1. Actually, this
amounts to the use of the first row of vertical branches (i.e., the parallel connections of
the Hn and Y) as the "joints" of a limb analysis [22]. Our present analysis has shown
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how those joint voltages must be assigned in order to obtain the finite-power-
dissipation condition, a heretofore open problem.

Here are some numerical examples regarding the grid of Fig. 1. As before, V2n+l
denotes the vector of node voltages in the (n + 1)st horizontal row of nodes for n
0, 1, 2, .. We display the 0th-indexed entry in each vector with parentheses. Because
each of these vectors has even symmetry around the 0th-indexed entry, we need
merely give their entries for nonnegative indices.

Example 6.1. Let Y 1, Yc 1, and Zb 1. Also, let H [..., 0, 0, (1), 0, 0,
...]7-. Therefore,/-(x) 1. Moreover, a 3,/3 1. Then Zo(x) is given by (4.3), and
if(x) by (6.1). Upon computing the Fourier coefficients of (6.2) and (6.3) we obtain all
the V2n+l for n =0, 1, 2, .... Ohm’s law then yields all the branch currents. Some
results for the V2,+1 are:

Wl=[..., (.3216), .0996, .0322, .0108, .0037, .0013, ...]
V3=[..., (.0873), .0445, .0185, .0072, .0027, .0010, ...IT
Vs=[..., (.0259), .0170, .0086, .0038, .0016, .0006, ...]T
V7=[..., (.0082), .0062, .0036, .0018, .0008, .0004, ...]
Vg=[..., (.0027), .0022, .0014, .0008, .0004, .0002, ...]
Wll=["’’, (.0009), .0007, .0005, .0003, .0002, .0001, "’’]

Execution time on the computer was 2.278 seconds.
Example 6.2. Now set Y 1, Yc 2, Zb 10 and/-(x) 1. Since the conduc-

tances Yc to ground and the resistances Zb are now larger, we should expect a more
rapid decay in the node voltages as we progress into the grid. This is substantiated by the
following results"

V1 [" ", (.2797), .0730, .0190, .0050, .0013, .0003,

V3=[’ ", (.0087), .0042, .0016, .0005, .0002, .0001,

V=[..., (.0003), .0002 .0001, .0000, .0000, ...]v,
v [..., (.oooo), .oooo, ...].

Computer execution time was 1.993 seconds.
Example 6.3. This time set Y 1, Y 1, Zb 1, and H [..., 0, 0, , 1/4, 1/2, (1), , 1/4,

_1
8, 0, 0, Therefore,/-(x) 1 +cos x + cos 2x +1/4 cos 3x. We now get

V=[..., (.4400), .3086, .1813, .0942, .0303, .0101, .0035, ...It,
V3=[..., (.1428), .1129, .0725, .0401, .0171, .0067, .0025, ...]
Vs=[..., (.0428), .0408, .0281, .0166, .0082, .0036, .0015, ...]
VT=[..., (.0167), .0147, .0107, .0067, .0037, .0018, .0008, ...]
W9=[..., (.0059), .0053, .0040, .0027, .0016, .0008, .0004, ...3
Vxx=[..., (.0021), .0019, .0015, .0009, .0006, .0003, .0002, ...]v.

Computer execution time was 3.094 seconds.
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Example 6.4. Finally, set Ya 1, Yc 2, Zb 10, and/-)(x) 1 + cos x + 1/2 cos 2x +
cos 3x. We obtain

VI=[’", (.3634), .2494, .1374, .0685, .0179, .0047, .0012, ...],
V3=[" ", (.0138), .0107, .0067, .0035, .0014, .0005, .0002, ...],
Vs=[" ", (.0005), .0005, .0003, .0002, .0001, .0000, .0000, ...],
v=[..., (.oooo), .oooo, ...].

Computer execution time was 2.728 seconds.

7. The three-dimensional grid. We have already mentioned that we can compli-
cate the network of Fig. 1 by inserting branches in a consistent fashion between
presently nonadjacent nodes within the same horizontal row and still use our method to
compute the voltages and currents. So long as the graph remains uniform, we can apply
a. node analysis to compute the new conductance Y; the corresponding Y(x) will again
be a polynomial in cos x, but now of higher degree. Also, a vertical periodicity of period
greater than one branch can be allowed in the element values and graph of Fig. 1; this
leads to a more complicated equation than (4.2) for the function Zo(x).
There is still another way of extending our method to more complicated grids, and

that is to introduce three-dimensional ones. Fig. 6 illustrates the three-dimensional

t

FIG. 6.
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half-space analogue to Fig. 1. Let , r/ and r represent the three coordinates of
three-dimensional Euclidean space. Restrict : and r/ to the integers and " to the
positive integers. Then, all such triplets (so, r/, r) will be the locations of our grid’s nodes,
except for an additional ground node. For a fixed " and variable : and r/, we have the rth
horizontal plane of nodes in Fig. 6. The positive " direction is the downward vertical
direction. Every pair of nodes at a distance of one unit part is connected by a branch.
Every horizontal branch has a positive conductance Ya, and every vertical branch has.a
positive resistance Zb. Moreover, every node is connected to ground through a positive
conductance Yc. Finally, every node of the form (6, r/, 1) has a current source H,,
connected to it from ground. He., is a real number, which we will also denote by Hk,
where k (t2, rt)= (kl, k.) is a doublet of integers kl and k2.

To analyze this configuration, it is convenient to alter our definition of the Hilbert
space 12r in a nonessential way. First of all, we let D denote the space of all ordered
doublets whose entries are integers. Thus, k D. An element of lzr is now taken to be a
two-dimensional array {ak :k D} of real number ak such that

(k.,ka)
kD k_=-oo ka=-Oo

The inner product of two elements a {ak} and b {bk} in [2r is now the double infinite
series

(a, b) Y akbk.
kD

Continuous linear mappings of 12r into 12r can be represented by a matrix-like
notation, but that notation must now be interpreted appropriately since their indices are
doublets. In particular, let F be such a mapping and let a {ak k D} lzr. Then there
exists a four-dimensional array [Fk ], where , k D, such that

(7.1) Y F.kak
kD

is the ]th element of Fa. The proper interpretation of (7.1) is the following: For each
fixed/" D, {F.k k D} is a two-dimensional array. Upon multiplying its entries with the
corresponding ones in a and then summing the results, we get (7.1). Of course, not all
arrays [F/k] can represent continuous linear mappings on 12, For example, conditions
must be imposed to insure the convergence of (7.1) (see [7, p. 126]). However, all the
matrices indicated below do represent continuous linear mappings of 12r into 12,

Proceeding as before, we decompose Fig. 6 into a sequence of Hilbert ports. The
first one consists of all the conductances Ya and Yc connected to the nodes in the first
horizontal plane (and also to ground in the case of Yc); the second Hilbert port consists
of all the resistances Zb connected between the first and second horizontal planes; the
third Hilbert port consists of all the conductances Y and Yc connected to the nodes of
the third horizontal plane, and so forth. Finally, the array H- {Hk :k D} of current
sources connected to the nodes in the first horizontal plane is assumed to be in 12r. This
.decomposition results in the ladder network of Hilbert ports shown in Fig. 5. Because of
the grounded and disconnected structures of out Hilbert ports, the port conditions are
not violated by the interconnections of Fig. 5.
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A nodal analysis shows that the admittance operator Y for the Hilbert port
corresponding to any horizontal plane is given by Y Y’k], where

Yc+4Ya
Y,. g

0

for j k,
for ]jl- kl[ + Ij2- k21 1,
otherwise.

This is a four-dimensional analogue of a row-finite Laurent matrix.
Similarly, the impedance operator Z [Zig of the Hilbert port of resistances Zb is

given by

JZb for/’=k,z;
0 for j k.

We now have the analogue of a diagonal matrix with equal main diagonal terms.
Next, we exploit the isomorphism between our present space 12r and the space of

dolable Fourier series; that is, a {ak" k D} corresponds to

t (x) ., ak e i(k’x),
kD

where k (kl, k2), x (xl, x2), and (k, x) klx + kax2. Under this correspondence, the
operator Y transforms into multiplication by the function

IT"(x) Y[7-2 cos X1--2 COS X2],

where

y =-+4>4.

The operator Z corresponds to multiplication by the constant function Z(x)= Zb.
Finally, the given current-source array H corresponds to

/-(X) E nk ei(k’x).
kD

Now, the characteristic-resistance method of analyzing the operator network of
Fig. 5 carries directly over to the present case. In particular, the characteristic resistance
Z0 is the Laurent matrix corresponding to multiplication by the function Zo(x), which is
the solution of

This yields

[2o(X)-1- l(x)][o(X)+ 2(x)] 1.

o(X) Zb IT"(x) + {[Zb IT"(x)]: + 4Zb f(X)}1/2

2 IT,-(x)
Similarly, the transmission operator corresponds to multiplication by the function

(x) 1 +Zbf’(x)-{[Zf"(x)]2+4Zb(x)}’/2.

Then

rl(X 2o(X)I(x
and, for n 1, 2, 3,...,

r2n+l(X [6(x)]nrl(X).
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By expanding Vl(X) into a double Fourier series and picking out its coefficients:

v =4. V(x) e -i(k’x) dx,

we obtain all the node voltages in the first horizontal plane of Fig. 6. From these, a
simple limb analysis yields any desired voltage or current in Fig. 6 (at least in principle;
limited computer time limits the number of branches one can consider). Alternatively,
the coefficients of the double Fourier series expansion of Q2,+l(X) yield the node

TABLE

0

2
3
4

0 2 3 4

.20329 .04435 .01088
.01825 .00625

.00274

.00293 .00085

.00204 .00066

.00107 .00039

.00048 .00020
.00009

0 2 3 4

.03938 .01593 .00542
.00864 .00357

.00175

.O0178 .O0058

.00133 .00047

.00074 .00029

.00036 .00016
.00007

0 2 3 4

.00880 .00501 .00219
.00329 .00161

.00089

.O0O86 .0O032

.00068 .00027

.00042 .00018

.00021 .00010
.00005

0

2
3
4

0 2 3 4

.00223 .00155 .00081
.00115 .00065

.00039

.00037 .00016

.00031 .00014

.00020 .00009
00011 .00006

.00003

0 2 3 4

00062 .00049 .00029
.00039 .00024

.00016

.00015 .00007

.00013 .00006

.00009 .00004

.00005 .00003
.0OOO2
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voltages in the n th horizontal plane of Fig. 6 for any n. From these, any voltage or
current can be obtained once again (subject to the usual caveat about computer time).

What we have just described is a formal method of computing the voltages and
currents in Fig. 6. Of equal importance is the fact that the existence and uniqueness
discussions of the prior sections carry directly over to our present three-dimensional
grid. Indeed, all the theorems, and in particular Theorems 2.2 and 5.1, hold once again
for the grid of Fig. 6. Only a few minor modifications, primarily those of notation, need
be made.

Finally, we point out once again that we can augment Fig. 6 by adding other
horizontal branches to pairs of nodes further apart than one unit, so long as the
uniformity of each horizontal plane is maintained. This merely alters the function Y(x)
by adding additional terms of the form b, cos uxl cos x2 where u and are integers.
Furthermore, variations in the graphs and element values in the vertical direction can
also be allowed so long as periodicity in the vertical direction is maintained; this leads to
the problem of solving more complicated equations for o(X).

Example 7.1. As an example, we have computed the node voltages for the grid of
Fig. 6 for the case when Y Zb Y 1, Ho,0 1, and He,, 0 if 0 or r/- 0. For
the node voltages, we use the indexing system explained at the beginning of this section.
The values of the node voltages for the first five horizontal planes of nodes (i.e., for

" 1, ..., 5) are given in Table 1. Because of the symmetry of our grid and of the
applied current sources, we need merely display the node voltages for 1, 2, 3,. and
r/= 1, ., :. The other node values are obtained by interchanging with r/and by using
even symmetry for negative indices. We terminate the tables at sc 4. Execution time on
the computer was 1 minute, 56.0 seconds.

8. Grids of impedances. So far, we have restricted our attention to purely resistive
grids. We now wish to allow capacitors, inductors, transformers, etc. as grid parameters.
More specifically, we shall now generalize the grid of Fig. 1 by assuming that Ya, Zb, and
Yc are (scalar) positive real functions. Our objective is to show that, if the current
sources in Fig. 1 are given as suitably restricted Laplace-transformable distributions on
the time axis, then there exists a unique set of Laplace-transformable voltage and
current distributions that satisfy Kirchhoff’s and Ohm’s laws and a certain form of the
finite-power-dissipation condition. They will be determinable from our operator
version of the characteristic-impedance method.

To accomplish this, we shall make use of the results and notations of 20]. C/ will
denote the open right half of the complex plane C:

C+ ={s e C" Re s >0}.

For s e C+, fls is the closed cone

lq {z e C" larg zl <--larg

where it is understood that the origin is a member of ls. 12 denotes the complexification
of 12r. By an "operator", we henceforth mean a continuous linear mapping of 12 into 12.
For any operator F, W[F] is the numerical range of F"

W[F]= {(Wa, a)" a 12, Ilall-- 1}.

P is the set of all analytic operator-valued functions F on C+ such that, for every
s C+, W[F(s)] fls. Thus, if F P, F(o’) is a positive operator for each tr > 0. Pi is
the set of all F6P such that, for every fixed s C+, W[F(s)] is bounded away
from the origin; that is, there exists a >0 depending in general on s such that
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Re(F(s)a, a) >= allall2 for all a 12. Thus, for each s 6 C+, and F Pi, F(s) is an invertible
operator. It was shown in [20] that, if F Pi and G P, then F + G Pi; also, if F Pi
and if F-1 denotes the function s [F(s)]-1, then F-1 Pi.

Next, let F1, F2, F3, Pi and let Zn (s) be the operator-valued finite continued
fraction

1 1 1
(8.1) Z,(s)-- +...+

F(s) + F.(s) F,(s)"

Then, by what has just been stated, Z, Pi. The following theorem is a somewhat
simplified version of [20, Theorem 1, Corollary l a].

THZORZM 8.1. Assume the following three conditions"
(i) Fk P for every k 1, 2, 3,. ..
(ii) Given any compact set C/, there exists a constant 6 > O, depending upon ,

such that inf Re W[Fk(S)]> 6, for k 1, 2 and s .
(iii) For each r > 0 and all k 1, 2, 3, ., the operators Fk (r) commute with each

other and W[Fk(cr)]>6k(cr), where the 6k(Cr) are positive numbers satisfying
Z=a(r) .

Then, for every s C+, the sequence {Z,(s)}=l converges in the uniform operator
topology, and the convergence is uniform with respect to s in any compact subset of C+.
Moreover, the limit function Z lim,_Z is a member of Pi.

We shall now apply this theorem to the ladder network of Fig. 5. Assume that Y
and Y are scalar positive real functions, neither of which is identically equal to zero. Let
Y be the Laurent matrix defined by (3.2). By the argument in [18, p. 186], Y is an
operator on 12. Also, a short computation shows that, for each a {ak}k=-o lz and
sC+,

12(8.2) (Y(s)a,a) r(s)llall+Y(s) Z [a-a_

The polarization identity in conjunction with (8.2) shows that Y is weakly analytic on
C+ and therefore analytic on C+ [17, p. 18, p. 197].

Now, a standard property of a scalar positive real function F is that [arg F(s)l <-

larg s] for s C+ [14, Theorem 5]. Since Ya and Yc are scalar positive real functions,
this fact coupled with (8.2) implies that Y P. Since Yc is not identically equal to zero,
the minimax theorem for harmonic functions shows that, given any compact subset
E c C+, there is a 8 > 0 for which

Re (Y(s)a, a)>=Re Y(s)llal[2>-allall,
for all s E. Thus, Y Pi, and in addition Y satisfies Hypothesis (ii) of Theorem 8.1
when we set F(s)= Y(s).

A simpler argument shows that, if Zb is a scalar positive real function, then the
Laurent matrix Z, as defined by (3.1), also is in P and satisfies Hypothesis (ii) of
Theorem 8.1 when Fk (s) Z (s). Moreover, row-finite Laurent matrices commute, and
therefore so do Y(s) and Z(s). Finally, upon setting F(s)= Y(s) for k odd and
Fk(S) Z(s) for k even and noting that the series and shunt elements of Fig. 5 remain
invariant, we see that Hypothesis (iii) of Theorem 8.1 is also satisfied.

Thus, we may invoke Theorem 8.1 to conclude that, as n , the Z, defined by
(8.1) converge to a member of P. But, the Zn are the driving-point impedance
operators of truncations of the ladder network of Fig. 5. Hence, their limit is the
characteristic impedance Z0 of that infinite ladder network. Thus, we have established
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THEOREM 8.2. Let Z be defined by (3.1) and Y by (3.2), where Zb, Ya, and Yc are
scalar positive real ]:unctions. Then, Z and Y are members of Pi, and so too is the
characteristic-impedance operator Zo of the infinite ladder network of Fig. 5.

Pi is a subset of the class of all positive* operator-valued functions [17, p. 178].
Moreover, an operator-valued positive* function is the Laplace transform of a right-
sided operator-valued distribution, where C/ is understood to be the region of
definition for the transform. (A distribution on the real line is called right-sided
if its support is bounded on the left). Also, the infimum of the support of that distri-
bution is the origin [17, Theorem 8.12-1]. Thus, Y, Zo, 0 1- YZo, and, for every
k 1, 2, 3, ..., 0 k are all Laplace transforms of operator-valued distributions whose
supports are bounded on the left at the origin, and C/ is contained in all of the regions of
definition for those transforms [17, Theorems 6.5-1, 8.11-2, and 8.12-1]. Moreover,
these operators are real in the sense that for each s o. > 0, the operator maps 12r
into 12r.

Next, we assume that h (t) is a doubly infinite vector of current sources in the time
domain:

(8.3) h(t)=[..., h_l(t), ho(t), hi(t), ...it.
Here, the superscript T denotes matrix transpose. Our next objective is to state
conditions under which the Laplace transform H of h is/2-valued for each point in C+.
To this end, we let L2(R, 12r) denote the Hilbert space of quadratically integrable
(equivalence classes of) functions on the real line R taking their values in 12r. If
a, b L2(R, l), their inner product is

(a, b)= E a(t)bk(t)dt,
k=-oo

where ak and bk are the components of a and b and R.
LEMMA 8.1. Assume that the vector h is a member ofL2(R, 12r) and that the support

of h is bounded on the left. Let H be the Laplace transform of h, that is, the vector of
Laplace transforms Hk of the components hk. Then, for each s C/, H(s) exists and is a
member of 12. Also, for each o. > O, H(o.) is a member of 12r.

Proof. Every right-sided scalar function in L2 has a Laplace transform on C/. So,
the components of H(s) all exist for s e C/. We wish to show that H(s) 12. Let r be the
infimum of the support of h, and let o. Re s > 0. Then,

By Schwarz’s inequality

Therefore,

e I, I<- Ih(t) dt.
2o-

(8.4) I2 I/4(s)[-<-
2 Ie

E Ihk(t)[2 dt.

Now, {Yk=_,lhk(t)l2" r 1, 2, 3,." .} is a monotonic sequence of integrable functions
which converge to ___lh(t)l for almost all t. So, by Levi’s theorem we can
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interchange the summation with the integration to write

E In, (s)l j Z [h(t)[dt.
k 2

The integral on the right-hand side is the square of the norm of h L2(R, 12r). This
proves the first conclusion. The second conclusion now follows immediately from the
reality of h.

Under the hypotheses of Theorem 8.2 and Lemma 8.1, V1 (s), V2n+ (s), and I2n (s),
as given by (4.7), (4.9), and (4.10), are all /2-valued Laplace transforms with C/
contained in their regions of definition 17, Theorem 6.3-2]. Moreover, their respective
inverse Laplace transforms vl (t), v2,/ (t), and i2, (t) will be/2r-valued distributions with
supports bounded on the left at the origin. The reality of these distributions is a
consequence of [17, Theorem 8.13-1] and the exchange formula [17, Theorem 6.3-2].
The various components of these distributions yield the transient voltages and currents
of our infinite grid under the finite-power condition on the real positive axis of the
s-domain.

To put this another way, we assume that each branch of Fig. 1 is a one-port of
resistive and reactive elements such that Ya, Zb, and Yc are scalar positive real
functions. We apply current sources hk(t) and ask for the time-domain behavior of
the grid’s voltages and currents. To this end, we generalize Ohm’s law by relating the
time-domain voltage v and current across any one-port through one of the dis-
tributional convolutions

(8.4) ya*v, V=Zb*i, yc*v,

where y, zb, and y are the inverse Laplace transforms of the scalar impedances Y,
and Yc, with C/ being at least part of the regions of definition for those transforms. The
next theorem, which is our main time-domain existence and uniqueness assertion,
follows immediately from Theorem 2.2, Theorem 5.1, and the uniqueness property of
the Laplace transformation [17, Theorem 6.4-2].

THEOREM 8.3. Let Y, Zb, and Y be scalar positive real [unctions that are not

identically equal to zero. Let the current-source vector (8.3) satis]y the hypothesis o)

Lemma 8.1. Then, there exists one and only one set o]right-sided, Laplace-transformable
distributions lor the branch voltages vi in the grid o]Fig. 1 such that Kirchhoff’s node and
loop laws and the generalized Ohm’s laws (8.4) are satisfied in the time domain and such
that, ]or at least one r > O,

(8.5) Y[ v,. ()] <,
where V. is the Laplace transform of vi. In this case, (8.5) holds for all r > O. For any given
r > O, the V.(r) can be determined by applying the characteristic-resistance method of

4 and 6.
This result extends directly to the three-dimensional grid of Fig. 6. Moreover, it can

also be extended to more complicated grids such as those described in the penultimate
paragraph of the preceding section.

9. The computation of transient responses. The last conclusion of Theorem 8.3
coupled with a method of Papoulis [12], [13] and its modification by Lerner and Lerner
[10] provide a means of computing the transient behavior of our electrical grids. Those
methods will work if the transitions are sufficiently well-behaved functions rather than
distributions. This will be the case if the current sources and grid parameters are suitably
restricted.
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For example, consider the grid of Fig. 1. Let us assume that in the time domain a
current source f(t) is connected to the ruth node in the first row and that all other
sources are zero. Let F(s) with s e C+ be the Laplace transform of f(t) and assume that
F(s) is of order O(Isl as s -, oo in C+. Then/-(x, s) F(s)e imx, s e C+.

Let us also assume that Ya, Za, and Yc are rational positive real functions such that
Ya and Za behave resistively and Yc behaves capacitively as s oo. Then

and

Y(s)
a(s) 2 +’--Ks,

ga(s)

fl(s)= Y(s)Zb(s)"M as s oe,

where K and M are constants. Upon substituting a(s) and/3(s) into (4.3) and (6.1), we
obtain o and as functions of both x and s. Thus the Fourier coefficients of (6.2) and
(6.3) can be obtained as functions of s; these Fourier coefficients are the Laplace
transforms of the time-dependent node voltages in our grid.

Let us examine the transient voltage v(t) at an arbitrary node of our grid, say, the
pth node in the (n + 1)st row. Its Laplace transform V(s) is the pth Fourier coefficient of
[d(x, s)J2o(x, s)I:I(x, s):

F(s) fo
2"

s)] Zo(x, s) e dx.V(s) Tg- [O(x, n"

It follows from the right-hand side of (4.4) and our assumptions on Ya, Zb, and Yc that,
as s oo in C+, o(X, s)= [IT"0(x, s)]-1 is asymptotic to a constant times s

-a and is
uniformly so for all x. As s - oo, (x, s) is asymptotic to a constant times s -a uniformly
for all x, as can be seen from the Fourier series analogue of the last expression in (4.8).
Therefore, V(s) is of order O(]s] -n-i-a) as s - oo in C+. Consequently, v(t) is a function
whose first n +/’-1 derivatives are continuous for all t; also, v(t) is equal to zero for
< 0 [16, Lemma 3.6-1]. We can now use Papoulis’ numerical method to compute v(t).
A particular example of such a computation is given in [24].

10. Nonlinear resistive grids. We can use some results of Dolezal [3] to analyze
approximately the infinite grid of Fig. 1 (and many other grids as well) in the case where
every branch parameter, other than the sources, is a single nonlinear monotonically
increasing resistor r:i r(i). This is accomplished by replacing r by a linear resistor
to: - r0i, analyzing the resulting linear grid by our characteristic-resistance method,
and then determining a bound on the error between the current responses of the
nonlinear grid and its linear approximation.

More specifically, Dolezal’s results are as follows. Let gl, Zb, and y-i all be the
same nonlinear resistor r. Assume that r(0)= 0 and that the slope of r is bounded as
follows:

a(p q)2 _< Jr(p)- r(q)](p q) <-- (p q)2

for all p and q on the real line. Here, a and/3 are constants satisfying

0<a =<fl <3a.

Furthermore, let us assume that each current source Hk and its parallel resistance y-i
has been replaced by a voltage source ek in series with r. Let

e=[’’’, e-l, eo, el, "’’]r12.
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A theorem of Dolezal [3, Theorem 3] asserts that, under these conditions, there exists a
unique vector l_ of branch currents in this nonlinear network.

To obtain some estimation of what is, Dolezal replaces every r by a linear
resistance r0 chosen as follows:

Let A be either a real positive number or o. Set

ro (SA + JA),

where

SA sup p-lr(p), JA inf p-lr(p),
pK,, pKA

KA=[-A,A]-{O}.

Now, we let j denote the vector of branch currents in this linear approximation to
the given nonlinear grid with the aforementioned voltage sources ek. j 12 can be
computed by our characteristic-resistance method. (A change of voltage sources into
current sources presents no difficulties). Finally, Dolezal has proven that, with I1"11
denoting the/2-norm, we have

IIi-fll-- - Ilell,
a(3a -)

for all e 12 with Ilell <- aA.
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CORRIGENDUM: A NOTE ON THE RAYLEIGH POLYNOMIALS*

E. C. OBI

There are three minor subscript and typographical errors in the article, to be
simply amended as follows"

Page 825. In equation(*), the subscript n, in r,,., should be k. In the sentence be-
low equation(**), the expression

1 1
-(v+ 1) should read

4(v+ 1 )

Page 828. In lemma 2(b), the subscript n- 1, in ,_, should be rn- 1.

None of these corrections, however, affects anything else in the text.

* This Journal, 9 (1978), pp. 825-834.
? Department of Mathematics, University of Nigeria, Nsukka Campus, East Central State,

Nigeria.
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A UNIQUENESS THEOREM FOR
ORDINARY DIFFERENTIAL EQUATIONS*

M. J. NORRIS," AND R. D. DRIVERS

Abstract. The uniqueness theorem of this paper answers an open question for a system of differential
equations arising in a certain n-body problem of classical electrodynamics. The essence of the result can be
illustrated using the scalar prototype equation x’ gl(x)+ g2(t + x) with x(0)=0. The solution of the latter
will be unique provided gl and g2 are continuous positive functions of bounded variation.

The theorem proved in this paper presents a criterion weaker than a Lipschitz
condition which assures uniqueness of solutions of a system of ordinary differential
equations. It was designed to resolve an open question in classical electrodyamics
described at the end of the paper.

Before stating the theorem, let us illustrate it with two scalar examples typifying the
problems we had in mind. These examples are easily treated with the theorem which
follows. We are unaware of any previous uniqueness theorem which would handle them
or the electrodynamics problem of Example 3.

Example 1. If gl and g2 are continuous positive functions of bounded variation on
an open interval containing 0, then the equation

x’=g(x)+g2(t+x) with x(0) 0

has a unique solution on some open interval containing 0.
Example 2. The equation

x’= (t + x5/3)/3 for t_-> 0 with x(0) 0

has a unique solution.
The theorem itself treats a system of n ordinary differential equations

(1) x’=f(t,x)

with initial conditions

(2) X(to)=Xo.

Let S be a subset (not necessarily open) of R n/l, and let f" S--> R n. Then, given
(to, x0) S, a solution of (1) and (2) is defined as any differentiable function x on an
interval J such that (t, x(t)) S and x’= f(t, x(t)) for J, while to J and X(to) Xo. (If J
contains either of its endpoints, x’(t) is a one-sided derivative there).

The norm used in this paper for a vector : R" is I111- Ei=I Ii].
THEOREM. Let f" S--> R be continuous and satisfy the following condition. Each

point in S has an open neighborhood U, a constantK > O, an integer m >-_ O, andfunctions
h and gi for 1,. , m such that

(3) Ill(t, )-f(t, n)ll<-_gll-nll+g E ]g(h(t, ))-g(h(t,

* Received by the editors May 30, 1980.
t Applied Mathematics Department 5640, Sandia National Laboratories, Albuquerque, New Mexico
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DE-AC04-76DP00789.

$ Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881. The work of
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142 M. J. NORRIS AND R. D. DRIVER

on U (q $, where hi" U--> R is continuously differentiable with

ohm(t,(4) + fi(t,j)#O onUOS,
Ot i=1

and each gi R R is continuous and of bounded variation on bounded subintervals.
Then (1) and (2) with any point (to, Xo)S S have at most one solution on any interval J.

Remarks. The theorem of course does not guarantee the existence of a solution on
a nontrivial interval J. Existence would follow, for example, if S were open.

To treat Example 1, define hi(t, )= s: and hz(t, )= t+. For Example 2, let
h(t, s) + :5/3 and g(:)= sa/3.

Proof of the theorem. Suppose there were two different solutions, x and y, on some
interval J [to, b) where b > to. (The case J (b, to] is handled similarly.) Let

a =-- inf {t (to, b)’x(t) y (t)}.

Then x(a)= y(a).
For the point (a, x(a)) S let U, K, m, hi and gi be as described in the hypotheses of

the theorem. Without loss of generality, assume that for each ] the expression in (4) is
positive at (a, x(a)), Then, reducing U if necessary, the continuity of the derivatives of

hi assures that there exist positive constants p and M such that, for ] 1,..., m,

l:Oh ohi(t, )
(5) "+ E fi(t, j) >- P on U f3 S

Ot i=1

and

(6) [hi(t )-hi(t w)l<=Mll#-w[I on U.

Choose a bounded interval [at,/3i] which contains hi(UfqS), reducing U if
necessary. Then gi is the difference of two continuous nondecreasing functions on
[ai,/3i], and each of the latter can be extended to a continuous nondecreasing function
on R by defining it to be constant on (-c, ai] and constant on [fli, ). Without loss of
generality, we shall assume that each gi is itself nondecreasing on R and that

(7) gi(hi(a, x(a))) O.

Define

z(t) Ia IIx’(s)-y’(s)ll ds fora<-t<b.

Then z(a)=0, z’(a)=0, z and z’ are continuous, z’(t)>-O and Ilx(t)-y(t)ll<-z(t) on
[a,b).

Choose c (a, b] sufficiently small so that (s, x(s)) and (s, y(s)) remain in U for
a _<-s < c. Then, from (6),

and, from (5),

hi(s, x(s))-Mz(s) <- hi(s, y(s)) <_- hi(s x(s)) + Mz(s),

for a <_-s <c and/’= 1,. , m.

d
d-- hi(s’ x(s)) >-_ p
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Thus for a =< < c, using (3) and the monotonicity of each g/. gives

z(t)<-K IIx(s)-y(s)]l+ 2 Igi(hi(s,x(s)))-gi(hi(s, y(s)))l ds
/’=1

<=K(t-a)z(t)+K fa [gi(h/.(s’x(s))+Mz(s))
p /.=l

d
-g/.(h/.(s, x(s))-mz(s))]-ssh/’(s, x(s)) ds

K(t-a)z(t)+-- g/’(u) du
p /’=1 h(t,x(t))-Mz(t)

K I [g/’(h/’(s, x(s))+ Mz(s))+ g/’(h/’(s, x(s))-Mz(s))]Mz’(s) ds.
p /’=l

Choose 61 > 0 such that for each/"

P when lu h/’(a, x(a))l < 61.[g/’(u)l < 6m---
Then choose 8 e (0, 1/6K) such that a + 6 <= c and, for each/’,

[hi(t, x(t))-h/’(a,x(a))l+Mz(t)<3a when a -<t <a +6.

Now for a < < a + 6 one finds z(t) <= 5z(t)/6. This contradiction completes the
proof.
The motivation for this paper was the following problem from classical elec-

trodynamics.
Example 3. Consider n electrically charged point particles moving along the x-axis

at distinct positions, Xl(t),x2(t),’’" ,Xn(t). Assume that the motion of particle ]
depends only on the electromagnetic fields produced by the other n 1 particles, with
these fields traveling to particle ] at the speed of light, c.

The required fields are calculated in terms of the trajectories of the other particles
from the retarded Li6nard-Wiechert potentials; they are substituted into the Lorentz
force law for particle/’. Introducing vi x/c for the velocity of particle as a multiple of
c, one obtains a system of delay differential equations with state-dependent delays:

Ki/’ o’i/’ + V ri/’

(1 v__v)3/2=E_(8)
r o’i IA

where each Ki/’ is a constant, tri/’ ---sgn [x/’(0)- xi(0)], and where ri/’ > 0 satisfies

v/’-vi(t-ri/’)(9) ri/’
cri/’ vi(t- ri/’)

for ].

In these equations, v/’ and ri/’ without an argument stand for v/’(t) and ri/’(t).
In order to solve the system of n 2 equations represented by (8) and (9) when -> 0,

one should know not only

(10) v/’(O) and ri/’(O) for all f and all s f,

but also the values of vi(t) for _-< 0, 1,..., n.
Now, consideration of the problem in three-dimensional motion has led to the

conclusion that accelerations should not be assumed continuous, but only integrable
[2]. Thus it seems reasonable even in the case of one-dimensional motion to assume
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that the given past history of vi, say

(11) vi(t) gi(t) for t_0, 1...., n,

is merely absolutely continuous, not, in general, locally Lipschitzian.
Substituting (11) into the right-hand sides of (8) and (9), one gets a system of

ordinary differential equations which satisfies the uniqueness criterion of the present
paper. Thus, a unique solution exists at least as long as each t-rii(t)<=O and each
Ivy(t)[ < 1. (Further extension of the solution would use a "method-of-steps" argument
which is not relevant to this paper.)

The above uniqueness problem was solved earlier for the case of two particles in
one-dimensional motion 1]. But the method used did not seem to extend to the n-body
problem.
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A STOCHASTIC MATRIX AND BILINEAR SUMS FOR
RACAH-WILSON POLYNOMIALS*

MIZAN RAHMAN

Abstract. A connection relation for the Racah-Wilson polynomials W, (x; a +/3k 1, a2 +/32 +/33
3 1, y +/3k --/32, N), k 1, 2, is obtained for a wide range of values of the parameters. Under certain
restrictions on these parameters the corresponding matrix KN(X, y; al, /31, /32, /33, a2, % N) is shown to have
stochastic properties. By using the spectral representation of the matrix KN a set of bilinear sums is obtained
for the W,,’s.

1. Introduction. For a fixed positive integer N, the Racah-Wilson [8], [11], [13]
polynomials W. (x) are defined by the balanced 4F3 series

W,,(x)W.(x.a,/3,%N)=4F3[-n, n+a+/3+l, -x, x+T-N](1.1)
a+l, -N, /3+y+lJ’

x, n O, I, 2,..., N. The parameters a,/3, y can have any real or complex values,
except that -N is the largest negative integer that occurs as a denominator parameter in
the 4F3 series above.

It was shown by Wilson [13] that W,(x) satisfies the orthogonality relations

and

N., p(x" a, y-N-a-l,N+a+/3+l,N)W,.,(x)W.(x)

(a +/3 +- 2)N(--3’)N 6.,.
(/3+I)N(a--’y+I)N o(n’ a,/3, %N)’

N

p(n;a,/3, %N)W,,(x)Wn(y)
n=0

(1.3)
(a +/3 "t- 2)N(--’y)N xy

(/3 + 1)N(a-- y+ 1)N p(x’a,y-N-a-l,N+a+/3+l,N)’

where y 0, 1,. ., N, and the weight function p (x; a, b, c, N) is defined by

( a+b+l) (a+l),,(b+c+l),,(-N)x(a +b + 1), 1+
2

(1.4) o(x" a, b, c, N)

x,(a+ b+ 1)2
(b+l),,(a-c+l),(N+a+b+2),,

Equations (1.2) and (1.3) follow by use of Dougall’s summation theorem [2, p. 25]
for a very well-poised 5F series"

N (a+b+2)N(-c)(1.5) p(x" a, b, c, N)
.=o (b + 1)N(a --C + 1)N’

and Whipple’s transformation formula !2, p. 55] for a balanced 4F3 series"

u, v, (v).(w),, u, l+-v-n, l+-w-n

where +rt + ( + l u +v + w + n.

* Received by the editors May 25, 1979. This work was supported by the Canadian Natural Sciences and
Engineering Research Council under Grant A6197.

" Department of Mathematics, Carleton University, Ottawa, Ontario, Canada, KIS 5B6.
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In a recent communication [11] the author showed that some of the well-known
results for Hahn polynomials [5], [7] extend easily to Racah-Wilson polynomials. In
particular, a projection formula and a nonnegative Poisson kernel under certain
restrictions on the parameters were obtained.

The purpose of the present paper is to construct a positive kernel for Racah-
Wilson polynomials in much the same way as one was obtained by the author for Hahn
polynomials [10]. Specifically, we establish the connection relation

N

(1.7) X K(x, y)W>(y)=AnW(,,)(x),
y=0

where the eigenvalue An is given by a balanced 4F3

(1.8) a. =4F
a1+ 32, 3_+ 33,

and the matrix elements Kv(x, y) are defined by the double sum"

K(x, y)-- Kv(x, y" , 31, 32, 33, a2,

=A(x, y) o’i(y-N-32; o1, T-N+fll-fE+X, y-N+y,
i=0

(1.9) 1-32-3-N, v+ 1-32,-x,-y)
N-xvy

tri(-’y-N-33;a2,-y-y, 32-31-’Y-x,l-Y-33-i
/=o

where

1-32-33-N+i,x-N, y-N),

A(x, y)=

(1.10)
(32 q- 33)N (02

P(Y" 32-1, Y-N-32, N+32+33-1, N)(x),,(y+33),(y-N+

(1-N+ flt a2-2- f3)x
(y-N + 32)x (1 + 31 32-- 33-- N)x(l + 31)x(Y + t2 + 33)x’

o’i(a" b, c, d, e, f, g, h)

(a)i(1 +)(b)i(c)i(d)i(e)i(f)i(g)i(h)i
i! (1 +a-b)i(1 +a-c)i(1 +a-d)i(1 +a-e)i(1 +a-f)i(1 +a-g)i(1 +a-h)i

with x ^ y min (x, y), x v y max (x, y), and

(1.12)

(1.13)

w(nl> (x) Wn(X" al+31--1, a2 + 32 + 33-- 31--1, Y+31--32, N),

W) (y) W,,(y" a+32-l, a2+33-1, y,N).

Note that the tr’s appearing in (1.9) are the general terms in a very well-poised
terminating 9F8 series. Also, every term in Kv(x, y) is positive under the conditions

(1.14) 01, oz, 31, 32, 33, 32 + 33 31 > 0, y-N>max(ai+3i),

or

(1.15) t1, t2, 31, 32, 33, t2+32--33-31<-N y+i’’3>0, i=1,2, /’=1,2,3.

For other values of the parameters the connection relation (1.7) still remains valid
provided none of the shifted factorials in the denominators of KN, A,,, W) (x) or
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W (y) vanishes. However, for values other than those implied in the inequalities
(1.14) or (1.15) the kernel Ks(x, y) may be negative.

Since W (x), W (y), An all equal one when n 0, (1.7) implies that

N

(1.16) X K,(x, y)= 1,
y=0

and so Ks(x, y) is a stochastic matrix when the inequalities (1.14) or (1.15) are satisfied.
It can be shown that the kernel Ks(x, y) reduces to the one found in [10, eq. (1.10)]

in the limit 3’ oo. It is interesting to note that the eigenvalue An is exactly the same as in
[10, eq. (2.19)].

In [9] we proved that

n !(al q-/31)n . (Ol)n-k(/32)k([33)n-k(a2)k

From this, the positivity of An is rather obvious under (1.14). If we write (/32)k
(/32)n/(/2 + k)n_k, it is also obvious under (1.15).

Positive sums and integrals of special functions in general, and of Jacobi and Hahn
polynomials in particular, are known to be very useful [1], [12]. A good many theorems
depend crucially on the nonnegativity of expansion coefficients and the sums of
products of orthogonal polynomials (for a recent review of the subject with particular
reference to Hahn polynomials see [6]). We believe that the positivity of the kernel
Ks(x, y) and that of the other sums that we will obtain in the sequel will be of some aid
in the harmonic analysis of Racah-Wilson polynomials, analogous to that for Hahn
polynomials. Furthermore, Ks(x, y) has a physical significance in that it represents the
transition probability of an ergodic Markov process in which a normalized weight
function O (x) corresponds to the stationary distribution. A model of such a stochastic
process was, in fact, constructed for negative hypergeometric distributions in [3].

In 2 we first prove (1.7) and then rewrite it in a properly normalized form. In 3
we consider various special cases of Ks(x, y). In 4 we consider the corresponding
bilinear formulas with particular reference to a Bateman-type sum. In 5 we derive the
Biedenharn-Elliot identity [4, p. 96], well known in quantum mechanics literature, as
an application of our results.

2. Derivation of the connection relation (1.7). First, we apply (1.6) to obtain

W(n2) (y)
(ce2 +/33)n (N + al + a2 +/32 +/33)n Wn (y),

( +/3).(-N).

(2.2) Wn(y)= . (-n)r(n+at+oz2+/32+/33-1)r(y+a2+/33+y)r(N+a2+/33-y)r
r=0 r! (a2 +/33)r(N + al + o2 +/32 +/33)r( + a2 +/33)r

(2.3)

Let us now compute the sum

Lt(i,/’) . (y-N+2y (y-N+i)y(y-N+/33+/)y
,=, y-N---Tt/ (y-N+ )-v(y-N+ l-/32+i)

(y- + 1)t32_1( y + 1)t33_1Wn (y).

It is convenient to use the following representation of the y-dependent factors on
the r.h.s, of (2.2):

(2.4)
(Y + a2 + f13 + y)(N + a2 +/33- Y)r

=(Y+a2+2/33+/)r (r)k=O k
(]- y +/33)k(N+a2-iL-k

(y-N+/33+ y +/’)k
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One can see that (2.4) is an immediate consequence of the Pfaff-Saalschutz
summation theorem [1] which, in its general form, can be written as

a, b (c a)r(C b)r(2.5) 3F:2 j 0,1, 2,...
c, l+a+b-c-r (c)r(c-a--i;’

Now

(y-N+2y) (y-N+i)y(y-N+3+f)y
y= T-N+7 (y-N+ +])y(y-N+ l-/3:2+i)y

(y-i+ l)2-1(/-y+ l)3-1

(2.6)
"(i- y +/33)k(/--N +/33 + y +/’)k

F(/3:2)(3’ N + i)(r N +/33 + J)i+k (/’ + 1)t3_l+k
(3’ N + +])i(Y N + -/32 + i)i

.5F417-N+2i, l+(T-N/2)+i, /3:2, y-N+/33+j+i+k, i-j ](y-N/2)+i, y-N+ 1-/32+2i, 1-/33+i-]-k, y-N+l+i+/

But the 5F# series on the right is very well-poised and so, applying (1.5) and then
simplifying the shifted factorials, we obtain the following expression for the r.h.s, of
(2.6).

where

C(i,/)(/33)k (Y N +/33 + + j)k(j-- +/32 +/33)k/(/32 +/33)k,

(2.7)

Hence

y-N+i (y-N+l)i(y-N+/33+i)i(i-i+l)t32+t33_
C(i,j)=B(/32, f13) --2-t"/ (y-N+ 1)i(y-N+ 1-/32+i)i

B(a, b)= r(a)r(b)/r(a + b).

Lx(i, j) C(i, ])
(-n )r(n + +2+ /32 + /33-1)r(Y + t2 + 2/33 + i)r(N + 2-j)r

(2.8)
r=0 r!(o2+/33)r(N+al+Ot2+/32+/33)r(’y+o2+/33)

.4F3[ -r, /33, v-N+/33+/+/’,
/32+/33, y + a:2 + 2/33 +/’, /’+ 1-a2-N-r

Applying (1.6) to the balanced #F3 on the right we get

4F3[-r /33, v-U +/33+ +/’,
/32+/33, y + a2 + 2fl3 + j, j+ 1- a2-N-

(V + tzt2 +/33 +]’)r(/32)r
4F3 r-r, i+ -N- t2-/32-/33,

(]/ + t2 + 2/33 +/)r (/32 +/33) L + 1-aE-N-r, 1-Y-aE-/33-j-r,

This leads to

(2.9)

(-rt)r(n + al + a:2 +/3:2 +/33-1)rL i, j) C(i, ])
r=0 r! (o2 + /33)r(N +ol + oz + /32 + /33)r(y + Otz + /33)r(/32 + /33)r

(r)(i+l--N--a2--/32--f13--r)r-k(1--Y--a2--/33--i--r)r_k
(/32)k (/33)r-k( -t- O2 -{"/33 + j)k(N +

In the next stage we compute the following sum:

(2.10)

(/’-x + 1)t3,_(N-/+
L2(i)- E (y +/33 + 1)i(y-N + q-/33 --/34 q- X)j

(v-N +
y-N+ ]
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Substituting (2.9) in (2.10) and applying (1.5) once again we obtain, after some
simplification,

L2(i) D(x)
(-n)r(n + al + a2 +/32 +/33-1)r(/33)r

r=o r! (a2 +/33)r(N + al + 02 +/32 +/33)r (’Y +2 +/33)r(/32 +/33)r

(--r)k(Ot2)k(/32)k(T+a2+/33+X)k(Ot2+/34+N--X)k
k=0 k! (a2 +/34)/(1 -/33- r)k

(N+aa+/32+/33+k-i)r-k(3’+a2+/33+k

where

(2.12) D(x)= B(ot2, /34)(’Y-N + /33 + x) (’Y + /33 + l-N + X)N-x(T +2+ /33)x

Finally, we need to compute

(2.13)

L(x) D-I(x)

The 7F6 series on the right is not exactly summable, but it can be expressed in
terms of a balanced 4F3 series by virtue of Whipple’s formula [2, p. 25] for a very well-
poised 7F6:

(2.14)

[a, +a/2,
7F6 a/2,

b, c, d, e, m

1+a-b, 1+a-c, 1+a-d, 1+a-e, l+a+m

(1 +a),.(1-a-d-e),n. 4F3rl +a-b-c,(l--(i+-e)
d, e, m ]

1+a-b, l+a-c, d+e-a-mJ"

Thus we obtain

L(x)= B(a,/3)(x + 1),,+,_(/- N-/32 + 1)x/(3’-N + 1- a-/32)x

(-n)r(n+t1+t2+/32+/33-1)r(/33)r(N+t2+/32+/33)r
r=0 r! (a2 +/33)r(N + al + a2 +/32 +/33)r(/32 q"/33)r

(-r),,(,+,+&+x),,(_),,(___A)_!_+_4_+_:x),,

4F3[ k-r’ a, 3-N+/31-B2+x, -x

T +0;2+/33 + k, -N- a2-/32-/33- r, al+/31
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A change of variable followed by an application of (1.6) finally leads to the
following sum:

M. (x L(x )(3’ N + a 3z)xB(a, 3,)(x + +a (3/-N 32 + )x

r=O s=O r! S! (t +/3)r+s (/2 + 33)r+s(2 +

(2.16)
(au + 34 +N- x),(3" + a2 +/33 + x),(/3) (/33)
(N + a + a2 + 32 +/3)r(Y + r2 +/3)r(a +/l)s

4F3 [ Y + ot2 + B3 + X + r, 012 + B2 + [3- 31 +N- x + r,

We shall now prove that

tXl, --S ]1--/--S, N+l+2+/+//3+r

(2.17) m.(x)
(-N). (ax +/32). A,,W (x),

(N+a +a2+/32+ 33)n (a2 + 33)n

provided

(2.18) /4 --"/2 +/3--1

In [11] the author worked out the product of two W,’s, namely,
W,, (x;a, , y, N)Wn (y;a, , y’, N’), in a form very similar to the r.h.s, of (2.16). In
fact, by a slight modification of the argument, (2.17) can be seen as following directly
from (2.16) by virtue of the results presented in [11]. However, for the sake of
completeness, it seems desirable to give an alternative proof here.

First, let us assume, for the moment, that

(2.19) z=x +il-B2-33-a2-N

is a positive integer. We know that, in general, this is not true; indeed, it is strictly
negative under the conditions (1.14). However, our plan is to prove (2.17) with this
assumption and then claim that (2.17) must be true for all other values of z since the
r.h.s, of (2.16) is a rational function of z.

Note that (1.6) enables us to carry out another set of transformations on the 4F3
series in (2.16). Thus we get

M,, (x)= (-x)z (N-3’ + a + 32- x)z/(3" + a2 +/3)z (N + a + t2 + B2 +/3)z

r(-rl)r+s(rl+Ol+Ot2+2+3-1)r+s(O2+2+3-l+N-x)r
r=O S=0

(2.20)
( +2+3+ X)r(2)r(2)r(l)s(3)s

( +2+3--1--1 + 1)r(2 +2+3-1)r(1 + l)s

[1 --1. 1--al--l--S. T +2+3+X +r. .2+2+3--1 +N-x +r]4F3
1-x-s. N+az+z+-Ol+ l+r. y+az+3-ax-+l+rJ"

However.

(a2 +/2 + 33--31 + N-x),(3’ +a2 + 33 + X)r(31)s
(N + a2 + 32 + 33 31 "+" 1)r(3’ "{" t2 +3 a 31 + )r(a -j- 31)s

4F3[

(2.21) (--Z )q+r(3" + 012 + 33 + X)ci+r(31- q)s(1 -al-31- s)
q--o q! (N + a2 + 32 +3 31 + 1)q+r(3’ + a2 + 33 a 31 + 1)q+,.(a + 31)

!_-.)_ (:_+t___ _+_ ,__: t)_l._+.-x_) (_v_+._,_ +t + x)(,_ q + r),
--(--l)r

q=r" (q r)!(Oll+1)r+s_q(N+o12+273--1+lq;’ol-273 0’---I + l)q
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and

(2.22) (/32)r(/33)s (/31 q + r)s rs (/32)i(/31 -/32-- q)r+s_1(/32 +/33 -/31 +
S[ (/32. + 33)r+s ]=r (j-- r)! (r + s -])! (/32 +

Equation (2.22) is a consequence of (2.5), as are the following:

(2.23)

and

(2.24) . -1) q
az fls /3__3. /3__2x + q -_._.

r=O (]- r)! (q r)! r! (02 +/32 +/33 --/31)r q!]! (0 +/32 +/33 --/31)i

Using (2.21) through (2.24) in (2.20) we obtain

Mn (x) (-X)z (N-3’ + a +/32-X)z/(y + a2 +/33)z (N + a + a +/32 +/33)z

(al + B2)n (a2 + f12 + B3 l)n

4F3
a +, B2 + 3,

N + a2 +/32- +/33-/31 + 1,
(2.25)

N + a +/32 + /3 /31-- X]
T+a2+/33--al--/31+ lJ

Making use of the assumption (2.19) once again, we get from (1.6)

4F3[1-al-/31 -n,

N +a2+/32+/33-/31 + 1,

N + o + /3 + /3 /31- x]
)’ + a2 +/33- al -/31 + 1.1

(N-,/-x-/31 +/32 + 1)z(1-al-/31 + X)z
(N +a2+/32 +/33-/31 + 1)z(Y + a2 +/33-0!1-/31 + 1)z

.4F3[-n, n+a1+a2+/32-+/33-1, y+cr2+/33+x,
(2.26) [ 02 +/32 +/33 --/31, a2 +/33 + Y,

_z

N + 0!1 + ce2 +/32 +/33

(N--]/--X --/31 +/32 + 1)z(1
(N + 0!2 +/32 +/33-/31 + 1)z(y+a2+/33-al-/31 + 1)z

(-N),,(a1+/31),, WI)(x).
(N q.- o + o2 +/32 +/33)n(2 +/32 +/33-/31)n

One final set of simplifications involving the product of shifted factorials in z leads
to the desired (2.17).
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The successive operations that led to (2.16) clearly suggest how the matrix element
KN(x, y) can be written out. A straightforward calculation yields

T-N+/33) (7+/33 + 1)i(’y-N+3)i+i(]-i+
2

Written in this form, it is obvious how the kernel reduces, in the limit 3’ o, to the
formulas (1.10) and (1.11) of [10]. Transforming this to the form (1.9) needs a bit of
computation, but it is all very straightforward.

Having proved the connection relation (1.7) we shall now rewrite it in a properly
normalized form. Let

(2.28)

O(1)(x)=p(x;a+-l, T-N-aI-2, N+al+aZ+2+B3-1, N),

7r(1)(n)=p(n;al+fll-l, ot2+fl2+fla-fll-1, T +ill -/2, N),

P(2)(x)=p(x;a+2-1, T-N-a-2, N+a+a2+2+3-1, N),

(Z)(n)=p(n;a+B2-1, a2+B3-1, 7, N).

Then the orthogonality relations for W (x) and.W (x) take the form

(2.29)

and

N

2 "tr(>(n)o>(x)W>(x)W>(x) (a+az+/3_+133)(/32-O-Y)N
x=0 (02 "+"2 "+" B3-/31)N(0 "+" B2-

(2.30)
x=o (a + O3)N(a +

Hence the normalized eigenfunctions

(2.31)

have the property that

(2.32)
N

x=O
i=1,2,
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and satisfy the connection relation

(2.33)

where

N

Z O(x, y)6(y)= ,,6(x),

(2.34)

and

where

(01 + 32)n (02 + 32 + 33 31)n}
1/2

(O2 + 32 "+" 33 31)N(--’]/)N /9(1)(X) 11/2ON(x, Y)
(6 -t- 3)N (32 31-- /)N p(i(y)j KN(x, y)

X^y

=tONfN(X,Y) Z ’i(T-N-B2;al,’y-N+31-32+X,
i=o

3,-N + y, -/:-33-N, 3,+ 1-32,-x, -y)

N-xvy

w(-T-N-33" a2,-y-y, 32-B-y-x,
=0

1-T-33-i, 1-32-33-N+i,x-N, y-N),

(33)N(32 + 33 31)N (’] + O2 + 33)N (32--(2.36) ,oN
(32 + 33)N(V + 33)N

{(ce2 + 32 + 33- 31)N (a2 + 33)iv (--’’)N (32- 31- T)N}-1/2,
and

={p(x’ 3’-N-al-32, al +3x- 1, 1-a-c2-32-33-N, N)

P(Y" T-N-al-fl2, al +2- l, -al-a2-B2-B3-N, N)}1/2

(B),(B2)y( + 33)x( + 3)[(7-N + 1-fl2)x(-N+ 1- 32)y

(1 +3-32-33-N)x(1-33-N)y]-.
It is clear that the kernel G(x, y) becomes symmetric in the special case 1 2, while
the functions p((x), W() (x), (1)(n), #n coincide with p(U(x), W( (x), ((n) and
respectively.

3. Some special eases. Apart from the properties that we have mentioned in 1,
the kernels K(x, y) and G(x, y) have other interesting features. For example, they
connect the balanced and terminating F3 series with the 9Fs functions in a very natural
way. This becomes more explicit in some of the special cases we shall consider now.

Case I. aO.
The double series on the right of (2.35) reduces to a single sum in this limit since

(2.37)

lim o’i(y-N-32" o:1,...,
al...o

Thus we get

(3.1)

ON(X y)" O, 31, 32, 33, 02, "’)

,oN/’N(X, y; 0, 3, 32, 33, a, V)

9Fs[-T-N- 33, 1-(y+N+3s)/2, a2, -y-y,

-(3, +N +33)/2, 1-a2-33-’-N, 1-33-N+y,

3-3-/-x, 1-3’-33, 1-32-33-N, x-N, y-N ]
l+31-3z-33-N+x, -N, 32-% 1-y-33-x, 1-3’-fla-yJ"
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Also

(3.3)

lim ,
a--)0 (f12+83)n (a2+B2+B 81)n(a2+83)n

lim )(x)=

O(x" 3- 1, y-N- 32, N + a2 + 32 + 3a- 1, N)
1/2

o(n" 3- 1, a2+B2+Ba-3- 1, y+B-B2, N)

and

.4F3[-n) n+a2+82+83-1, -x, x+3/-N+81-82]
81, -N, a2+83+3/ J

lim )(x)= (2+83)N(82--3/)N
,-.o (a_ + 82 + 83)N(--3/)N

p(X" 82--1, 3/-N-82, N+ot2+82+83-1, N)

(3.4) o(n" 82-1, a2 + 83-1, T, N)}
1/2

n + a + 82 + 83 1, -x, x + y N ]
4F3 ]

82, -N, O2+83+ TJ

It can be seen that the sum of the denominator parameters in the 9F8 series above
exceeds that of the numerator parameters by 2 2(a2 01 +/33). This suggests that we
should look at the following special case.

Case II. a->0, 02 31--33"
Setting this value of 2 in the formulas (3.1) through (3.4) we obtain

lim /z,, ,_3.5.
O1 "0 (82 + 83)"

lira. 1)(x)
a0 (1 22)N

p(X" 1 1, y N 2, N +1 + 2-- 1, N)
a2 --3

(3.6) p(n" 8,- 1, 82-1, 3/+ 8,-/32, N)}
1/2

4F3[’-n, n+81 + 82--1, --x, x+3/-N+81-82"]
[ 81, -N, 31+3/ J

lim

or2----- l --t

t (n2> (X) p(X’ 82-- 1, 3/-N- 82, N+ 81 + 82-- 1, N)

(3.7)

.4F3[ -n’ n +81+82 -1,

82,

Gr(x, y" 0, 81, 82, 83, 81- 83) 3/)

p(n" 82-1, 81 1, 3/, N)

-x, x + 3/-N]
-N, 81+ 3/ "J

{(83)N(82 + 83--81)N (3/+ 81)N(82--3/)N/(82 + 83)N(3/+ 83)N}

(3.8) {(82)(81)(-3/)r(82-81-3/)v}-l/2f(x, y" O, 81, 82, 83, 8,-83, 3/)

9Fs[-3/-N-83, 1-(3/+N+83)/2, 81-83, -3/-Y,

-(3/+N+83)/2, 1-81-3/-N, 1-83-N+y,

82-81- 3/-x, 1-3/-83, 1-82-83-N, x-N, y-N ]
+SI-82-83-N+x, -N, 82--3/, 1--3/--83--X, 1--3/--83--YJ
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The interesting property of this 9F8 series is that it is 2-balanced, and hence we can
apply Bailey’s transformation formula 12, p. 63]"

9Fa[a, l+1/2a, b, c, d, e, [, g, -n, ]
1/2a, l+a-b, l+a-c, l+a-d, l+a-e, l+a-f, l+a-g, l+a+n

(1 + a),,(1 +a-b-c),,(1 +a-b-d),,(1 +a-b-e),,(1 +a-b-f)n(g)n
(1 + a b),,(1 + a c)n(1 + a d),,(1 + a e)n(1 +a-f),,(g-b).

(3.9)
9us[b-g-n, +1/2(b-g-n), b, +a-c-g, +a-d-g,

1/2(b-g-n), 1-g-n, b+c-a-n, b+d-a-n,

1+a-e-g, 1+a-]’-g, b-a-n, -n ]
b+e-a-n, b+f-a-n, 1+a-g, l+b-gJ’

where 3a+2=b+c+d+e+f+g-n.
Choosing b =/3-3, g 1-y-3, n -min (N-x, N-y) we then obtain, after

some simplifications,

Oc(x, y; 0, B1, B2, B3, B1- B3, y)

(3.10)--{(B1)N(B2)N/(t2----’Y)N(--’Y)N}/2{(2 + B2--/1 r)N/(2 + 3)N}gN(X, Y)

.9Fs[V-N+I-I+xvy, l+(v-N+l-l+xvy)/2, 1-3,
(y-N+tl-l+xvy)/2, "y-N+fl3+x v y,

y+x-N+B-fl2, f12+B3-1, y+Bl+X v y, -x ^ y,

B2+, y-N+l+tl-fl2-13+xvy, -N,

,/+ y-N,
/31 + r/,

xv y-N],y-N++x+y, +
where

(3.11)

and

y x, y -> x,so= 0, y<x"

x y, x _--> y,
rl= O, x<y’

gN(X, y)----- gN(x, y; 1, 2, 33, 31--33, Y)

{(tl)x(t2)y(l + Y)x (ill + Y)y(Y-N + t3 + x v Y)x ^y (/2 + f13-fll)(/3)rl}

(3.12) .{(1-B2-N),,(1-t-N)y(y-N+Ba+xvy)x^y(y-N+l-fl2),,^y

(y-N+ +/x-/2-33)xvy(32)(31)n}-
"{O(x’ y-N-t2, fll-1, 1--2-N,N)p(y" y-N-B2,32-1, 1-I-2-N,N)}/2.

In the next section we shall see that a particularly interesting situation arises when
we allow/31-/33 to take only negative integral values.

Case III. a2 --> 0.
Since lim2-,o crj(-y-N-33;’"’, y-N)= 6j,o, we have

(3.13)
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The 9F8 series is 2-balanced if a =/3-/31. Thus the cases I and IIi are, in a sense,
complementary to each other. If we are interested in a positive sum, then we may use
(3.8) if/31 >/33, while (3.13) is more appropriate when al =/3-/1 >0.

The eigenvalue/z, has the simple form

(3.4) lim ix.=
2-0

(O 1)n (3)n [(Oll+’2)n(2"+’i3--l)n]
1/2

and

(3 15) lim (/3-/31)---2
2-.o (/h +

Case IV.
This represents another interesting situation since the Racah-Wilson polynomials

become dual Hahn polynomials [7] in this limit. The weight functions O (a)(x), O (Z)(x) as
well as KN(X, y), GN(X, y) remain nonnegative if al,/l,/z,/3<-N, /3z-<-31, and
-az-/33< y. If we denote by *(,1)(x) and *)(x) the limits of W(,1) (x) and W (x),
respectively, then we have the connection relation

N

(3.16) X GN(X, y’ oo, B1, B2, B3, aa, y)*)(y)= v.*>(x),
y=0

with

(02 + i12 "t-" i13 1)n}
1/2 I--n, i2,(3.17) v,

(a: +/3), 3F:

(3.19)

[(Ot2+2+3--1l)N(--N)n(’y+Ol2+3)n ’1’ "11/2
(,l)(x) [ ’ ’(x)

3F2 I-n, -x,

-N, O2 +B3+

i),(n2>(y)._ (O2+3)N(--N)n(’’-1-Ol2+t3)n,l.(2)(y) 3F2(--T)Nn (a2 + B3)n -N, 2+ B3 "j- YJ’

(3.20)

where

(3.21) (Nx) (y-N+l-V),,(y+av.+3),(2x +’r+B-fl2)r()(x)
(1 +/1-/2- a2-/3-N)x(y + +BI-B2)x)(y-N+B1-B2)’

and 7"(2)(X) is the same as r(1)(x) with 1--2 replaced by 0.

4. The bilinear sums. For finite N the orthonormal systems { (k) (x n
0, 1,..., N, k 1, 2, constitute complete bases for the (N + 1)-dimensional vector
space. The corresponding eigenvalues/z, are simple and nonvanishing. Hence we have
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the spectral representation of the matrix Glv(X, y)"
N

(4.1) G(x, y" 01,1, 2,3, 02, ,)-- E /A’n(nl)(x)(n2)(Y)

Using (2.31) and (2.35) this can be written out as a very general bilinear sum for
Racah-Wilson polynomials. However, it is the special cases considered in the previous
section that seem to be more interesting at the moment, and so we shall attempt to write
out the bilinear sums only for these limiting kernels.

Thus we have the following sum for the kernel of Case I"

9F8 [-’y-N-3, 1 (’y +N +/33)/2,

(4.2)

-(T+N+33)/2,

1-y-/33,

(32 + 33)N(O2 + 33)N (02 + 32 + 33 1)N(] + 3)N

02, --T--Y, 32--31--]/-x,

1-02-/3-’Y-N 1-/33-N+y, l+/31-/32-/33-N+x,

x-N, y -N ]
1- 3’ 3 x, 1-3’-f13-y

(33)N(02 "+" 32 "+" 33)N (32 + 33-- 31)N (’Y -k- 0 "+" 33)N

(3, + az + 33),,(1 +3-3u-33-N)(1-B3-N)y(3’+az+B3)y

N

(’Y+/33)x(1+31-a2-32-33-N)x(1-o2-31-N)y(+33)y

(O2 q-/2 q- 33 )n( t
O 33- 1,1\ (1)n(32)n(a2)n(,y + 02 + 33)n(__N)

2 /

n=o
n[ + 2"b 3--/1)(Ol2"b3)n(2q-i3)n(i2--Y)n(Nq-ol2+i2q-i3)

W.(x’3-1, a2+32+33-3-l,T+3-32, N)W.(y’32-1,2+33-1, y,N).

When a2 3-33 this assumes a simpler form’

9F8 I-T-N-3,
1- (y+N+33)/2, -33, -Y-Y,

-(v+N+33)/2, 1-3x-v-N, 1-33-N+y, l+3-3z-3-N+x,

1--T--33 1-32-33-N, x-N, y-N
-N, 3-, 1--33-x, 1-y-B3-Y

(4.3) (B2 + 33)N(Y + 33)N (B2)N-x(B1)N-Y(Y+B1)x(Y+B1)Y

(B+32-1).(1q BI+B2-1)2
’E
.=o (.+2-x.)2

W.(x" 3- 1, 32-1, y+3-3,N)W.(y" 32-1, 3- 1, y,N).

Setting 3 31 + m, m N, a nonnegative integer in (3.10), we also obtain

9Fs[Y-N+3-l+xvy, l+(y-N+3-l+xvy)/2, -m, m +31+32-1,
(y-N+3l-l+xvy)/2, y-N+3,+m+xvy, y-N+l-3z-m+xvy,

y+y-N, y+x-N+3x-3z, y+3+xvy, -xy, xvy-N]
3+n, 3=+, -N, v-N+3+x+y,

(01+2+m)N(O2--T)N (2)(1)n (y-N+3x+xvy).y(y-N+l-3z-m)y
(3+32)u(Oz+m-Y)u (3z+m)e(Ol+m)n (y-N+ 1-32)y(y-N+Ox+m +x v y)y

(4.4)

(-m).(,+B-e).(l+x+2-1) (v +
"E

n(+B+m) t+-I
2

(-)(N +B +

W(x" 1, 1, + B, N)W(y" - 1, 1, , N).
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If we replace N x v y by x v y in this formula and take the limit as 3’ co, we get
[10, (4.10)]. Thus (4.4) is a generalization of Bateman’s formula for Jacobi poly-
nomials [1], [9]. An equivalent formula is, of course, obtained by setting 3 jl "+" m in
(4.3). An inverse formula can easily be found by multiplying both sides by (-k),(k +
1 + 2--" 1)m/(/l + [32)mm! and summing over m from 0 to k, k 0, 1,. , N. Equa-
tion (4.3) gives the following:

$. An application. Starting from the general bilinear sum (4.1) we shall now
derive an important identity which is known in the quantum mechanics literature as the
Biedenharn-Elliot identity [4]. But first, we need some transformations. Whipple’s
formula (1.6) gives

We also need the projection formula [11]

Wn(x" a+v,b-v,c+v,M)

(_c_-M-a)x(v)x ’. p(p;c-M-l+x+v,-x-v,a+x+v,x)Wn(p" a,b,c,M),(5.2) =(a +v; i--71), =o

where v is an arbitrary parameter, Thus

WN-n(X’ v-N- 1, -al-a2-B2-B3-N- v, y+a2+l + v., N+a2+O2 +B3-/31 1)

(y+ + Bx- B2)x(V)x
(v-N)x(y-N+ +Bx-B2)x

p(p’y-N+Bx-O2-1+x+v,-x-v,x-N+v-l,x)
p=0

WN-,,(p;-N-1, 1-al-a2-O2-O3-N,

We now replace x by p in (4.1), multiply both sides by

(’+ +Bx-B:)x(v)x
(v-N).(v-N-i--2).! O(P’ "y-N + Ox-O:,- + x + v,-x-v, x-N+v- 1, x),

use (1.9) through (1.11) and (2,35), and sum over p from 0 to x. After some



RACAH-WILSON POLYNOMIALS 159

simplifications we obtain

N, p(n a + B2 1, t2 +/3 1, y, N)A, W,, (y; a + B2 1, a2 + B3 1, y, N)
n.=0

WN-n(X" v-N-l, 1-al-Cr2-//2-/3-N- v, "Y+a2+//3-1 +v, N+a2+//2+B3-B1-1)

(v)x(’y + +B-//2)x(fl2)v(’y+3)v(1-a2-fl3-N)v(/-N+ 1- a-//2)v
aN(V N)x(T N + +//1 -/32)x (a

(y N- B2)i(1 T-N-J32)\ (a)i(y-N + Y)i(1-fl2-3-N)i(’Y + 1-/2)i(-Y)i2

(5.4)

i=0 / 3/- N2 -//2.)\ ,(. y N + a -/2)i (1 B2 Y )i( "Y -[- 3)i(-N)i("]/-N -[- -//2 + Y )ii!

(/-N +fl-//2)2/(1 + "Y’-N +//x-//2) (3/_N+/x_fl2+x +l))i(-N)i(’Y+[33)i(-x)i2
+B-B2)2 ,(T N+.1-2)2i(1-x-v)i(T-N+ + fll --/2 + X)i

(1 + fl-/i2-//a-N)i(’y + + fl -//2)i

/
(- N- B3)!{N-y

.E

3/+ N2 +//3//(a2)i(_v’ Y)i( --//3-- i)’(1 --//2--//3--N + i)’(y N)i

i=o
]! (-3/- N-2//3.) 1(1. a2-//a-N y)i(y N + 1 -//3)i(i- N)i(2- 3’ -i)i(1 3/-//3- Y)i

(i N)i(//2 -/1 /- i)i
(1 h(i,]),

where

h(i,/)=7F6f Y-N+Bi-B2+2i, +(y+B,-B2+N)/2+i, i+]-N, B,

(5.5)
[ (/+//1-//2+N)/2+i, i-]+/+ +31--//2, y-N+ 1-//2+2i,

T +/3 + i--], T-N+/-fl2+x +v+i, i-x ]
l + //i-B2-//3-N + + ], 1-v-x + i, y-N+l +/31-/32+x+i

and

(5.6) (tl -[- 2 -["//2 "[-//3)N(//3)N(//2 -["//3-//1)N ((2 +3 -[- /)N(//2- /)N
a

(a+ +// --//1)(a +//)t(+/)t(a, +/:-- ’/)t( + V)"

The sum of the denominator parameters in (5.5) minus that of the numerator
parameters equal 4-2/32-2/3-2v. Hence the 7F6 series is 2-balanced if

(5.7)

Setting this value of v in (5.5) we obtain, by Dougall’s formula [2, p. 26],

(T-N+ +B-/2+ 2i)x_i(/+ 1-B2+i-])x-i(1 +//1-[32-[33)x-i(1-[32-[33-N+i+f)x_i
h(i,])=

(5.8)
(’y+ 1 + fl-fl2 + i-])x_i(’Y-N + 1-2+ 2i)x_i(l + //-fl2-B3-N + +i)x-i(1-B2-B3)x-i’

Using this in (5.4) we find that the sums over and/" decouple and the individual sums
become very well-poised 7F6 series which are, therefore, expressible in terms of
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balanced 4F3’s by (2.14). Carrying out the necessary simplifications we get

(a,+)(1-,-N)(1-3-N)(+a+2

l--y, l+---y, -N+I--

(5.9)
--+, 1----, --+

N

20(n’+-l,+-l,,N)

.4F3 f-n, n +1+a2+/32+3-1, -y, y+,-N]
al +/32, -N,

n -N, -al -aE-/32-/a-N- n, -x,
4F3

1-fl2-fla-N

.4F3[ -n, n + +2+2+3-1 2, 2+3 ].
aa+B, +3, a+B+B3-B

This is the essential content of Biedenharn-Elliot identity which, in its original form,
was written the notation of Wigner’s 6- symbols [4].

x + y N + +/31 2/32 -/33]
"y-N+ 1--/32
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LINEARIZATION AND RELATED FORMULAS
FOR q-ULTRASPHERICAL POLYNOMIALS*

D. M. BRESSOUD

Abstract. A new proof is given for Rogers’ linearization formula for the q-ultraspherical polynomials.
This proof leads to several new formulas relating q-ultraspherical polynomials. The principal result yields the
following formula for the ultraspherical polynomials, C (x), when q approaches 1"

o n F(A)F(A +m+n) 2FI[A +m+n+l rs C,,,+,, (x).

1. Introduction. The linearization problem for an arbitrary family of orthogonal
polynomials, (Pn(x)}, is the problem of finding the coefficients a(m, n, k) in the
expansion"

m+n

P,.(x)P.(x) Z a(m, n, k)P(x).
k=O

If {Pn (x)} is orthonormal with respect to to (x) on (- 1, 1), then

I_ dx { a m, n, k <- m + n,
0 otherwise.

Thus, the linearization problem is equivalent to evaluating this integral. This problem
has appeared in several contexts, and is treated by Askey in 12, Chapter 5]. A use arising
from a problem on convergence of solutions of finite difference approximations to the
wave equation can be found in [3].

The solution to the linearization problem for the ultraspherical or Gegenbauer
polynomials has generally been credited to Dougall [10]. It is not well known that
twenty-four years earlier Rogers [17] had solved this problem. What is most remark-
able about Rogers’ result is that it is given not just for the ultraspherical polynomials,
but for a much larger class of orthogonal polynomials which Askey and Ismail [4] have
named the continuous q-ultraspherical polynomials (or, simply, q-ultraspherical poly-
nomials). These polynomials in x with parameters/3 and q are denoted by C, (x;/3 Iq)
and can be defined by means of their recurrence relation:

C_(x;/31q) 0, C0(x;/lq) 1,

(1.1) 2xf,,(x’/31q) (1- q,,+a) (1-/3q "-a)
(1-/3q")

C.+(x;/lq)+
(1-/3q")

C,,_(x;

If/3 is set equal to qX and then the limit is taken as q approaches 1, the recurrence
relation becomes that of the ultraspherical polynomials, C, (x), which are thus a special
case of the q-ultraspherical polynomials.

The q-ultraspherical polynomials with/3 0 are intimately connected with theta
functions, and have been studied in that context by Szeg6 [18] and Carlitz [8], [9]. With
general/3, they yield natural explanations of the expansions of certain infinite products

* Received by the editors November 12, 1979, and in revised form July 17, 1980. This work was partially
supported by the National Science Foundation under grants MCS 77-22992 and MCS 77-18723(02).

5" Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
This work was carried out while the author was at the School of Mathematics, Institute for Advanced Study,
Princeton, New Jersey 08540.
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(see Rogers [14], [15], [16] and [17], Bressoud [7]). They have also been studied by
Fej6r [11 ], Feldheim [12], Lanzewizky [13] and Szeg6 [19], whose interest in them arose
from the fact that, up to certain normalizations, these are all of the orthogonal
polynomials which satisfy

If(r ei)12= , P,, (cos 0)rn,
n=O

where f is a function analytic in a neighborhood of the origin, having real coefficients in
its power series expansion. A summary of some results on these polynomials can be
found in [20, 6.5]. It was Askey and Ismail [4] who drew attention to the fact that both
groups of people were studying the same polynomials. Askey and Wilson [5] have found
the weight functions for these polynomials.

The following notation will be used in this paper:

(a q)oo
(a; q)oo i--017[ (1 aqi), (a; q)n

(aqn

(If n is a positive integer, then (a; q), (1 a)(1 aq). (1 aq"-l).)

2(a[a’ b,. x] (a; q),,(b; q),,x"
c ,,=o (q; q),(c; q),

We also have the following limits (for n a positive integer).

(1.2)
(qa; F(2t + n_______)

im qi--- (A)(A + 1)... (A + n 1) (A).
(1 q F(A)

(1.3) 2o x zFx
a, (a),,(b),,x

q c ,,=o n !(c),

By the q-binomial theorem [1, Thm. 2.1],

(a’q),,x" (ax" q)oo
(1.4) Y. ’,,=o (q; q),, (x; q),’

it is seen that

lim
(xq;", q)oo

(1 x)-.(1.5)
q-.1- (x; q)oo

2. The linearization formula.
THEOREM 1.

Cu(cOs 0;/3lq)Cv(cos 0;/3lq)
mi, (u.v) (/3; q)u-p(/3 q)-O(/3 q)p(q; q)u+o-2p(2qU+-2P; q)ppE0(2.1)

(q; q),_p(q; q)o_p(q; q)p(fl; q),+v_Ep(q,+v_2p+ q)p

C+o_(cosO;lq).

This is the linearization formula for the q-ultraspherical polynomials, first stated by
Rogers [16, p. 29] and proved by him using a "tedious" induction argument involving
considerable manipulation of q-series. While our proof is nontrivial, it requires only the
recurrence relation (1.1) and simple algebraic manipulations.
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(2.2)

We first observe that (2.1) is equivalent to

r’sVC.(cos O; lq)Cv(cos 0; fl[q)
U,1) -’0

E (/3; q).,(/3; q)+/-(fl_; q).(qiq)_2+._tljq_____.__; q).
m,.,p=O (q; q).,(q q)n(q q)p(fl q)m+,,(flP m+’+l", q)

xr"+’s"+pr" (cos 0"

It follows from the recurrence relation (see 14, 2]) that

(2.3) (rOe ’, q)(rO e-’, q)--
(r e iO’, q)(r e -i’, q) m=0

Therefore, (2.1) is equivalent to the following"

(2.4)

(r e ’, q)oo(r e -’, q)oo(s e i’, q)oo(s e -i’,
(r e i’, q)(r e -i’, q)oo(s e i’, q)(s e -i’, q)

m, =0

(/; q)m(fl q),,(q q)m+nrms
(q; q)m(q; q),,(/3 q).,+,,

2qm+n
2q1 qm+n+l ;IS Cm+n(cos O;

This is the result we shall actually prove. If/3 is replaced byq in (2.1) and (2.4) and
then q approaches 1, we get the following formulas for ultraspherical polynomials"

COROLLARY 1.

(2.5)

(2.6)
(1 2rx + r2)-x (1 2sx + sZ)-

)Z m+n F(A+m)F(A+n)
,.=o n F(A)F(A + m + n)

A, 2A+m+n. ] (x).rms 2F1 A + m + n + 1’
rs C.,+.

When/3 0, (2.4) becomes
COROLLARY 2.

(2.7)

(rs; q)
(r e i’, q)(r e -i’, q)(s e i’, q)(s e -i’, q)

(q; q)m+nrmsn
(q; q)(q; q).

Cm+.(COS 0; 0lq).

Equation (2.7) was known to and extensively used by Rogers. In [6], this author has
given a very simple proof of (2.7) which uses only the recurrence relation for
C.(cos 0; 01q). Our proof of (2.4) will precisely parallel this proof of (2.7).
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3. Proof of Theorem 1. We define:

f(r, s) E
m,t =0

(/3; q)m(/3 q).,(q q)m+nrms
(q; q).,(q q),(/3 q)m+n

3, 32q m+n IS]X2q:’l iqm+n+l Cm+n(X; t3lq)

2 +n(fl; q),,,(/; q),,(fl; q)p(q; q)m+n(fl q ;q)p
nni’," -’T-

,,,,,p=o q q q -q---(l li’e’-(fi i q +. flq ); q p

xr’+Vs’*+vC,+,,(x; t3lq).

We then have

(3.2)

From the recurrence relation (1.1), the right-hand side of (3.2) can be rewritten as

(3.3)

+q

+C.,+,,-a(x;lq).
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This last line results from the algebraic identities

(1 flq")(1 -/3aq +n+") (1 flqm+n+1)(1 q+’+1)
(1 _qm+t))

(1 q m+)(1 q*")(1 Bq+++)
(1-Bq")(1-qO)(1-B/q)(1-B2q2)

q
(1 q m+)(1 fi2q m+")(1 fiqm+.++)

(1 fiq+--)(1 q m)(1 qm+n+p)(1 2qm+p-1)

(1 q m+")(1 flq m-)(1 qm++p-)
(1--q")(1--BqP)(1--B/q)(1--flq2m+"+p-)

+q (l__qm+)(l__flqm--)(l_2qm+,+P--)
Each sum of the right-hand side of (3.3) is now split into two sums. It can be

observed that the second of these four sums is zero when p 0, the third is zero when
m 0, and the fourth is zero when n 0. Furthermore, the first and second sums are of
equal magnitude and opposite sign if m is set equal to -1. The second equality of (3.4)
results when the first and third sums are each written as a sum of two sums,

2x(f(r, s)- f(rq, s))

(fi; q)+(fi, q),(fl; q)p(q; q)+,+(2q+,+, q)p
,.=o (q; q)+(q; q),(q; q)p(; q)m+n+l(flq m+n+, q)p

xrm+es+e(1-q+P+)+,+(x; [q)

Z (; q)m(; q)n+l(; q)(q, q)m+n+l(2q re+n+1 q)p-1

=- (q; q)m+l(q3; q)p-( q)++(q++’,
n=O
p=l

xrm+Os"+Pq+(1- fl/q)(1-2q2m+"++)Cm+.+(x; [q)
(fl; q)m-(; q)(" q)e(q; ])+.(f12+-., q)e

+ Z .,q)n,=O 2; q). (qi ]2fi q)+.-1 (q+
m=l

xrm+Os+P(1-q+P-)C+._(x; ]q)

(; q)m-(fi q).(fi q)o+(q q)+_(2q+-., q)o
(q; q)m(q; q)-(q; q)p(fl q)m+.(flqm+";

(3.4)
m,p =0
n=l

xr’+’s"+’q" (1- /3/q)(1- 2q2"+"+’-)Cm+,,_l(x /3lq)

r-f(r, s)- r-f(rq, s)

(/3; q).-t(/3; q),+t(/3; q)o+(q; q),+n(/3aq+n q)P
--S

m,n,p--0 (q; q)m(q; q).(q q)p(/3 q)m+.(q"+";

xrm+Psn+t)qm (1- /q)(1- Zq2m+n+P)Cm+n (x

+r(r, s)-rj’(rq, s)

(/3; q),n-(/3 q),+(/3 q)t,+(q q)m+n(Zqm+’; q)t’
+S

m.,.e=O (q; q),(q q),(q q),(/3 q)+,(qm+,; q),+2

xr’+’s’+’qm (1- /q)(1- 2qm+n+t’)Cm+,(x /3 q)

f(r, s)(r-1 + r)-f(rq, s)(r-1 + r).
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This equation can be rewritten as

(3.5) f(r,s)=
(1 2xflr +/2r2)
-xr+7 ztrq, s.

Since f is symmetric in its variables, we also have

(1 2xx + 2s2)
(3.6) f(rq, s)=

(1 + xs + s2) f(rq, sq).

If (3.5) and (3.6) are combined and x is set equal to cos 0, then we get

(1 23r cos 0 + r2)(1 2fls cos 0 + s2)
f(r, s)

(1 2r cos 0 + r2)(1 2s cos 0 s2) f(rq, sq)

(1 r/3 e’)(1 r/3 e-’)(1 sfl e’)(1 s/3 e -’)
(1 r ei)(1 r e-i)(1 s ei)(1 s e-i) f(rq, sq)

(3.7)

(rfl e i’, q)2(r3 e-i’; q)2(sfl e i’, q)2(s3 e

(r e i’, q)=(r e -i’, q)z(s e i’, q)2(s e-i
--iO., q)2
;q)2

f(rq=’ sq2)

(r e i’, q). (r e -i’, q). (s e i’, q),, (s e -i’, q)"f(rq", sq ")
(r e i’, q).(r e -i’, q).(s e i’, q).(s e -i’, q).

(rB e ’’, q)(rB e -’’, q)(s e ’’, q)(s e -i’, q)
,o -io io -io f(O, 0),

(re q)(r e q)(s e q)(s e q)

since Iql < 1.
From the definition of f(r, s), (3.1), it is clear that f(0, 0)= 1. This proves (2.4),

which was shown to be equivalent to the theorem.

4. Additional corollaries. In (2.4), we set s rq/ and obtain

(4.1)

y.
m,n =0

(/3; q)=(/3 q).(q; q)m+nrm+nq 112

(q; q)m(q; q),(fl q)m+n
"], 3qm+n

which is equivalent to
COROLLARY 3.

(4.2)

2 n-21o

Cn(cos O’/Slq 1/2) [ni2] (8;ql/2)n--2P(q;q)n--2P(18;q)P(8 q ;q)v
1/2 1/2

v=o (q ;q )n-2p(3, q).-zv(q;q)v(Sq"-uv+i; q)v

xqP-ZC (cos O" 31q)n-2p
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In the derivation of (4.2) from (4.1), we note that

and thus

., xt (/3; q),, (fl; q)t_,,.,q (t-m)/2

t=o m=0 (q;q),,(q;q)t-,,.,
)"(xq(/3; q),,, (/3; q /2),,

m=0(q q)m
xm

,,=o (q; q),,

(fix; q)oo (flxq /2", q)oo
(x; q)oo (xq/2; q) (by (1.4))

(fiX; ql/2)oo
(X; ql/2)oo

(/3; q/E)t=t=o (q/:Z; q/2), xt’. (/; q)m(fl; q)t_mq(t-m)/2_ (/; ql/2),
m=0 (q; qm(q; q)t-,, -(ql/2; ql/2)t.

By a similar argument with s =-r, we get"
COROLLARY 4.

(4.3)
C(cos 20"/321q 2) (/3; q2)"-’(13;q)P(q;q)2"-2’(fl2q2-2p;q)P

p=o (q2; q2)n_p(q q)p([3;q)2n_2p([3q2n-2p+)p

x (-1)PCE_E(COS 0;/31q).

If s r/3, then (2.4) yields
COROLLARY 5.

(4.4)

tn/-i (/3" q),(fl2; q),,_p(1 _flq,,-Zp)
C,, (cos o;/3lq) Y.

,=o (q; q),(q; q).-e(1 -/3)

x/3"G_z(cos 0;/3lq).

(Note" This is also a special case of the general formula for connection coefficients
given by Rogers in [17].)

Another corollary, one which bears some resemblance to Mehler’s formula for
Hermite polynomials, is obtained from (2.4) when r p e -i, s 19 ei% We observe that

i(t--2m)(fl" q),,,,(8" q)t-m e
Z xt
t=o ,=oZ" (q; q),.(q; q)t-m

. (/3; q)--(x e-i) n0

(fl; q)n
=o (q; q)., (q; -3 (x e ’*)",

(x e-i’ q)(x8 ei q)
(x e-’; q)(x e’; q)

Z G(cos ; lq)x’,
t=O

and thus

(4.5) C,(cos ,/31q)
(fl;q)m(fl;q)t-m io(t-2m)

,,,=o (q; q)m(q; q)t-m
e

With the above-mentioned substitution, the following corollary is obtained:
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COROLLARY 6.

(lab e’-’* q)o(pB e-’-’* q)o(p e’+’*; q)(a/ e-’+’*; q)
(p ei-i q)(p e-i-iw)(p eiO+iw q)(p e-i+iw q)

(4.6)

t=o (B; q)t
p : t Bq’+

p C(cos 0; #lq)C,(cos

Again, if B qX, q 1, then we get the corresponding identity for ultraspherical
polynomials"

COROLLARY 7.

(1 2p cos (0 +) + p2)-x (1 2p cos (0 + p2)-x
(4.7)

t! [h,2A+t :]E p’Fx C (cos o)C, (cos )
t=o(A)t [h +t+l; J
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AN EXTREMAL PROBLEM INVOLVING CURRENT
FLOW THROUGH DISTRIBUTED RESISTANCE*

ANDREW ACKER"

Abstract. We treat essentially the following problem in the context of electrostatics" Given a compact,
convex set Q c [2 (of positive area), which is perfectly conducting and held at potential 1, how should a total
amount A > 0 of resistance be distributed in RE\Q (subject to an upper bound on resistivity) in order that the
flow of current from Q to o0 (assumed to have potential 0) be minimized?

1. Introduction and main results. Let X be the set of all pairs (f, r), where f c :2 is
a doubly-connected region bounded by simple closed curves F and F* (F the exterior
boundary) and r denotes a strictly-positive, bounded, continuously-differentiable
function r(p)" f R, such that the boundary value problem

(VU(p)V. (p) ]=0 in 12,

U=I onF*, U=O onF

has a unique Solution. If r(p) is interpreted as electrical resistivity in f (for (f, r)e
given) and the boundaries F and F* are held at potentials 0 and 1, then the solution
U(p) of (1) is the electric potential in 12, and the rate of flow of electricity across f from
F* to F is defined by

I,’VU(P)’ldp] f la ]VU(p)’2
(2) I(II, r) :=

r(p) r(p)
dx dy,

where 3’ C D, is an equipotential curve of U, the second integral in (2) is a generalized
Dirichlet integral and equality of the two integrals follows from Green’s identity. We
will solve the following problem.

Minimization problem. Given A > 0 and a compact, convex set Q R2 (whose
boundary OQ is a simple closed curve), we seek a pair (, r’) which minimizes i(12, r) in
the set V of all (f, r)e X for which (a) the interior complement of I) contains Q, (b)
r(p) <- 1 throughout f and (c)II(a, r)ll--<A, where II(a, r)ll:-, r(p)dxdy is the total
resistance in

Remark 1. For each pair (12, r) e Y, we assume implicitly that the resistivity r(p) 0
in 2\f and the potential U(p) 1 (resp. 0) in the interior (exterior) complement of 12.
Thus, the above problem essentially coincides with the physical problem outlined in the
abstract, with the exception that we do not consider the most general possible
distributions of resistance.

The above minimization prpblem is completely solved (in the sense of existence,
uniqueness and characterization of the solution) by the following theorem. (Note: We
use (f, 1) to denote pairs (f, r) e ’ for which r(p) 1 throughout f.)

THEOREM 1.
(a) There exists a unique pair (D,, 1)e such that

(3) * 0Q, II(I, 1)11=3 and IVO(p)]=on (forsomeconstant>O),

(where , * are the boundaries of , and ](p) solves (1) relative to the pair (, 1)).

* Received by the editors November 16, 1979.
t Mathematisches Institut i, Universit/it Karlsruhe (TH), 75 Karlsruhe 1, Englerstrasse 2, Postfach 6380,

Federal Republic of Germany.
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(b) For any pair (l’l, r) # (, 1) in Y, we have

(4) z(a, r) > t(t, z).

Thus (1, 1) is the unique solution of the minimization problem.
Remark 2. The existence aspect of Theorem 1, namely part (a), follows easily from

a result of Tepper [6] (see also 1, Theorem 1]). Thus, our main concern here is the proof
of the isoperimetric inequality stated in part (b). This inequality directly generalizes
[1, Theorem 2 (Case 1)], which asserts in the present context that 1(13, 1) > I(, 1) for
any pair (, 1)# (1, 1) in Y. In fact Theorem l(b) was conjectured in [1, Remark 5].

Remark 3. The proof of [1, Theorem 2 (Case 1)], which appears not to generalize
to the present context, was essentially based on a continuous deformation (with
monotone increasing capacity) of 1 into any other admissible region ll. (Note that
I(l’l, 1) capacity of 1".) By contrast, our proof here of Theorem l(b) is based on a more
direct method due to J. Hersch [5] involving the reduction of our extremal problem to a
class of auxiliary one-dimensional minimization problems.

2. Proof of Theorem l(h). Let (1, 1) be the pair satisfying (3), and define
g= Z\(Q [A f)). Then " is a convex analytic curve (by [1, Theorem l(d) and Lemma
5(a)]), and [V(p)] > throughout f (by [1, Lemma 5(c)]). (Note" (p) is simply the
harmonic measure of ’* in 1.)

Let Po " be fixed, and for any a ,.let p " be the point attained by starting out
at po and proceeding a distance [a[ along F in the positive (n.egative) sense for a > (<)0.
Clearly, p/L p, a E, where L is the length of ’. Since F is analytic and [V tQ(p)l > 0
in f, we can define the family of curves y, a , by setting y y’ U yi", where y’ c
is the curve of steepest ascent of the function tQ(q) joining p to ’* OQ and y" c is
the ray emanating from p " in the exterior normal direction (see Fig. 1). Clearly,

FIG. 1. The family of curves

Y,,+L Y, a , and [Oo<=<L, Y,, 2\Q. Also, y fq yo Q5 for 0 _-< a </3 < L, since "is a convex curve (i.e., O (31 is convex).
Using the fact that the function r(q) can be harmonically continued across " (see

the proof of [1, Lemma 5 (a)]), one easily sees that there is a unit-vector-valued function
T(p)" z\O--> z, Lipschitz continuous in any closed subset of 2\O, such that T(p) is
tangent to y, at each p y, a . (One can set T(p) V(p)/[V fQ(P)I, P 1[3 ’, and
T(p) T(p), p y", 0 <- a < L.) Furthermore, we have

dist (p,
(5) lim re(p) for all p y, a ,
where re(p) /[V O(p)l in lkJ ’, re(p) 1 +k(p). [p -p[ in y", a , and k(p) >_-0
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denotes the curvature of [" at p‘’. Notice that re(p) is a positive, continuous function in
N2\Q and that the convergence in (5) is uniform over all p in any compact subset of
N2\Q. One can show, using these various properties of the curves y‘’, ce N, that

L

(P)f(P)IdPl) da,(6) lID f(p) dxdy Io (IDC, m
for any bounded region D c 2\Q and any function f(p) which is continuous and
absolutely integrable in D.

Now let a pair (lq, r) Y and a value a be fixed, and let -> 0 measure arc length
along y‘" from OQ. For each >_- 0, let p(t) 3’,, be the point at arc-distance from OQ, and
define m(t)=m(p(t)), a=max{t>-_O:p(t)F*}, b=min{t>-_O:p(t)F}, and r(t)=
r(p(t)) in (a, b) (clearly, a <b). The functional J()--z(m(t)/r(t))(d/dt)2 dt (where
I=[a,b]) is easily seen to be minimized in the class of all functions &
C[a,b]Cl(a,b) satisfying (a)=1 and (b)=0 by the function 0(t)=
(t(t r(t’)(t’) dt’/zr(t’)iz(t’) dt’), where I(t)=[t, b], tI, /z(p) lira(p) in [2\0, and
I(t) t(p(t)), >-_0. It follows that

(7)
1 1

J()-->J(&o) i,r(t)lz(t) dt-innvr(p)lz(P) ]dpl

for all & . Since the function U(p(t))" I (where U(p) solves (1)) belongs to the
class , and since IVU(p(t))l>=ldU(p(t))/dtl in (a, b), we conclude using (7) that

Io (m(P)lVU(p)lldpl e 1

my,, \ r(P) ] Iacnv r(p)tx(p) Idpl’

where a e N is arbitrary. Therefore, using (6), we obtain

I(l),r)=If ([VU(P)]2)dxdy
a r(p)

I? (Inn (m(P’IU(p)IEIdpl)da

We conclude, by applying the Schwarz inequality (in the form
]’(a) da. (1/f(a))da, f(a) positive and continuous in [0, L]) and (6), that

L2 L2

I(f, r)-->_ I" (Iacv r(p)tx(p)ldpl) dee IIa r(P)Ix2(P) dx dy

for any pair (l),r)eY. Now tx(p)=l/m(p)=(IVlQ(p)l/)>l throughout h by
[1, Lemma 5(c)], and clearly, 0</x(p)-< 1 in (in fact QUI is strictly convex and
/z (p)< 1 in the interior of :). Therefore, obviously,

ff r(p)tx2(p) dx dy < I ffi tx2(p) dx dy
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for any pair (1", r) (, 1) in Y. It follows that

L2 2L2
I(t2, r) > JJ5 tt2(p) dx dy IV (p)l2 dx dy

(2L2
(h, 1)

(a, l)

for any pair (, r) # (, 1) in Y, which is exactly the assertion of Theorem 1 (b).

3. Concluding remarks. It is not essential that Q be convex in the above argument.
One can show just as before that I(, r) => I(, 1) for all (fl, r) e Y, where (, 1) satisfies
(3), provided only that IVO(p)l_>- throughout (:::} is a convex curve). Moreover,
(, 1) does not minimize I(, r) in Y unless this condition holds.

Clearly, the above proof can be extended to show that (, 1) minimizes current
flow from Q (at least in the sense of <-) within a more general class of distributions of
resistance (subject to the same constraints).
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EXISTENCE-UNIQUENESS FOR FOCAL-POINT
BOUNDARY VALUE PROBLEMS*

ALLAN C. PETERSONf

Abstract. Our main concern is to prove uniqueness-existence theorems for the focal boundary value
problem y(") =f(x, y, , y(n-1)), yi(a A, yi(b) A/, 0- -< k 1, k <-/’ -< n 1. The method of proof
for existence is the shooting method. Similar results, but for the (p, q)-boundary value problem
yn=f(x, y,. ., yO,-l), y")(a) Ai, y/(b) Ai, O<-_i<-p-1, 0-</’<_-q-I, p+q=n, were considered by
the author in [J. Math. Anal. Appl., 55 (1976), pp. 773-784]. The last result in this paper extends the main
result in the above-mentioned article.

At the outset of this paper we will be concerned with the general differential
equation

(1) y() =/(x, y,..., y("-)).
Let I be a subinterval of the real numbers R. At various times we will assume f satisfies
one or more of the following assumptions"

(A) The function f is continuous on I R".
(B) Solutions of initial value problems (IVP’s) for (1) are unique and exist on L
(C) If there is a nondegenerate subinterval [c,/3 I and a sequence of solutions

{y,} which is uniformly bounded on [a, B], then there is a subsequence {y,} such that
{- (J)
Y-k } converges uniformly on each compact subinterval of/, j 0, , n 1.

(D) The functions [i =- [/Oy "), 0, ., n 1, are continuous on I R".
See [10] and the references given there concerning the compactness condition (C).
Our main concern (except for Theorem 10) is to prove uniqueness-existence

theorems for the focal boundary value problem (1),

(2) y (i)(a) A, 0 <= <-_ k 1,

(3) y(/)(b) A, k<-_j<-_n-1,

where a, b s I with a < b. Our method of proof for existence will be the shooting
method which has important implications in numerically approximating solutions of (1),
(2), (3).

DEFINITION. Let 1 --< k _-< n 1. We say that (1) is k-disfocal on J I provided the
boundary value problem (BVP) (1), (2), (3), where a < b are arbitrary in J and Ai R,
0-<_ _-< n 1, has at most one solution.

Two questions of interest are when is (1) k- disfocal, and if (1) is k- disfocal does this
imply that all BVP’s (1), (2), (3) have solutions? First we give a local existence theorem
for the BVP (1), (2), (3).

THEOREM 1. Assume (A) and (B) hold and that (1) is k-disfocal on (a,)I; then
given < s < < and y(x) a solution of (1) there is an e > 0 such that i[ ]sl s] < e,
[tx-tl<e, tl, Sl(Of,), [y(i)--y(i)(s)[<e, i=O,...,k-1, [y(i)-y(i)(t)l<e, /=
k, , n 1. Then the BVP (1)

y(i)(Sl) y(i), 0, , k 1,

y(i)(tl)=y (i), j=k," ,n-l,

* Received by the editors July 30, 1979, and in revised form August 4, 1980.
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has a unique solution u(x). Furthermore lim_,o u(i)(x) y")(x) uniformly on compact
subsets of L 0 <- <- n 1.

Proof. The proof is a standard application (see [14] and references [1]-[3], [10]
there) of Brouwer’s invariance-of-domain theorem (see [14, Lemma 2.1,] and the
reference there to [8]).

THEOREM 2. Assume (A), (B) and (C) hold. If (1) is k-disfocal on I, then for any
solution u (x of (1) and c < d in I, the set

A {y(k-l(C)" y is a solution of (1) such that y((c)= u(i)(c),

=0,..., k-2, y(J)(d)= u(J(d), ]= k,..., n-l}

is an open interval.
Proof. By Theorem 1, A is an open subset of the reals R. Assume A is not an

interval; then either there is a tl > u(k-I(C) such that t cA but [u(k-(C), tl] A, or
there is a t2 U(k-1)(C) such that t2 A but [t2, U(k-1)(C)] : A. We will consider only the
first case here. Set

$o sup {s => u-(c) [u-)(c), s] A}.

So 6o-< t, and by Theorem 1, 8o> u(-(c) and 80A. Pick a sequence {s,} such that
u-(c) <s <... < s, and lim,_. s, 8o. Let y,(x) be the solution of (1) satisfy-
ing y(c)=ui(c), i=O,.., k-2, y-)(c)=s,, and yi(d)=u((d) ]=k,...
n 1. If there is an e >0 such that {y-, (x)} is uniformly bounded on [c, c + e] then it
follows easily that { y,(x)} is uniformly bounded on [c, c + el. But then by the compact-
ness assumption (C) there is a subsequence {y,, (x)} and a solution y(x) of (1) such that

lim_. y ,,
uniformly on compact subsets of I, 0,..., n- 1. This implies 80 e A, which is a
contradiction.

Now since tx e A there is a solution v(x) such that

v(i)(c) u(i)(c), =0,’’’, k-2,

v(-)(c)=t,

v(i)(d) u(i)(d), ] k, n 1.

Since {y(f-X)(x)} or any subsequence is not uniformly bounded on [c, c +e] for any
e >0, it follows that for all sufficiently large n, y(k-)(X), crosses either v(k-X)(X) or
u(k-1)(X). By relabeling sequences if necessary we can assume that y(k-X), (X) crosses
v (k-1)(X) or u(-X)(x) for all n _-> 1. For each n, pick the first point x, such that y-l) (x,)
{u(k-X)(Xn), v(k-1)(X,)}. For infinitely many values of n, either y-X)(x,) u(k-1)(X,) or
y(f-x) (x,) v (k-x) (x,). Without loss of generality we will assume
for n -> 1. Also we may as well assume xx > x2 >" with lim,_.o x, c. Since

we get that

u(-X)(x < y(-l),, (x) < v(k-)(X) on [c, x,,],

u()(x) < y(/)(x) < v(i)(x)

on (c, xn) for 0, , k 1. It follows from this that

(i)lim y. (x.)= v(i)(c), i=0,... ,k-1.
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Since

Y (i)n (d) v (i)(d), j=k," .,n-l,

we get from Theorem 1 that

lim y)(x) v(i)(x)

uniformly on compact subsets for 0, , n 1, which again contradicts 80 A and
completes the proof.

Assume (D) holds and y(x) is a solution of (1); then the linear differential equation
n-1

(4) z (")= E fi(x, y(x),’’ ", y(n-1)(X))Z(i)
i=0

is called (see [1]) the variational equation of (1) along y (x).
THEOREM 3. Assume (A), (B) and (D) hold and c < d. Let 1 <= k <= n 1, and

assume (1) and the variational equation (4) along all solutions y(x) of (1) are k-disfocal
on I. Ifu (x is a solution of (1), then there is an open interval y, 6), y < 0 < 6 such that the
focal BVP (1)

y(i)(c) u(i)(c), 0," ’, k 2,

y(-)(c) u(-)(c) + s,

y(i)(d)=u()(d), j=k,...,n-1

has a unique solution y(x, s) for s (% 6). Furthermore Oy/Os exists for s (% 6), and
z(x) 0y(x, s)/Os is the solution of the focal BVP (4) with y(x) y(x, s),

z(i)(c)=O, i=0,... ,k-2,

z(k-X)(C) 1,

z(i)(d)=O, j= k, n -1.

Proof. The first conclusion follows from Theorem 2. To show the last statement, fix
s (y, 8) and for h 0 sufficiently small, set

Also set

Zh(X)
y(x, S + h)- y(x, s)

h

Ai=y(i)(c,s)

and

8i(h) y(i)(c, s + h)-Au i=k,...,n-1.

Note that by Theorem 1,

lim 8i(h O.
hO

Let y (x ul, , u,) denote the solution of the IVP (1), y (i--1) (C)-- Ui, i= 1,’’’, n.



176 ALLAN C. PETERSON

Consider

1
Zh(X) " [y(X, S -[" h)- y(x, h)]

1
=[y(x; u(c), u-:(c), u (t‘-l)(c) + s + h, At, + St,,"

-y(x; u(c), u(t,-2)(c), uk-I)(C)+S, Ak,

1
={[y(x; u(c), u<-"(c), u (t,-l)(c) + s + h, At, + 6t,,

-y(x; u(c), ", ut,-Z)(c), ut,-l)(c) + s, At, + 6t,, ", A.-1 + 6.-1)]

+ [y(x; u(c)," ", u(t,-a>(c), u(t,->(c)+ s, At,," ", A.-2, A.-1 + 6.-1)

-y(x; u(c), ut,-2)(c), ut,-l)(c)+ s, At,,

By [1, Theorem V 3.1] we have, for h 0,
1

Zh(X)=-{hZk-l(X; y(x; U(C), u(k-1)(C)’k’S + ,Ak -t’k, ,An-l +n-1))

+ ,St,zt,(x; y(x; u(c), ut,-l)(c)+ s, At,

,A.-1)]}.

+6t‘+1,’’"

+ 6.-lz.-1(x; y(x; u(c)," ", u(t’-l)(c)+ s, At,-1," ", A.-z, A.-1 +

where zj(x; y(x)) denotes the solution of the IVP (4)
() (c" y(x)) o,Zj

i=O,...,n-1 but #]z()(c; (x))= 1,Y

and h is between 0 and h, 8 is between 0 and 8., j k, , n 1. We want to show that
lim_,o Zh (X) exists for each x.

Since y()(d, s + h) u()(d) y()(d, s), k,..., n 1, we get

0 z (i)_1 (d; y(x; u(c),’", u(t‘-l)(c) + s + , At, + 6t‘,’", A,-1 + 8,-1))

+-- (d; y(x; u(c), u(t‘-l)(c)+s, At,

-["lk+l,’"" An-l + n-X))

(6) +...

+- z’)--1 (d; y(x; u(c),"’, u

]=k,...,n-1.
By the k-disfocality of (4) along y(x, s) we get

z() (d. y(x, s)) z-1 (d; y(x, s))

("-) (x,s)z("-l) (d y (x, s)) z,,-x (d;y
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It follows that for h 0, sufficiently small, we can uniquely solve the system (6) for 8j/h,
k, , n 1. For example (omitting the arguments for various functions),

(k)--z(kk)-I Zk+l,,(h
h D(h)

where D(h) is suitably defined. It follows that

-z(l (d; y(x, s))
,5(h) 1

lira
h-.o h D -z("_-ll(d; y(x, s))

Similarly we can evaluate limh-,O 8j(h)/h, .i k + 1,"

It follows from (5) that

n-1

Z(,,k)_l (d; y(x, s))

(n-l)
z,-1 (d; y(x, s))

lim Zh(X)= Zk-I(X; y(x, s))+Ckzk(x; y(x, s))
h0

+... + C._z._(x y(x, s)),

where C. limh-,O (Si(h)/h), k <-_f <-_n 1.
It is now an easy matter to check that 0y(x, s)/Os limh-,O Zh(X) is the solution of

(4) along y(x, s) satisfying the boundary conditions

z(i)(c) 0, i=0,... ,k-2,

z(k-l(c) 1

z(i(d) 0, j=k,... ,n-1.

We now give conditions under which (1) is k-disfocal.
THEOREM 4. Assume 1 <=p <=n- 1 and that (A)-(D) hoM. If the variational

equations (4) are k-disfocal along all solutions of (1) on Ifor k p, n 1, then (1) is
also k-disfocal on !for k p, ., n 1.

Proof. We prove this theorem using finite mathematical induction. Assume p
n 1 and that (1) is not (n 1)-disfocal on L Then there are distinct solutions y 1, y2 and
points c < d in ! such that

yi)(c)=y(2i)(c), i=0,... ,n-2,

y "-1) (d) y (2"-1) (d).
Let y(x, s) be the solution of (1) such that y(i)(c)= yi)(c), =0,..., n -2, y(-l)(c) s.
Then there are numbers sls2 such that yl(x)=y(x, sl), y2(x)=y(x, s2). By [1,
Theorem V, 3.1]

0 y "-1) (d) y (2"-x) (d)
y("-)(d, sl)- y("-l)(d, s2)

0
(s- s2) y

where g is between sl, and s2. Let z(x)= 0y(x, g)/s; then z(x) is the solution of (4)
along y(x)=y(x,g) satisfying z(i)(c)=O, i=0,...,n-2, z(n-(c)= 1. By the last
displayed equation we get z(n-l(d)= 0, which contradicts the fact that (4) is (n- 1)-
disfocal along y (x, g). Hence this theorem is true for p n 1.
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Assume 1 -< p < n 1, and that this theorem is true for p + 1, , n 1. We want
to show that (1) is p-disfocal on L Assume not; then there are distinct solutions yl(x),
y2(x) of (1) and points c < d in I such that

y(li)(c)=y(2i)(c), i=0,’’’ ,p-l,

J e,"’, n- 1.

By the induction assumption (1) is (p + 1)-disfocal on/, and so we can apply Theorem 2
to get

S =-{s s R’ the (p + 1)-focal BVP (1), y(i)(c) y(i)(c),
0,. ., p 1, y(P)(c) s, y(’)(d) yi)(d), j p + 1,. ’,

n 1, has a solution y(x, s)}

is an open interval. Pick Sl s2 such that yl(x) y(x, Sl), y2(x) y(x, s2). Using the
connectedness of S and Theorem 3 we have

O y P) (d)- y(2P) (d)
y(t’)(d, Sl)- y(P)(d, S2)

0
y

=(sx-s2)z(P)(d),
where g is between Sl and s2 and z(x)= y(x, g)/s is the solution of (4) along y(x, g)
satisfying z((c)=0, i=0,...,p-1, z(")(c)= 1, z(J)(d)=0, f=p+l,..., n-1. But
above we saw that z(")(d)=0, which contradicts the fact that (4) is p-disfocal along
y(x, ) on L

We now proceed to state and prove a theorem which is a completion of [11,
Theorem 6]. This result will be concerned with the differential equation

d d d
(7) p,+(x) -d-fix p,,(x) -x x p(x)y Ap(x)y,

where X =+/-1 and p, ta(x), l<-i<-n-1 are positive continuous functions on [a, b].
Define quasi-derivatives Di, 0 =< -< n, by

D0y pl(x)y,

Diy pi+(x)(Di-xy)’, 1," , n.

We say that a solution y(x) of (7) has a zero of order k at Xo provided Diy(xo)= O,
0, , k 1. Like Nehari [3]we say that (7) is disfocal on [a, b] provided there is no

nontrivial solution y(x) of (7) such that there are points xi, 0=<i <=n- 1, in [a, b] with
Diy(xi) 0, 0,..., n- 1. As expected, we say that (7) is k-disfocal on/, 1 =< k =<
n- 1, means that there is no nontrivial solution y(x) of (7) such that there are points
a <=c <d _-<b such that Diy(c)=O, O<-_i <-_k- 1, Diy(d)=O, k <-] <-_n 1.

If (7) is k-disfocal on [a, b], then we will let Gk(X, s) denote the Green’s function
for the k- focal BVP

Dy-Ap(x)y h(x), h C[a, b],

Diy(a)=O, i=0,... ,k-l,

D.y (b) O, j=k,... ,n-l,
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(see [11, Lemma 3], where we replace regular derivatives d/dx with corresponding
quasi-derivatives D).

In the following theorem we use the notation

DoGk(X, s) pl(X)Gk(X, s),

DiGk(X, s) pi+(x) -x Di-Gk(X, s), 1,. ., n.

THEOREM 5. Assume (7) is disfocal on [a, b]. Then

(8) (-1)"-JD,Gk(X, s)>0
on (a, b) x (a, b), where ] k for 0 <- <= k 1 and ] for k <- n 1, is true except
when A 1, >= k and n and k have opposite parity, or when A 1, >- k and n and k
have the same parity. In the exceptional cases DGg(x, s) changes sign in (a, b) x (a, b).

Proof. From [11, Theorem 6] we know that

(9) (--1)"-kD,Ok (X, s > O

on (a, b) x (a, b) for 0 _-< -< k 1. Now let uj(x, -), 0 =< ] -< n 1, - [a, b be the solution
of (7) satisfying

Dui(z, r) 6i, 0,. , n 1,

(6q is the Kroneeker delta). Then as in Lemma 3 and [11, Theorem 4] with derivatives
replaced by quasi-derivatives; we get that

where

1

Gk(x,s)=
u(x), a<=x<=s<=b,

v(x), a<-s<-x<-b,

u(x)

0 Uk(X,a) u._x(x,a)
DkU.-(b, s) Dku(b, a) DkU,-(b, a)

D,,-xu.-(b, s) D,,-xUk(b, a) D,,-au,,-x(b, a)

v(x) is this determinant with the upper left entry 0 replaced by U,-l(X, s), andD is given
by

DkUk(b, a) DkU,,-x(b, a)

Let s be a fixed but arbitrary point in (a, b). If A 1 and n and k have the same
parity, or if A 1 and n and k have the opposite parity, we will show that sgn Diu (x)
(- 1)"-i, a < x -< s and sgn Div (x) (- 1)"-, s <= x < b for k,..., n 1. If A 1 and n
and k have the same parity, then first, by (9), u(x) > 0 on (a, s] and v(x) > 0 on Is, b) and
second, by (7), we get that D,u(x)>O on (a,s] and D,v(x)>O on Is, b). Similarly if
A 1 and n and k have the opposite parity we can also argue that D,u (x) > 0 on (a, s
and D.v(x)> 0 on [s, b).

Now since D,,_iv(b)=O, D._v(x)<O on Is, b). But D.u(x)>O on (a,s] and
D._au(s)=D._v(s)-D<O, so D,,_xu(x)<O on (a,s]. Since D,,_Iv(x)<O on [s,b)
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and D,_zv(b)=O, Dn-2v(x)>O on [s,b). But D,,_xu(x)<O on (a,s] and D,,_zu(s)=
D,_zv(s) >0 implies Dn-zU(X)3>0 on (a, s]. Proceeding in this fashion we obtain the
desired results.

We now prove the last statement in this theorem. Assume that h 1 and n and k
have the opposite parity or h 1 and n and k have the same parity. By (9), we have
that u(x) < 0 on (a, s], v(x) < 0 on [s, b) in the first case, while u(x) > 0 on (a, s], v(x) > 0
on [s, b) in the second case. By use of (7) we obtain in both cases that D,u(x)<O on
(a,s] and D,v(x)<O on [s,b). But D,v(x)<O on [s,b) and D,_lv(b)=O implies
D,,_lV(X) >0 on Is, b). By use of finite mathematical induction we easily get that

(-1)iD,-j-lV(X)>O on[s,b), ]=0,...,n-k-1.

Note that

DkU(a)
(10)

By [4, formula (1)

DkU(a)=(--1)"-’

Dku,-a(b, s) DkUt,+(b, a)

D,-xu,,-x(b,s)

we get that

DZ,-k-l(s,b)

D,,_lUk+l(b,a)

DkU,_x(b,a)

D,,-xu,,-(b, a)

4-D,-k-ZZ,-k-(a, b) D,,-k-xZ,-k-x(a,b)

+Dozo(a,b)

By the use of Rolle’s theorem this leads to a contradiction of the disfocality (see [3,
Theorem 6_]) of the adjoint equation of (7). Hence Dku(a) O. This last inequality is
true for s (a, b). By setting s b in (10) we have that

DkUk+(b, a) DkUn-(b, a)
Du(a)l=o =(-1)"-

D,,-zu,4-1(b, a) D,,-zu,_(b, a)

Since this last determinant is positive (see [12, Lemma 3]),

(--1)"-kDku(a)>O.
By very similar arguments we can show that

(-1)"-iDiu(a)>O,
for k _-< <_- n 1. But for k _-< <_- n 2,

(-1)"-’-aD,u(s) (-1)"-’-lD,v(s) > O.

Hence Du(x), k <- <= n 2, changes sign in (a, s). Earlier we saw that D,,u(x) < 0 on
(a, s]. Since D,_au(a) < 0, we have that D,,_xu(x) < 0 on [a, s]. Since we have already
seen that D,_iv(x) >0 on Is, b) we get that D,-Gk(X, s) changes sign in (a, b) (a, b).

Using an argument as in the proof of [12, Theorem 6] we can prove the next
corollary.

Djz b O,

z(s)=0,

n-k<_j<=n-1.

4-Dozo(s,b) D+,-k-2Zo(a, b)

with Dzi(a, b) 6, 0," , n 1.
This last determinant is zero if and only if there is a nontrivial solution z (x) of the

adjoint equation of (7) with

Diz(a)=O, O<-i<-n-k-2,
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COROLLARY 6. If we assume p(x)>=O on [a, b] in Theorem 5, then the inequalities
(8) are true with > replaced by >=. Also the last statement of that theorem is true.

We would like now to state a comparison theorem for the differential equations

(11)

(12)

where we assume that

D,,y=Aql(x)y,

D,,y AqE(x)y,

O<--ql(x)<--_q2(x) on [a, b].

Indeed, it is a standard argument to use Corollary 6 to get the following comparison
theorem.

COROLLARY 7. Assume (12) is disfocal on [a, b]. Let yl(x), y2(x) be solutions of
(11) and (12) respectively such that yl(x)>-O on [a,b] and Diyl(a)=Diy2(a), O<=i<=
k 1 and Djy (b) Djy2(b), k <-_ <- n 1. Then

(- 1)n-ihDiy2(x) _-> (- 1)n-ihDiy (x)

on [a, b ], where j k for 0 <-_ <= k 1 and j for k <- <- n 1, where for k <-_ <- n 1
we assume h 1 and n and k have the same parity or A 1 and n and k have the
opposite parity.

Assume (7) is disfocal on [a,b] and let yk(X;p(x)), l<-k<=n-1, denote the
solution of (7) satisfying

DiYk(a p(x)) O, 0<i<k-1

DkYk(a p(x)) 1,

Diyk(b;p(x))=O, k+l<=j<=n-1,

(In this definition we assume p(x)>=O on [a, b]).
An application of Corollary 7 gives us the following result.
COROLLARY 8. Assume (12) is disfocal on [a, b]. Then

(-1)-ADiYk(X; q2(x)) _--> (-1)"-JADiyk(x; ql(x))

on [a, b ], where ] k + 1 for 0 <= <- k and ] for k + 1 <= <= n 1, where for k + 1 <- <-
n 1 we assume A 1 and n and k + 1 have the same parity or A 1 and n and k + 1
have the opposite parity.

Proof. Since (12) is disfocal, yk(X; q2(x)) is well defined. By [3, Theorem 6.2], (11)
is also disfocal. Therefore yk(X; ql(x)) is well defined and

y(x;q(x))>o

on (a, b]. Hence by Corollary 7 with k replaced by k + 1 we get the desired result.
Now consider the nonlinear differential equation

(13) D,,y a/(x, y),

where A + 1 and f satisfies (A)-(D). We now prove the following existence-unique-
ness theorem.

THEOREM 9. Assume l<-k<-n-1, O<=fy(x, y)-<p(x) on [a,b]xR and (7) is
disfocal on [a,b]. Then the BVP (13), Diy(a)=Ai, Dy(b)=B, O<-i<=k-1, k<-f <
n- 1, has a unique solution.

Proof. Let y(x) be a solution of (13). Then the variational equation along y(x) is

(14) D,,z Afy(x, y(x))z.
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Since 0 -< fr(x, y(x)) <= p(x) on [a, b] we have by [3, Theorem 6.2] that (14) is disfocal on
[a, b]. Hence by Theorem 4 we get the uniqueness part of this theorem. It remains to
prove the existence part of this theorem. First we prove the existence for the k n 1
case. To this end let y(x, s) be the solution of the IVP (13), Diy(a)=Ai, O<=i <=n-2,
D,,-ly(a) s. By [1, Theorem V 3.1],

0
D,-ly(b, s)-D,,_y(b, So) (s So) 7- D,,_l y(b, )

os

(s so)D.-z,,-t(b, ),

where is between So and s and z._(x, ) (O/Os) D._ly (x, ) is the solution of the IVP
(14) with y(x)= y(x, ), Diz(a)=O, O<-i<=n-2, D._z(a)= 1.

If A 1, let to._l(x) be the solution of D.y =0 satisfying Djto._(a) 0, 0-<_j<_-
n-2, D._to._(a) 1 while, if A=-I, let to._l(x) be the solution of D.y=-p(x)y
satisfying the same initial conditions at a. It follows that (see [9, Lemma 2.1]

D.-Iz,,-I(X, 5) >= D,,-ltO,,-l (X on [a, b].

Hence, for s > s0,

D,_ly(b, s)-D,,_ly(b, So) (s so)D,-lZ,-l(b, ) >- (s so)D,-lW,,-l(b).

Since D,_lW,_(b) >0,

Similarly

lim D,_xy(b, s) c.

lim D,_ly(b, s)=-c.
$---

Since {D,-ly(b, s)’ s R} is connected we have that every BVP of the form

D,y Af(x, y),

Diy (a) Ai,

D,_ly(b)=B,_l

has a solution.
Assume we have existence for i-focal BVP’s, / n 1, n -2, , k + 1. We want

to show that the k- focal BVP (13)

Dy(a) Ai, 0_-<i<_-k-1,

Djy(b)=Bi, k<./<-n-1

has a solution. To this end, this time let y(x, s) be the solution, guaranteed by the
induction hypothesis, of the (k + 1)- focal BVP (13)

Dy (a Ai, O <-_ <-_ k -1,

Dky(a)=s,

Dy(b Bi, k+l=</-<_n-l.
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By Theorems 2 and 3,

Dky(b, s)-Dky(b, So)= (s- So) -s Dy(b, )
(s so)Dz (b, g),

where 5 is between So and s and z (x, ) is the solution of the variational equation (14),
with y (x) y (x, ) satisfying

Diz(a, ) O, 0 <- <= k 1,

Dkz (a, ) 1,

Diz(b, g) O, k+l_<-/’<=n-1.

Using O<=fy(x, y) =<p(x), x e[a, b], y eR and Corollary 8, we have that

(-1)"--l,Dy (x; p(x)) >= (-1)"--,Dkz(x, ) >- (-1)"--,Dy (x; 0).

Letting x b, we get that

(-1)"-k-/Dy (b; p(x )) >= (-1)"--/Dzk (b, ) >= (-1)"--/Dy (b; 0).

Let co(x) y(x; p(x)) if (--1)"-k-lh is negative, and let co(x) y(x; 0) if (-1)"-k-, is
positive. Then

Dz(b, ) >= Dco(b > O.

Hence for s > So

It follows that

Similarly,

Dky(b, s)-Dky(b, So)= (s--So)DkZk(b, g)

>= (S so)Dkco (b ).

lim Dky(b, s) .
lim Dky(b, s)= -.

It follows that all k-focal BVP’s for (13) have solutions.
For the next theorem assume 1 <= p, q -<_ 1 and p + q n. 7, Theorem 10] is the

analogue, of Theorem 9 for the (p, q)-BVP

D,y f(x, y),

Diy(a) 0, i=0,... ,p-l,

Diy(b)=O, /=0,... ,q-1.

We were not able to extend Theorem 9 to the Lipschitz case, but while trying to do so we
were able to extend [7, Theorem 10] to the Lipschitz case. Although it may not be
evident at first glance, we use the shooting method in this theorem (see the proof of [7,
Theorem 12] which we use here). We now state and prove this result.

THEOREM 10. Assume (A) holds and there are continuous functions k(x), k2(x)
such that

k(x)[y-z]<=f(x, y)-f(x, z)<=k(x)[y-z]
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forx[a,b], y>-z. If
(15) D,y=kl(x)y

and

(16) D,y k2(x)y

are discon]ugate on [a, b l, then the BVP

D,y f(x, y),

Diy (a Ai,

Djy(b)=Bj,

has a unique solution.

0<_i<=p-l,

O<-]<=q-1

Proof. By [5, Theorem 7] (see also [5, Theorem 6] and [9, Theorem 3.1]) all (n 1,
1)-BVP’s on [a, b have unique solutions.

Extend definitions of kl, k: and f by defining k(x)= k(b), k:(x)= k2(b), and
f(x, y)=f(b, y) for x => b. We claim that (13) is disconjugate (see [13] for definition) on
[a, b]. Let e >0 be given and assume (13) is not disconjugate on [a, b]. Then by [2,
Theorem 2] there is an e >0 and there are distinct solutions y(x), y.(x) such that
y(x)- y:(x) has at least n distinct zeros on [a, b + e). Without loss of generality we can
assume (15) and (16) are disconjugate on [a, b + e). Let us(x) be the solution of the IVP
(13), Dius(a) Diyl(a), 0 <= -<_ n 2, D,-us(a) D_y(a) + . Because of the (n
1, 1)-disconjugacy mentioned at the outset of the proof, us(x)> y(x) on (a, b + e) if
8 > 0, while us(x) < yl(x) on (a, b + e) if 8 < 0. Depending on the zeros of y(x)- y:(x),
there is either a positive 8 or negative 8 (call it 80) such that Uso(X)- y2(x) has at least n
distinct odd-ordered zeros in [a, b + e). Define for each integer k => 1 the integral mean

k f
y+/k

fk(X, y) =-.y_l/k f(x, r) d’, (x, y)e [a, b]x R.

Note that fk(X, y) and Ofk(X, y)/0y are continuous on [a, b]xR, k(x)<--_Ofk(x, y)/0y _<-
kE(X) on [a,b]xR, and limk-.fk(X, y)=f(x, y) uniformly on compact subsets of
[a, b]xR. Let tog(X) and Vk(X) be the solutions of D,y =fk(X, y) satisfying the same
initial conditions at a as Uso(X) and yE(X) respectively. Then for k sufficiently large
tok(X)--Vk(X) has at least n zeros on [a, b + e).

This contradicts the fact that D,,y fk(X, y) is disconjugate on [a, b + e) (by [7,
Corollary 6] the variational equations of D,y fk(X,, y) are disconjugate on [a, b + e), so
by [8, Theorem 1] D,y =fk(X, y) is disconjugate on [a, b + e)).

Since D,y f(x, y) is disconjugate on [a, b], we have by [7, Theorem 12] that every
(p, q)-BVP for D,y f(x, y) has a unique solution. Note that in [7, Theorem 12] the
shooting method is used.
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INVERSE RELATIONS FOR CERTAIN SHEFFER SEQUENCES*

JAMES WARD BROWN? AND STEVEN M. ROMANt

Abstract. Let sn(x) (n =0, 1,2,...) be a so-called Sheffer sequence of polynomials, and let a,
(n 0, 1, 2, .) be a sequence of the type an yn + z where y and z are constants. An expansion formula for
each polynomial s.(x) in terms of the sequence sn(x +a.) (n =0, 1, 2,...) is derived, and the formula is
illustrated by applications to Laguerre, Hermite, and Gegenbauer polynomials.

1. Statement of main result. In 1939 Sheffer [13] initiated serious study of a class
of polynomial sequences which have come to be known as Sheffer sequences. See, for
example, [2], [11] and [12], where many additional references are given. These
sequences have been characterized in a variety of ways, and we choose here to take as
our starting point a generating function characterization that Sheffer himself originally
gave. To be precise, a polynomial sequence sn (x) (n 0, 1, 2, .) is said to be a Sheffer
sequence if it is generated by a relation of the form

(1.1) G(t) exp (xH(t)) nY’.o= sn(X)n--.,
where

(1..2) G(t) E g.t (to 0) and H(t) Y. h.t (hi y 0).
n=0 n=l

All of the series here and in what follows are formal power series over the real or
complex field.

Associated with any given Sheffer sequence sn (x) is a polynomial sequence pn (x)
(n 0, 1, 2,...) of binomial type generated by

tn
(1.3) exp(xH(t))= , p.(x)-.,

n=0

where the H(t) is the same as in (1.1). In view of the additivity property of the
exponential function, it is evident from (1.3) that the polynomials p. (x) satisfy the
binomial-type identity

(1.4) p(x+y)= (nk)Pk(x)p-k(y), n=0, 1,2,....
k=O

Note too that it follows from (1.1) and (1.3) that a similar relation,

(1.5) s. (x + y) kO__ Sk (x)p.-k (Y), n 0, 1, 2,. .,

relates any Sheffer sequence to the sequence of binomial type associated with it.
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Suppose now that an (n 0, 1, 2,...) is a sequence of the form

an yn + z,

where y and z are constants, independent of x and n, and where a, 0 for any n. Very
recently in [4] the first author showed that the sequence sn(x + an) (n =0, 1, 2,...) is
itself a Sheffer sequence, and we note here that the expansion

(1.6) sn(x +an)= E n

k=0 k
pn-k(an)&(x), n O, 1, 2,.

of each polynomial sn (x + a,) in terms of the sequence sn (x) is immediate from (1.5).
In the important special case of Appell sequences [1], occurring when H(t)= in

(1.1) and (1.3) and therefore when pn(x)= x in (1.3), a pair of inverse relations
obtained by Gould in [5] can be rewritten in such a fashion as to invert (1.6) and thus
expand each polynomial sn (x) in terms of the sequence sn (x + an). To be precise, if we
set a z, b y and put

(--1)nSn (X) Sn(X + an)
F(n) f(n)

n!an an
in Gould’s

(1.7) F(n)=
k=0 (--1)k(n)(a+bk)nkn-,f(k ),

(1.8)
(a + bn)

f(n)= (-1)k (a + bn)n-k

n (n k)
F(kl

a + bk
k=o a +bn’

we find that (1.8) becomes (1.6) and (1.7) becomes

(1.9) s,(x)= (n) an
k=O k -k pn-k(-ak)Sk(x + ak), rl O, 1, 2,"

Expansion (1.9) is valid, moreover, when H(t) log (1 + t), in which case

p(x) (x) n!o
n

It is readily obtained by setting a =-z, b 1-y and writing

sn(x) (--1)nSn (X + an)
F(n)=, f(n)n,an (n-an)n,a"

in the itiverse relations

(1.10)
k=0 k n

(1.11)
a+bn

f(n)= (_l)k a+bk-k a+bn-
F(k),

n a +bn-k n-k

also derived by Gould in [5]. Here (1.11) and (1.10) become (1.6) and (1.9), respec-
tively.
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The above suggests that expansion (1.9) may actually be valid for any Sheffer
sequence, and our main object is to show that this is in fact the case. Once (1.9) has been
established, we also have the following expansion, obtained by letting the z in
an yn + z and ak yk + z there tend to zero:

(1.12) sn(x)= CkSk(X+yk), n 1, 2,’’’,
k=0

where

-n!nyh,, k =0,

-pn-k(-yk), k l, 2, n,

the hn’s being the coefficients in (1.2). To see this, we need to pay special attention to the
first (k 0) coecient,

(yn+z)pn(-z),
Z

in (1.9) since it is undefined when z =0. According to (1.3), however, pn(0) =0 and
p(O) hnn! (n 1, 2,. .); and l’H6pital’s rule reveals that

p.(-z)
lim --p’n (0)= -hnn!.
z-0 Z

This gives Co, the remaining coefficients in (1.9) being well defined when z 0.
We shall derive (1.9), our main result, in two different ways. The first ( 2) is more

classical in nature and makes direct use of Lagrange’s expansion formula. The second
( 3) relies on the theory of Sheffer sequences from the more modern point of view of
linear operators and linear functionals. That point of view has been intensively
developed during the past decade and goes by the name umbral calculus.

Finally, in 4 we illustrate the use of (1.9) in obtaining a variety of expansions,
many of them evidently new, involving well-known special functions. We confine our
illustrations to Laguerre, Hermite, and Gegenbauer polynomials. An extensive listing
of other Sheffer sequences to which our main result can be applied is found, for
example, in [2].

2. Derivation I. We begin our first derivation of (1.9) by writing the series

(2.1) $= y. sn(x)
n=0 an n!

in the form

(2.2) $ E [exp (anH(t))]
sn(x) exp (-anH(t)) t___

n=o an n !"

We then appeal to Lagrange’s expansion formula [7, p. 145],

(2.3) F(t) F(O) + dt_ [F’(t)(f(t))] -.=1 t=O

where F(t) and f(t) have formal Maclaurin series expansions and f(O) O. In that
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formula we put

F(t) exp (anH(t)) and f(t) exp (yH(t)),

and also observe from (1.3), when viewed as a formal Maclaurin series with n replaced
by k, that po(X)= 1 and

p(x) - exp (xH(t))
=o

k-1

dt_ [xH’(t) exp (xH(t)) k 1 2
tO

Equation (2.3) then becomes

exp (anH(t))- Y an [t exp (-yH(t))]
p(an/)

--o an+ k!

using this to substitute for the factor in square brackets in (2.2), we have

S r n + k
o k

p(a+)s(x)
exp (-a+H(t))._ +

a+ (n+k)I’

or

(2.4) S ,o n

k=0 k
pk(an)s,-(x)

exp(-anH(t)) t".___
a, n!

Now, in view of (1.5), the factor in braces in (2.4) can be written sn(x + an); and so
(2.4) becomes

(2.5) S=
s,(x+a,) t"

=o a, n!
exp (-aH(t)).

Replacing the variable of summation n here by k and then observing from (1.3) that

exp(-aH(t))= E p(-a)
n=o nI’

we find that

(n + k) p,(-ak)s=EE
n=o k=O k a

-------s(x +a)
tn+k

(n+k)!’
or

(2.6) S n. n pn_k(--ak)sk(X + ak)
k=0 k ak --[."

Finally, if we equate coefficients of thin! on the right-hand sides of (2.1) and (2.6), we
arrive at (1.9).

3. Derivation II. We preface our second derivation of (1.9) with a summary of
relevant results from the umbral calculus. In fact, most of this section is devoted to
providing background to these recently developed methods, and our second derivation
of (1.9) is actually shorter than the first. No proofs are given here; rather we refer the
reader to [11 ]. For even more recent developments and generalizations of the umbral
calculus, see [8], [91 and [10].
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Let us start by defining three algebras. The first algebra P is the familiar algebra of
polynomials in a single variable x over the real or complex field.

The second algebra P* is the dual vector space of linear functionals on P endowed
with the following product. Let L andM be linear functionals. We denote the action of a
linear functional N on a polynomial p(x) by (Nip(x)), and define the product LM by

(LMIx") Yo= (Llx

It is easy to verify that P* is an associative and commutative algebra with identity e
defined by

(elp(x))--p(O).

We call P* the umbral algebra. A particularly important role is played by the delta
]’unctionals, namely those functionals L for which (LI 1) 0 and (L[x) O. Among these
is the generatorA defined by (Alp(x)) p’(0), where p’(x) is the derivative of p(x). If a
is a constant, the evaluation functionale is defined by (elp(x)) p(a). Note that eo e
where e is the identity defined above. Finally, we mention that a suitable topology can
be put on P*, allowing us to consider formal power series in a linear functional. It then
holds that for any sequence of constants ak(k 0, 1, 2,’’ ’) the series k=O akLk
converges if L is a delta functional. The umbral algebra becomes, moreover, the algebra
of all formal power series in the generator A, or in any delta functional (see Theorem D
below).

The third algebra S is the algebra of all linear operators on P, under composition,
which commute with the derivative operator; that is, the elements of S are all linear
operators T such that

TDp(x) DTp(x)

for all p (x) P. We call S the algebra of shift-invariant operators. Again with a suitable
topology, one may characterize S as the algebra of all formal power series in D.

Thus both P* and S are isomorphic to the algebra of formal power series in a single
variable, and so to each other. In fact, the map ’ P* S sending the generator A to the
derivative D can be extended to a continuous algebra isomorphism of P* onto S. In
other words, if L k=0 akA k, then (L) k=O akDk A delta operator is the image of
a delta functional under . In terms of formal power series, the adjective "delta" means
zero constant term and nonzero linear term. The evaluation functional ea in P*
corresponds to the shift operator

E (e.):p(x)p(x + a)

in S.
A basic tool of the umbral calculus is the interplay between P* and S that is

described in the following theorem.
THZOREM A. Let L andMbe linear [unctionals. Then

(LM[p(x)) (Zl(M)p(x))

for all p (x) P.
By a sequence of polynomials p,(x) (n 0, 1, 2, ..), we imply that deg p,(x) n.

A sequence p, (x) is of binomial type if

(3.1) p,(x +y)=
k=OX/k

pk (X )p,-k (Y ), n=0,1,2,...,
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for all x and y. A polynomial sequence s, (x) (n 0, 1, 2,...) is a Sheffer.sequence if
there is a sequence p,, (x) of binomial type such that

(3.2) s,(x+y)= (n)
k=O k Sk (x)p,-k (Y), n 0, 1, 2,. .,

for all x and y. The reader will recall that this terminology was used in 1. Charac-
terizations (3.1) and (3.2) are, in fact, equivalent to the generating function charac-
terizations (1.3) and (1.1), respectively, in that earlier section.

Now the key to the present theory is that sequences of Shetier type (which includes
binomial type) may be characterized by means of the algebras P* and $.

THEOREM B. A sequence p, (x in P is of binomial type if and only if
(i) there exists a delta functional L such that

(Lklp,(x))=n!6,.k,
or, in operator terms,

(ii) (a) p(0)-6,,,o,
(b) there exists a delta operator T( Iz(L)) such that

Tp,(x) np,_(x), n 1, 2,....

The sequence p, (x) is called the associated sequence for L (or T).
THEOREM C. A sequence s, (x in P is a Sheffer sequence if and only if
(i) them is an invertible linearfunctionalN (i.e., (Nil) 0) and a delta functional L

such that

(NLls,(x)) n! 8,.k,

or
(ii) them exists an invertible shift-invariant operator T and a sequence p,(x) of

binomial type such that

or

s.(x) Tp.(x),

(iii) there exists a delta operator T such that

Ts,(x) ns,_(x), n 1, 2,....

The most useful result for our purposes is, however, the Expansion Theorem:
THEOREM D. LetL be a delta functional with associated sequence p, (x ). Then ifM

is any linear functional, we have

M . (MIpk (x)) Lg.
k=O k!

In terms of shift-invariant operators, if T I (L) and I (M), we obtain

S Y. (M]pk (x))
Tk.

k=O k!

We require one more result to complete our discussion. If T is a delta operator with
associated sequence p. (x), then, for any constant a, E’T is also a delta operator. Its
associated sequence is given by

(3.3) q,(x) xE-"x-ap,(x) x
p,(x -an).

x an
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We turn now to the derivation of expansion (1.9) using the umbral calculus.
Actually, it is nothing more than a corollary of the Expansion Theorem. Let sn (x) be a
Sheffer sequence and let T be the delta operator in part (iii) of Theorem C. Suppose that
pn (x) is the associated sequence for T. Then, according to (3.3), the delta operator E-YT
has the associated sequence

x
qn(X) pn(x+yn).

x+yn

If we write an yn + z, the Expansion Theorem gives

E-’" E (e-a.lqa(X))(E-YT)k,
k=0 k!

which may be written as

I= E qa(-a’)E’’-"Ta.
k=O k!

Applying this to the polynomial sn (x), and noticing that

and

--an anqk(--a,,) p,,(--a, + yk)= pk(--a,-k),
--an + yk an-a

E’"-kTksn (x)
k (n)a. (x)=

k
-s,_ k !s_ (x + a,_),

we obtain

pa(-an-a)sn-a(x + an-a), n O, 1, 2,....
k =o an-a

Replacing k by n- k here finally gives (1.9).

4. Applications to special functions. The sequence of Laguerre polynomials

i n-l(a+n)(_x)k, 0,1 2(4.1) L(,)(x) n
k=O n-k

generated by

(4.2) r.(x)(1 t)-a-" exp
-xt Y,

n=O n!

is a familiar Sheffer sequence. We follow Rota et al. [11], [12] here and in what follows
immediately below, where we let Ln(x) denote the basic Laguerre polynomials (a
-1). It should be emphasized that other authors often do not include the n! on the
right-hand sides of (4.1) and (4.2) and use Ln(x) for thecase a 0.

It follows from (1.9) that

(4.3) r<">(X)=k (n) yn+ z Ln_k(__yk__z)L(kO,)(x + yk + z),
=o k yk+z

n=l,2,...

and (1.12)-(1.13), with hn =-1, tells us that the limiting case of (4.3) as z 0 is

(4.4) L(’)(x) Y, caL(k’)(x + yk), n 1, 2,...
k=O
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where
n! k =0,ny,

(4.5) c, l(n)L,_k(-yk), k 1, 2,
k

As pointed out in [4], Ld’)(x) is also a Sheffer sequence in the parameter a. For
(4.2) can be put into the form

]_L.S)(l-t)-1 exp
-xt

exp (-ce log (l-t))= E L)(x)-.n=0

Here s,(a)= L)(x), and

Z p,(a).-= (1- t) Z (-1)"
n=0 n=0

Evidently, then,

and (1.9), with a. =/3n + y, yields

(4.6) L)(x)
k=O

n=l,2,...

Note that h. 1/n, and, according to (1.12)-(1.13), the special case of (4.6) as 3’0 is

(4.7) L’)(x) CkL(k’+t3k)(x), n 1, 2,’’’,
k=O

where

(4.8) f-n’’ (kk)
k=0’

_kn! n
k=l 2

Ck=
(--11" . n--

Expansion (4.6) was obtained earlier in [3], where the limiting case as 3’ 0 was not
noted and where the full generality of Sheffer sequences does not appear. That earlier
paper treated only the special case when H(t) -log (1 t). As pointed out in [3], (4.6)
includes the interesting special case

(4.9) ( )x" Y (-1)kn! a +fin +n a +/3k +n k+Ok)
k=0 k--. a +/3k + n n k

L (x),

obtained by putting a -n, then replacing 3" by a + n, and finally observing from (4.1)
that L-"(x)= (-x)".

The Hermite polynomials H, (x) form a Sheffer sequence generated by

(4.10) exp (2xt 2) Y. H, (x)--

and (1.9) is therefore applicable. For brevity, we note here only the following special
case, obtained from (1.12)-(1.13) when h, 0 (n 2, 3,. .) and p,(x) (2x)":

(4.11) H.(x)= (n) n

k= k -(-2yk)"-kHk(x + yk)’ n =2, 3,...
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Finally, except for a factor of n !, the sequence of Gegenbauer polynomials C (x) is
of binomial type in the parameter h since it is generated by

(1 2xt + t2)-a C (x)t",
n=0

or

Here

exp [-A log (1 2xt + t2)] Y C (x)t.
n=0

s, (A) p, (A) n C (x),

and if we write a, =/xn + ,, (1.9) becomes

(4.12) 1----C,+’+" (x)C-"_ (x)=
k=0/zk + u

Noticing, moreover, that [6, p. 259]

Ca(x),n n=0,1,2,...

H(t) -log(1 2xt+t2) Z 2T,(x)
n=l n

where T, (x) are the Chebyshev polynomials of the first kind, we find from (1.12)-(1.13)
that

n C,+,k(4.13) - (x)C-,-(x)=Ca(x)+2zT,(x), n 1, 2,.. .
k--1

Of particular interest because of their symmetry are the identities

k 1
C’k+" (x)C-"- (x) O, n 1, 2,.(4.14)

/xk + ,
and

nc(4.15) - (x)C-"__(x)= 2/xT,(x), n 1, 2,.. ,
k=l

obtained by putting )t 0 in (4.12) and (4.13), respectively.

Acknowledgment. The authors wish to thank Professor Richard A. Askey for
bringing them together. Without his initiative, two one-dimensional papers would have
been written rather than one two-dimensional paper.

Note added in proof. It has been brought to the authors’ attention that the
expansion (1.9) is obtained independently and in a somewhat different form by H.
Niederhausen in an M.I.T. Technical Report of February 1979 entitled Sheffer poly-
nomials for computing exact Kolmogorov-$mirnov and Renyi type distributions, which is
to appear in Ann. Statist.
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SUMMATION FORMULAS FOR BASIC HYPERGEOMETRIC SERIES*

GEORGE GASPER

Abstract. Summation formulas for basic hypergeometric series are derived which are q-analogues of
Minton’s [J. Math. Phys., 11 1970), pp. 1375-1376 and Karlsson’s [J. Math. Phys., 12 1971 ), pp. 270-271
summation formulas for generalized hypergeometric series, and some interesting limit cases are considered.

1. Introduction. In [6] Minton showed that if a is a negative integer and
rn, , rn. are nonnegative integers such that -a -> rn +. + rap, then

(a, b, bl + m, bp + mp. 1)p+2Fp+l
b + 1, bl, bp

(1)
r(b + )r(1 a) (b- b).,, (bp b).,o

F(1 + b a) (bl)m, (bp)mo

where (a),, a(a + 1)... (a + n- 1), (a)o 1, and, as usual, it is assumed that no
denominator parameter in the generalized hypergeometric series is a negative integer
or zero. Karlsson [5] showed that (1) also holds when a is not a negative integer
provided that the series converges, i.e. if Re (-a) > rnl +. + rn, 1, and he deduced
from (1) that

(2) p+Fo(a, bl + ml, b, + mt,. 1)=0, Re (-a) > rn + + mp,
b,. b,

p+xVp((ml at-.. .+rap), hi -I-rex,’", bp .-[-mp. 1 (--X)ml+’"+r%(m +’" "-I-rap)!(3)
bl, b, / (bl),,1. (bp),"

It turned out that the aF2 cases of (1) and (2) were precisely the formulas that the
author needed in [3] to prove that the functions C(’ (e) defined by the generating
function

(1 re-i) (1 te io)-B E C(") (ei)tn

satisfy the orthogonality relation

C("t) (ei)c("’) (ei)(1-e-2i)"(1-e2i) dO =0, #n m,

when a, B, a +/ >-1, and to evaluate this integral for n rn. My interest in these
functions arose from Greiner’s observation [4] that they yield spherical harmonics on
the Heisenberg group, and the fact that C("’") (e i) C (cos 0), where C (x) is the
ultraspherical polynomial of degree n and order a. Since analogues of (1) and (2) for 3b2
basic hypergeometric series were also needed in [3] to prove the orthogonality of
q-analogues of the functions C(2’) (e i) which include the continuous q-ultraspherical
polynomials [2] as special cases, the author was led to consider the q-analogues of (1),
(2), (3) and the limit cases contained in this paper.

* Received by the editors March 31, 1980. This work was supported in part by the National Science
Foundation under grant MCS 76-06635 A01.

" Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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2. Summation formulas. For [zl < 1 the p+lbp basic hypergeometric series is
defined by

(al," ",ae+;q,z) !al’q)"
2- 7--:-..p+ )p

b, ",be- (q; q),,w; ,.t,,, Wp.,.t),, zn’

where (a; q) (1 a)(1- aq). (1- aqn-), (a; q)o 1 and, as elsewhere, it is
assumed that [q] < 1 and no denominator parameter is 1 or a negative integer power of
q. The derivation of our summation formulas depends on the expansion formula

,be[\
a, at,, b,q

p+ bl, ,be
(4)

;q, z)= ..(q-’;q),,(al;!,,’’’(ap;,, ,,q,,(1-,,/2

alq n, apq m-n)pbe_l\blq,, be_lq,
q, zq Iz] < 1;

this is easily proved by using [7, (3.3.2.7)],

(a,q-" ) (b/a;q),
(5) 21 b

;q’ q
(b;q), an’

with a q-", b be, in the left side of (4) and changing the order of summation.
Formula (4) is a q-analogue of an expansion formula employed by Minton [6, (4)].

When p 2, formulas (4), (5) and the q-analogue of Gauss’ formula [7, (3.3.2.5)]
give

3&2(a, b, bq -q-m) (q; q),(bq/a; q). (b, q )bq, b
;q,a

(bq;q),,o(q;a)
2qbl

b
;q’q

(6)
(q;q)(bq/a;q)o(b/b;q)m

bm
(bq; q)(q/a; q)oo(b; q)m

provided ]a-ql-m < 1, where (a; q)o 1-1,=o (1 aq"). By iriduction it follows from
(4) and (6) that if m,. , me are nonnegative integers and la-lq-m mo[< 1, then

a, b, bq ," , beq -q-(m+...+p+2p+l
bq, b 1," be

q’ a

(7)
_(q; q)(bq/a; q)(bl/b; q),,l"’" (be/b; q)"e bm+’"+mp

(bq; q)(q/a; q)oo(bl; q)a (be; q)mp

which is the desired q-analogue of (1). Formula (1) can be obtained from (7) by
replacing a, b, bl, , be by q’, qb, qb,..., qb,, and letting q - 1.

Setting be b, me 1 and then replacing p by p + 1 in (7) gives

a, blqm, beq %’
(8) e+le bl,"’, be

q, a-q-(m+’’’+’%)) O,

while letting b-+ 0o in the case a q-(m+...+m,) of (7) gives

[a-lq -(m+’’’+m’) < 1,

(9)

blqm beqm, )e+be b,’ ", bp
q’ 1

(--1)"+’"+mo(q q)m+...+me q
(bl; q)m (be; q)m,

--(ml+,..+mo)(ml+...+m,+ )/2

which are q-analogues of (2) and (3). Another q-analogue of (3) can be found by letting
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b 0 in (7), to find that

( a’bq’’’ beq’ )--1 1--(ml+...+m,)p+ltp
b1," ’, be

q’ a q

(10)
(-1)’l+’"+’"(q; q)oob’ b’ m(m.-1)/2+...+mo(mp-1)/2
(q/a;q)oo(b; q),,,... (be; q),,,

q

when [a-aql-(ma+’"+mP)[ < 1.
We can also let a o in (7), (8) and (10) to obtain the summation formulas

y,. (-1)"(b; q),,(bxqma; .q.!n_ (beqm"; q),, n(n+l)/2-n(m,+...+mp)
,,=o (q; q),,(-/;; q),,(Oa; q),, ;(-p; q),.,

q

(11)
_(q; q)oo(bx/b; q),,x (be/b; q)me bm+...+,,,o

(bq; q)oo(bx; q), (be; q),,,o

(12) y,. (-1) (bxqml; q),, (bpqm,; q),, ,,,,-X)/2-,,,,,x+...+m,,) 0
,,=0 (q; q),,(bl; q), (be; q),

q

(-1)n(bxqm; q),, (beq’%; q),,q,(,+x)/2-,(,+...+,%)
,,=o (q; q),, (b; q), (be; q),,

(13)
ttlp(-1)’+ +"o(q; q)b’ be ,,1(,-x/2+...+ )/2

(bl; q),,,1’’’ (be; q),
q (’%-

In addition, if a q" and n is a nonnegative integer, then (7), (8) and (10) can be
inverted to give

(14)
b, blq’, beq’% qlP+2tp+I
bq, ba, ", be

q’

b"(q; q),,(bl/b; q),n (bffb; q),p
(bq; q),(bl; q), (be; q),,

(15)

nml+. "+me,

_,.,, ,, bpq,,; )q bxq ,...,
e+xbe bl, be

q’ q 0, n > m + -]" me,

which are used in [3], and the following generalization of (9)"

(16) e+xP(q-’’ blq’’’
’, be

q’ 1) (-1)" (q q),,q-,(,,+)/2
(b; q),.. (be; q)p’

n -->ml+" "+me,

which also follows by letting b in (14).
It would be of interest to see what partition theorems and other applications follow

from these formulas. For applications of basic hypergeometric functions to partitions
and number theory, see Andrews [1] and his references.

Addendum. Shortly after preprints of the above were circulated, the author
received a letter from I. M. Gessel showing how Minton’s formula (1) can be derived
from the Lagrange interpolation formula, a letter from M. E.-H. Ismail generalizing the
expansion formula (4) and pointing out that the hypergeometric limit case of (4) had
been obtained by C. Fox in [Proc. Lond. Math. $oc. (2), 26 (1927), pp. 201-210], and a
letter from L. Car|itz pointing out how finite differences can be used to prove (1) (this
has also been observed for the terminating case by R. Askey several years ago) and, in
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addition, to evaluate the series

(17) (a, b, bl + ml, b + rnp. 1),/Fo/I
b+m+l,b, b,

for rn 0, 1,..., as a sum of rn terms. Less than two weeks after Carlitz’s letter arrived,
Mizan Rahman wrote to the author asking if there existed a transformation formula for
the 4F3 case of (17), since he needed one in his research on 9-/symbols. Here we shall
show how simply (1) can be used to derive a transformation formula for the series (17)
with m replaced by a complex parameter c, which gives Carlitz’s sum when c m
0, 1,. ., and then give two q-analogues.

From the case p 0 of (1), which is a special case of Gauss’ formula, we have

and hence

(b)j F(b +c + 1) (-c,b+j.)(b + c + 1)j (b + ])F(b)F(c + 1) F b +] + 1’
1

(a,b, bl+ml,’" b+mt, )r(b)(c + 1)
p+:Fo+l 1

F(b +c + 1) b+c+l,b,

(a)i(bl+ml)i"" (bp+rnp) (-C)k(b
k-ok!(b+]+l)k

( )., (--C)k
,+Fp a,b+k,b+ml,...,bp+mp. 1

k=O ki,) +1
b + k + 1, hi,’ ", bp

F(b+k + 1)F(1-a) (b-b-k),,...(b,-b-k),,,.
F(b + k + 1 a) (bl)m (bp)m,

by (1), provided that the sums involved converge absolutely. From (a-k)n
(a),(1--a)k/(1--a--n)k and analytic continuation, it follows that if Re(c-a)>
m +. / rn,- 1, then

(18)

b + c + l, bl, bt,

F(b +c + 1)F(1- a) (b- b)m (b,- b)me
F(b + 1 -a)F(c + 1) (bl),,,... (bp),,,

-c,b, l+b-bl,..., l+b-bpXp+2Fp+I
b+l-a, l+b-bl-m,. ., l+b-b,-m,

which is the desired formula. Here, as elsewhere, it is assumed that m,..., mp are
nonnegative integers. Analogously, it follows from (7) that if Icql<l and
[a-1ql-("nl+’"+%’) < 1, then

(a, b, blq’, b,q ’’’ -x 1-(,+...+,%))p+2p+l
bcq, bl, bp

q’ a q

(19) _(bq/a; q)(cq; q) (bl/b; q) (bt,/b; q)"e b,,+’"+,%
(bcq; q)(q/a; q) (bl; q),’’’ (b; q),o

( c-l, b, bq/bl, bq/bp )X p+2p+l
bq/a, bql-’I/bl, ., bq-’,/bp q’ cq
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while if la-q+-(’+’"+’>[ < 1 and m O, 1,..., it follows from (7) and the p 0
case of (14) that

(a’b’bxq’l bpq’ )-lqm+l-(ml+..,+mt)P+Et)P+I
bq 1+’, bl, bo

q’ a

(20) _(q;q)oo(bq/a;q)oo (bq;q),,,(bl/b;q),," (b/b;q),,pb,l+...+,p_m
(bq; q)oo(q/a; q)oo (q; q),,,(bl; q),,,l (bp; q)p

( q-’,b, bq/bl,. ,bq/bp )X p+Et)p+l
bq/a, bq-’’./bl, , bq-’/bp q’ q

Of course, inversions (when the series terminate), limit cases, and (more compli-
cated) generalizations of these formulas can be derived.
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THE RESOLVENT PROBLEM FOR THE STOKES
EQUATIONS ON HALFSPACE IN Lp*

MARJORIE McCRACKENS"

Abstract. The resolvent problem for the Stokes equations on halfspace in R is considered. Letting
H {(xl, x2, x3) Ra]x3 < 0} and given L,(H), we find u, Vp such that

,u(x)-Au(x)+Vp(x)=f(x), xH,
V. u(c) 0,J

ulo/= 0.

We show that if A ; 0 and if , > 0 and < p < oo, the solution is unique and u W2’ satisfies

where c depends on p and arg , only.
This enables us to prove that the nonstationary Stokes equations generate a bounded analytic semigroup

on L,(H), < p < o. That is, given Uo L,(H), the problem

0u-(x, t)- t,Axu(x, t) + Vxp(x, t) O,
x H,

V. u(x, t)= 0,

ulH =0,

u(x, 0) Uo(X)

has a unique solution u satisfying the conditions that Ilu[It.p(rt) -<- MlluollLp(n), that u is an analytic function of t,
and other properties of analytic semigroups.

Introduction. In this paper we consider the resolvent problem for the Stokes
equations on halfspace in R 3. Let H {(xl, x2, x3) R31x3 < 0}. Given f Lp(H), find u,
Vp such that

A u(x)- uAu(x) + Vp(x) f(c), ] x s H,
(0.1) V. u(x)=O,

We shall show that if A 0 and if > 0 and 1 < 0 <, then the problem has a unique
W2’ solution satisfying

where c depends on p and arg X only.
This will enable us to prove that the nonstationary Stokes equations generate a

bounded analytic semigroup on Jp(H), the range of the Hodge projection in Lp(H),
1 < p <. That is, given Uo Jo (H), the problem

(x, t)- axU(X, t) + Vp(x, t) 0,
at xH,

V. u(x, t) 0,
(0.2)

ul0=0,

u(x, 0) uo(x),
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has a unique solution u satisfying the estimate IlullL,(m Mlluol,lL.<m and such that u is an
analytic function of and has the other properties of analytic semigroups.

The equations (0.2) have been studied in more general domains by V. A. Solonnikov
[1], [2] who considered the problem in Le(H x [0, T]) and, more recently, by P. E.
Sobolevsky [1], who used Solonnikov’s results to show that (0.2) generate an analytic,
but not necessarily bounded, semigroup on Le(D,), if f is a bounded domain. The
resolvent problem (0.1) for h 0 has been studied by Ladyzhenskaya [1].

A few comments on this problem are in order. The result of this paper is certainly
not surprising. It is predictable that the Stokes equations should behave like the heat
equation; indeed, on a manifold without boundary, the Stokes problem and the heat
problem are equivalent. What is surprising is that the result is so difficult to obtain and
cannot easily be extended to more general domains except in the L2 case.

The reasons for this are discussed in the concluding section. The fact that the
Stokes equations in Le are so difficult to analyze may have some effect on future work
on the incompressible Navier-Stokes equations, which have traditionally been consi-
dered to be composed of the "good" heat part plus the "difficult" convection part. The
work in this paper together with that of Ebin and Marsden [1], which shows the Euler
equations in a very elegant and tractable form, suggest that the traditional view may be
an oversimplification.

1. Statement o| the problem. The resolvent problem for the Stokes equations in
the halfspace H {(x, x., x3)}R31x 3 < O} is to find u and p satisfying the equations

Au- vAu+Vp =f,
(1.1)

V. u=O inH,

and such that

ul. =0,

where f, A, and u are given. Here we take

02u Vu Ou
au(x oXl + ox + ox

Ouz+Ou3tg l,,t ..V" H(X)
0X1 OX2 0X3’

Vp(x)
Oxl’ tgx2’

The nonstationary, or evolutionary, problem is to find u and p satisfying the
equations

0u
uAu +Vxp =0,

(1.2) Ot

Vx .=0 inH

for positive t, and such that the conditions ulou 0 and 1,=o Uo are also met. In this
case, Uo and v are given. The subscript x refers to differentiation with respect to space
variables only.

We shall solve (1.1) explicitly and use the solution to solve (1.2). in order to do this,
we shall put the equations in the form

(1.3) A u- vPAu f,

(1.4) d___u vPAu,
dt
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u[t=o Uo, respectively. Note that we have assumed that flzf= f. This can be done
because the gradient part of can be absorbed into the pressure.

The operator P above is the Hodge projection and pA is a densely defined operator
on the range of .

We first make some definitions and state a lemma.
DEFINITION 1.5. If (1, j2,/’3) is a 3-tuple of negative integers, then DJr(x)

In the remaining definitions the subscript 0 denotes compact support.
DEFINITION 1.6. W’(H) is the closure of C (),

jl+J2+J3<s

DEFINITION 1.7. I’s’"(H) is the closure of {fs C (/-)[f(xl, x2, 0) 0}.
DEFINITION 1.8. Jp(H) is the closure of {f s C (H)IV. f 0} in the Lp-norm.
LEMMA 1.9 (Hodge theorem in halfspace). Jp(H) is complemented in Lp(H),

1 <p<c. In fact, Lp(H)=Jp(H)@Gp(H), where Gp(H) is the closure in Lp(H) of
{Vplp C(H) and Vp Lo(H)}. We will call the Hodge projection from Lo(H) --> J(H)
corresponding to this decomposition . In LE(H), the decomposition is orthogonal, so

Although this result is not new, for convenience a proof of it is given in the
appendix.

With the above definitions, we can put the Stokes equations in the form (1.3) and
(1.4) by defining the operator uPA on J(H) to have the domain lgz2’p (H)f3 Jp(H).

We will compute the resolvent of the operator A and prove that, if 1 < p <, it
satisfies the estimate

Mp,
for all h ; 0 with [arg [< d’ < zr.(1.10) I1(; uPA)-I[I,(,)-(,) --< I; 1

Furthermore, in the case p 2, the constant M is 1 if A > 0. Hence, the operator
generates a bounded, analytic semigroup on Lp(H), 1 <p <, and a semigroup of
contractions on LE(H) (see Friedman [1]).

2. Reduction of the problem by scaling. To prove that A- ,[A is boundedly
invertible is equivalent to proving that, for all f s J,(H), the equations

(2.1)

Au- uAu+Vp =f,

V. u=0 inH,

II(Xl, X2, 0) 0

can be uniquely solved for u ff,2,p (H) fq Lp(H) and that Ilull .(  -< cIIfll .(.), where C
may depend on A, u. To see this, take the Hodge projection of (2.1).

However, because halfspace can be scaled, to prove (1.10) it is only necessary to
prove (2.1) for u 1 and for all h e i, where 101 < . Estimate (1.8) then follows for
all u >0 and h0. Furthermore, the dependence of the Lo-norms of u and its
derivatives on h and u can easily be found. First note that because (h , PA)-1 depends
analytically on A, if (ei-pA)- exists for all 0 with 1ol< , then, given 0 with
101<0o< , we will have II(ei-A)-ll<=co(oo). Letting Ks be the dilation by a,



204 MARJORIE McCRACKEN

that is, (K,f)(x)= f(ax), we get

LEMMA 2.2. I (e i- p)-i exists, then (re i- vPA)-1 exists ]:or all r, v > 0 and

(2.3) (re i
1

ppA)-1 =-Kr47(e i PA)-IK4W;
r

Proof. Let u (e i PA)-f. Then there is a Vp such that e i u(x_)_- Au(x) + Vp(x)
f(x), for all xH. Let a(x)=(1/r)u(x/x) and (x)=x/-p(x/r/vx). Then re’a
vA+V/=K,/;)-f. This shows that rei-uPA is 1-1 and onto and that =
(1/r)K4v;(ei-pA)-lf=(rei-uA)-lK4;7f. So it follows that (rei-uPA)-=
(1/r)Kr,/77V(e i A)-K4-;7-;.

Because of the closed graph theorem, (h APA)-x will, if it exists, be continuous as
a map from Yp(H)--> I2’"(H)YlJp(H), where the latter is considered as a closed
subspace of I2’p(H). This together with (2.3) yields

LEMMA 2.4. Let [arg h]< 00 < r and assume the hypothesis of Lemma 2.2 to be
true. Then

(h vPA)-f <__ Mp,oo
’XiOX] Lp(H)

The proof is a trivial calculation using (2.3).

3. The free space problem. We shall find the solution u, Vp to (2.1) in the form
u =v+w, Vp =Vq +V, where v, Vq are the solutions to the free space problem (3.1)
and w, V$ are the solutions to an appropriate boundary value problem. The free space
problem, which we consider below, is

(3.1) hv-Av+Vq f, V. v=0.

We assume f s L,(R3), 1 < p < o, h :0 and Ihl: 1. In order to fix our conventions
about constants we will define the Fourier transform ](a) (1/(2r)3/2) R f(X) e-i’Xdy
and the convolution (f g)(x) R f(x y)g(y) dy. We seek the solution to (3.1) in the
form

(3.2)

3

/’=1

Oq
(x)= ( Opk (x).

Thus, the fundamental solution uk, pk will have to satisfy

(3.3) h IIk AUk 4- Vp k tek, V I1
k 0,

where 6 is the Dirac 6 function, ek is a unit vector in the k direction, and I1k’-

(u , u 2k, u 3k). When we have found the fundamental solution to this, we will show that

v s Jv (R 3) f’l W2,p (R 3), Vq . Gp(R3),

and finally that v, Vq satisfy (3.1).
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To find the fundamental solution, we take the Fourier transform of (3.3), obtaining

()/1,1 .,k 1au. t(a)+ taip (a) 6(2rr)/2,
(3.4)

3

2 A() 0,
/=1

where 6 is the Kronecker 6.
Multiplying the first equation by i and then summing over ] yields fi()=

-i/((2)/ll). Substituting this in the first equation, we find that

1
f()=(2,, 8-

(3.5)
-i

2.() (2)/[
From this we see that p(x)=(1/4)(x/lx[). To calculate u(x), note first that the
inverse transform of 1/((2)/( + [a[2))is (1/4]xl)e -4xll, as long as N 0.

If we let
1 )d()=(2 I +

we see that

1 f,. 1 1 -ly

(4rr)2 - Ix Yl lyl
e Idy

1 I?Is 1 1 -"/gr :’
e r ds dr,(16): Ix rsl r

where $2 is the unit 2-sphere and s is a parametrization of it. Since this problem is
rotation invariant, it is sufficient to consider the case where x (0, 0, ]x 1). Then we have

ds

Therefore,

Io’I sindOd
x/r + Ix[2- 2rlxl cos b

2+ Ix 2rlxlu

4 Ixlr.

G x -;-- 77 re + e
xl
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Now

so we have derived

u(x)=4rlxle +(x),

--X]Xk -x/xl 32 (x/-lxle-4"AI.xl e-,/’lxl }u(x) zrAixl3 Ae +-- + 1)

k6] { Ae_,/Xlxl +12 (/-lxle_,/Xlx -,/Xlxl }(3.6) +4=lxl 1- +e -1)

Xk

]’--’----gpk (x)
4rlx

We now turn to a discussion of the ditierentiability properties of v, Vq. We will use
an Zp multiplier theorem from Stein [1].

THEOREM 3.7. (Multiplier theorem). Suppose rh(a) is of class Ck in R"-{0},
where k > n/2. Assume that for all ] (j’, /2, /3) with /1-1-/2 q-/3 k, we have
Dirfi (a)l" la h++i <- B, for all a e k. Then the operator T, (f) m f is a bounded
operator on Lp(R"), 1 < p < oo, and IIrll depends only on B, p.

LEMMA 3.8. rfi(a) k/(2=)3/21 12 satisfies the hypotheses of Theorem 3.7 with
k=2.

Proof. This is a simple calculation, for [U(2=P/II21 _-< 1/(2=)3/, Also,

so that we have

I,1o--\(2)/=11 77.) 3/2.

Similarly,

190ls (90l t2"1"r)3/211 )
1 { 8aSakala(2=lz I16 lal4

k(, +,)}
SO,

20
(2)a/2"

LEMMA 3.9.

satisfies the conditions of Theorem 3.7 with k 2 as long as a O.



RESOLVENT PROBLEM FOR THE STOKES EQUATIONS 207

Proof. This is a routine calculation and we shall write out one case only, the case of
,()- 1/( / I1), Let A =e i, and note that I,(ooo)1-, 0, Thus, to show that it is
bounded, it is enough to show that the denominator cannot equal zero. But

1 1

I)/(cos O + la + sinE

if A e i. The denominator cannot be zero unless 0 r (mod 2r), which is the
excluded case. Now, we also have

0( 1 ) -2a
0 +I ( + I Ib’

SO

which is bounded by the above reasoning. Finally,

so that

OOlsO0l a’/’lc"l= ( / I I=)

which is also bounded.
We now easily see that Vk(X)e W2"p(R 3) and Oq/OXk Zp(R3). In fact,
THEOREM 3.10. If Vk(X) =1 (U *f.)(X) and hk(x)= 3E=l (OP k/oxl * f)(X),

where teLp(R3), l<p<oo, then vWE’P(R3)(IJp(R3) and h=VqGp(R3).
Furthermore, v, q satisfy (3.1)and Ilvll w=.o(R 3) _--< ftlli[Iz.pn3 and IIVqIILp(Ra)<= CpII[IILo(Ra).

Proof. The previous lemmas show that u,, iceu,, -a,aa and iafi k are all
Lp-multipliers. Thus v e W2’p(R 3) and h e tp(R 3) with estimates given above. Since
(3.4) hold, we also have v, VvJp(R 3) and (3.1) hold (that is, (3.1) hold with h in place
of ag/ax). Thus, to complete the proof, we need only show that h Vq e Gp(R3). Let

g(x) h(h, c2, c3) dtl + h2(Xl, t2, c3) dt2 + h3(Xl, x2, t3) dt3,

where 172, C3 are chosen so that the first two integrals exist a.e. The function q is easily
seen to be locally Lp, for we have that

h3(x, x2, t3) at3 <-Ix3 Ih3(Xl, x2, t3)lp dt3,

where (1/p)+(1/q)= 1, so that

(h3(x xE, t3) dt3 dx dxa dx3 <llhll" Ix-c dxp
"a3 "a2

<-- collhllg.
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We have chosen c2, C3 SO that the sections hi(x1, t2, C3) and h2(tl, c2, 173) are both in Lp;

fabafbEfbl fcXE lh2(x1, t2, 173)’ dt21
p

a2 "al

--< Ix- Ih2(x, t2, c3)1p dt2 dXl dx dx3
"a3 "a2 "al

"a3 "a2

q-oo q-oo

A similar estimate shows thatx hi(t1, c2, 173) dr1 is locally Lp, too. Now consider Vq; we
have (Oq/OXa)(X)-" h3(x). Note that Oh2/Ox3 =Oh3/tgx2 in the distributional sense, so
(Oq/OxE)(X) hE(X). Similarly, (Oq/Oxl)(x)= h(x).

It should be remarked here that the techniques employed in this section yield a
stronger result than Theorem 3.10. Suppose f Ws’p(R3). Employing integration by
parts and the previous results, we easily see that the following theorem holds.

THEOREM 3.11. If V, Vq and f are as in Theorem 3.10 and if f Ws’p(R3), then
v wS+E’P(R 3) and Vq Ws’o(R 3) and we have the estimates

Ilvl[ <-

Proof. Notice thatDlvk =Dt(u f,)== u D% and similarly for DlVq.
Then apply Theorem 3.10 using Dlv, VDlq, and Dlf in place of v, Vq, and f,
respectively.

The Green’s formulas on halfspace. Let u, v be smooth, divergence-free vector
fields and p, q be smooth functions. We compute the Green’s formulas for the Stokes
equations by letting

(4.1)

It follows that

(4.2)

(4.3)

as long as

O(Tq (ll, p)vi)
Oxj

Using the divergence theorem, we find that

8q (y)) Ui(y)-Vi(Y)(AUi(y)--Aui(y)--iYi(YIH (AVi(y)- Avi(Y)-b’- y

Iy [T3 (U, p)vi(y)-- Ti3(v, q)ui(y)] dyl dy2,
3=0

IS,(0) [TIi (u, p)vi(y)Ni(y)- Tii(v, q)ui(y)Ni(y)] dy --> O,
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where St(O) is the intersection of a smooth surface in {x R3[lx[ > r} with H, and N is
the exterior unit normal to S,.(O).

Therefore, assuming that integration by parts is valid, and letting uk, pk be the
Green’s functions and v, q, f satisfy h v-Av+ Vq f in H, we have

(4.4)

u(x y)fi(y) dy + I T3(v, q)ui (x- y) dy
:3=0

Iy3=o TI3 (llk, pk)(x y)vi(y) dy

{v(x), xeH,
0 xC:H,

where all differentiation is done with respect to y. We now develop a corresponding
formula for q. Since

Ar,((x-y))= A 8}p(x-y)+-y (X-y)+-yi (X-y

)=8.Axp(x-y) .Axu(x-y)+-xAxu(x-y)
for x # y,

we see that

axUi(x_y)=ou_(x_y)_ op
OX---f OXj OXj OXi

(X y) if x # y.

Thus,

AxTj(llk(x- y))= -(2 32pk OU y))ox, (x ifx # y.

Hence, we have

(u k (x )) + (x y)) -2-A Tij y AxTij(u k (x-y)-p(x-y) ifx #y.

This, together with (4.4) and the fact that A v- Av + Vq L yields

(4.5)
q(x)-- pi(x y)fi(y) dy + Iy pi(x y)Ti3(v, q) dy

3=0

fy / ly Va(y)
dy+C.+ 2 Opi(x y)vi(y) dy --- Ix---3=0 3X3 3=0 y

This leads us to define the potentials of a double layer.
DEFINITION 4.6. By the potentials of a double layer with density , we shall mean

the integrals

(X, ) --[ T3 (uk (x y))qbi(y) dy,Wk
3=0

(x, ,)= 2
3=0

,gx3’gP-(x Y)6i(Y) dy ---- y3=0 Ix y[
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For densities for which we can justify differentiation under the integral sign, we
will have

(4.7) w-Aw+V =0, V. w=O

in both the upper and lower halfspaces. Before discussing the behavior of w, we
calculate TI3 (!1k (x-y)), and find that

T ki;(u Ix y I)

-(xi yj)(Xk yk)(Xi- yi) -,/’;Ix- I+ 6e
27fix yl 4Xlx yle -4Zlx-yl

(4.8)

as(4XIx y [e-’/xlx-Yl + e -r 1)}Ix- l2

6i (Xi- YJ)+ 613 4XIxk (Xi yi) -J" Ix-yl

4rlx-y

-l-yl

1)}6(41x y le-lx-l + e
+ 3e-421x-yl + Ix y 12

-,/xlx-yl

1)}6(4XIx y le-’/xl-Yl + e6(Xk YI 1 + 2e-4Xlx-yl ++ 47rlx-y Xlx-y

The first term has a singularity of the order of Ix y [z as x y; the other two terms are
bounded as x y. As y o for fixed x, the terms have orders ly1-4, ly1-4, and ly[-z,
respectively. Hence, we get the following theorem.

TI-IZORZM 4.9. Let +L,(R3). Then the integral defining wk(x, d) converges
absolutely and locally uniformly in each of the three regions H/={x R3lx3>0},
OH ={x R3lx3 =0}, and H. Hence, wk(x, d is continuous in each of these regions.

Proof. For fixed x H+ or H+ or H, the integrand is L1, because T3 Lq, where
(1/p)+(1/q)= 1. On the other hand, if x3=0, then the first term of T3 =0; hence
TI3 Ix3=0 is again in Lq. Therefore, the integral defining wk (x, tb) converges absolutely in
each of the three regions. To show that the integral converges locally uniformly in x inH
and H/, consider x in any bounded subset of H or H/. Clearly, the integral of

ITS3 (llk (x y))bi(y)[ over the exterior of a large ball goes to zero uniformly for x in the
bounded set. On the interior of the ball T3 (11k (x y)) is continuous if x H or H/. By
almost the same reasoning wk (x, tb) is continuous on OH. The only difference is that the
integrand is not continuous at x y. It is, however, bounded, so if xl, xz l-l, a bounded
set, then

n ITS3 (11k (Xl- T3 (uk (xz Y))I"Y)) dy

----<(f\da ’TI3 (llk(xl y))’-- TI3 (Ilk(x2 y))’q dy)
TI3 (llk (z)) is continuous as a function of z, if z 0. Hence, given A, e > 0 there exists, > 0 such that if e < Izl <A and Izl- z2l < 6, then IT’g3 (uk (zl))- T’i3 (uk (z2))l" < e. Let
A be the diameter of I) and let e be small enough so that the ball B2 (xl) of radius 2e
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about xl is in . Let Ix2- xl] < min {e, 5}. Then,

I ITS3 (Uk(Xl- y))-- T3 (uk (x2- y))[" dy

f [r’i3 (llk (Xl- y))- T3 (tlk (x2- y))lq dy
--B2e

+I ITi3(uk(xl-Yll- Ti3(uk(x2-yl)[ dY
2

eCl+ v(2e)2C2,
where C1 is the volume of fl and C2 is twice the max of [T’g3 (u (z))[L Hence, w(x, &) is
continuous at x for all X ft.
Of course, w(x, &) has the usual sort of jump across the Xl, x2-plane. We prove this

below.
THEOREM 4.10. Let c (Cl, c2, c3) be any constant vector. Then

X E H
wk (x, e) 0, x H+,

Ck/2, X OH,

where we define Wk (X, e) by integrating over spheres centered at (Xl, X2, 0)o
Proof. If we can justify integration by parts, letting v e and q 0 and using (4.4),

we get

A fH U (X y )ci dy + Wk (X, e) fCk’
0,

Note that i-z u k (X y) dy 0, where integration is over spheres centered at (x 1, X2, 0),
since it can easily be seen that the integral of u k (Z) over the intersection of H with any
sphere centered at the origin is zero. Therefore, when integration by parts has been
justified, we will have the first two parts of the theorem. To justify integration by parts,
consider vB,(xl, x2, 0nn Ti(llk(x-y))ciN’(y) dy, where N is the exterior unit normal to
the sphere. The first two terms in the integrand go to zero as 1/r4 as r o cX3. Since the
region of integration is two-dimensional, their intergral goes to zero as r o . Consider
the final term. We divide it into oBr(x1,2, onn[(xk-yk)/47rlx-yla]Ni(y)cidy plus
another term to which the previous argument applies. By calculating all the possibilities,
we see that the integral above goes to zero as r- o. To prove that Wk(X, C)= Ck/2 if
X3 0, let He be H with a ball of radius e about x removed. From (4.2) we construct the
analogue to (4.4) for this region. In exactly the same way we can justify integration by
parts for &(y)=e for this region. Thus, since x C:H, we have -on Ti(llk(x
y))ciN.(y) dy 0. Note that OH (OH OHm) S, where S is half of the sphere of
radius e centered at x. Taking limits as e 0, we see that- Ti3(uk(x-y))cidy =lirn fs Tj(uk(x-y))ciN(y) dy= c-k

n o 2’

as can be seen by direct calculation.
We now use Theorem 4.10 to calculate the jump in w(x, d) across gH.
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THEOREM 4.11. Let d L(R) f’l C(R -). Let x R 2. Then

lim Wk (X, (b) k (xO.__.___) + Wk (X,
xS

lim Wk (X, ) --bk (Xo)
4- Wk (X,

xH

Proof. Consider the function Wk (X, b) + OH TI3 (11k (x y))i(x) dy, where x e H.
We shall show that this function is continuous at x. Now,

Wk (X, () 4- I Tri3 (uk (x y ))(i(x) dy Wk (X, ()
H

Io ri3(uk (xO- Y))ti(xO) dy
H

Ic3H [T’i3 (Uk(X-- y)) T’i3 (Uk(x-- y))](i(X)ti(y)) dy.

Choose 8 > 0 so that if Ix- Yl < 8, then I,(x) (i(y)] < e. Then

In IT’i3 (uk (x Y))- T’i3 (ug (x- Y))l(qb’(x)- ci(y)) dY
(x)

<-- e f [T3 (uk(x y))- T3 (uk(x- y))I dy
(x)

(x)

since T3 (uk (x- y)) is bounded because x OH. Since y 0H, x OH, T3 (ilk’(x y))
has a singularity as xy like Ix3l/lx-y[ 3. A computation now shows that

in.olTl3 (u(x- Y))I dy is bounded, independent of 8 and x.
Now consider

{T3 (uk(x-Y))- T3 (uk(x-Y))}(i(x)-qbi(y)) dY"
H-B(x)

The argument used in Theorem 4.9 shows that half of it, namely,
--aH_Bxo) T3 (llk(x--y)ci(y)dy, is continuous at x=x. On the other hand,

oH-Bnx) TI3 (ll(X y))/(x) dy is also continuous at x x. The argument of Theorem
4.9 applies to all the terms in the integrand except the one which goes to zero only as
ly1-2 as y --, . That term is, (x yl)3 6,(x o) (x, y)6(x)-y 47rlx----}i

Therefore, consider

f0 (x y)6(x)
non,x) 4rlx --yl 3 dy 0 ilk=l, 2.
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On the other hand, if k 3, then we have

cn(xO (x y) + (x.- ya) +x dy dye.

-<-Ixl I(x)l I r dr

/ (r + x)3/
u du

/lxl(u +1

as long as x is close enough to x. Since this goes to zero as x x because then x3 0,
we have established that [.oncn,(x Ti3 (u(x y))i(x) dy is continuous at x xo, and
hence that Wk(X, ) +on TI3 (u(x- y))i(x) dy is continuous at x xo. Hence,

lim Wk(X, b) Wk(XO’ )+ Io rl3 (u’(x-Y))&i(x) dy
H

xH

lim I T3 (uk (x y))i(x) dy
OH

xH

(xo)
w (x, +) (x)

2

by Theorem 4.10. This shows that

lim Wk (X, b) &k (X___) __
Wk (X,

x-,
xg

The second part of the theorem is proved exactly the same way.

5. The integral equation. In 3 we solved the free space resolvent problem for the
Stokes equations; i.e., given f find v, q so that it v- hv + Vq f, V v 0. In this section
and the next, we shall seek a solution to the boundary value problem itw- hw +VO 0,
V. w 0 in H and W[0n -vl0n. The solution to (2.1) will then be u v + w, p q + . In
this section, we solve the boundary value problem, and in the next section we derive
estimates for the solution.

We seek a solution to

inH,

in the form w w(x, b), ’ O(x, f), the potentials of a double layer with density b.
Because of (4.7), we are in fact seeking so that limx_,xO,xHW(X,d)
-lim,_,o,nv(x). Letting a(x) be a mapping from R2R 3, we shall solve

(5.2) a(x) =b(x) +w(x, tb) where x e R 2.
2

In this section, we will show that, given a e Lp(R2), then the solution tb is unique,
eLp(R2) and the map from a and + is bounded. Using (4.8) and the fact that
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X3-" )’3 0, we see that

-----+ w(x,
2

1 (xi-Yi)
4zr IR 33 Ix’ Yl3 ( x/;Ix -yle -4’lx-yl .t

6(4XIx y le
xlx_yl -)

+3 Ix" y
1 + 2e +

4- e
-qlx-yl

That is, regarding w(., ) as an operator on $, we have

(5.3)

(X_ l.(i)(x)

where

-1) } &,.(y)dyl dy2.

1 IIR (xi-Yi)(Y)( -4Xlx-yl

4zr _-]X 1 + 2e

6(4;1x y [e-’/Xlx-yl+ e -’/xlx-yl

-1)) dyl dy2

and

(_Y/.i)(x)

4"rrl I Ir (xi- Yd-(Y) (x/lx- yle-lx-yl +

6(4Xlx y le + e

Hence,

(5.4)

0

(1/2+w),l,= ^2,n-11 2 _I7"2

First of all, we compute _,_,_,_Ji, ..
_’1(0

8 7,/. 2,., e ]zi2Z1 { h 3/21z [e3

-,/mzl 64Xlz + 6e+ 3A Izl= e + e -1+1-6} dzt dz2
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24’ - e -,fflzl-i.z dz dz2

-471zl 12e-4Xlzl3/2[z13e +3h[Z

-4Xlzl -4XII+ 64-1z e + 6e

h I cos 0 dO

247r2 (/+ ial cos 0 + ia2 sin 0)2

-6} dZl dz2

+ 24rh dO --(hr 3/2r3 e + 3hr2 e-+6/ re

+ 6e- -6) e -iaxr O--ia2rsin 0 dr

h If cos 0 dO

247r2 (x/+ ial cos 0 + ia2 sin 0)2
ia14 ff’ dO

24"n"2 (/+ ice1 COS 0 + ia2 sin 0)2

ia 2"n" dO
+
87"2 (47+ ial COS 0 + ia2 sin 0)

iff-2 I" dO

4zr (4+ iCl COS 0 + ia2 sin O)

4eA (ial COS 0 + ia2 sin 0) dO. el,,1 O--ia2 sin 0 e -1) dr

h I cos 0 dO

24,rr2 (x/’+ iax cos 0 + ia2 sin 0)2
iCel I dO

+
247r2 (x/+ iax cos 0 + io2 sin 0)2

i_a_l_ I dO

8zr2 (4+ iaa cos 0 + ia2 sin O)
i__a ! f= ia cos 0 + iot2 sin 0

47r2/ (x/+ ice1 COS 0 + ice2 sin 0)
dO

4A (e -’/xlzl- 1) e -’’z dz.

The first four integrals can easily be calculated using residues. The results are as
follows:

dO 2zr

(/+ ice1 COS 0 + ia2 sin 0) x/h +-[a 12

dO 2zr4]
(4+ialCOSO+iazsin 0)2 (h +112)3/2

cos 0 dO

(x/+ iCel COS 0 + ida sin 0)2
27ria

(h + lal2)3/2

(ia! .co__s_ 0 + ice2 sin O) dO
(4+ ia cos 0 + ia2 sin O)

2rr(4a ’+
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We turn now to the last integral, which is

-ial f) j.+oo (icelZX
7

Note that

(e -’/xlzl 1) e -i’’z dz.

-’’ dz clz I]
since it is the Fourier transform of the Riesz kernel. Now consider

+oO +oo

e e -i.z dz dz2

+m +m +oo +m -,/’-X

I- oo-Zx x/ e -4"-glzl-i,x’z dz -io1 f_ f_ e

-[e dz

cos 0 dO-x/
(x/+ ice1 cos 0 + ic2 sin O) 2o’

dO
icel (x/+ ial cos 0 + io2 sin O)

2rric 2

Hence,

i__q_a k f
+oo

f
+oo (iazl + ic2z2) -vxlzl io,.z -ia(x/, + Ic[2-x/) icl[al2

4"rr2A J J i;i; e e- dz=
2rr/4a+[l

+
2rM x/a + Ic

We are now in a position to compute .(a). An exactly similar calculation yields X_. (a).
The results are" - -ia,

12
(a 12 21a [x/a + la.(c)

4rM x/a -[
+ 21

-iac
4rrx/a + Il(a / 21 / 21- -icei 2 icei(5.5) _X,. (c)
2rra I 4rr Ic

( + I -I I,/a + I ) +

2rr( + I + la [/ + la =) 41 "We now calculate the determinant of the operator defined by (5.4). It is equal to

8 8 2A 2 8A 2#a + I [2
We will show that this determinant cannot vanish unless a 0.

LEMMA 5.6. Let

I[=(a +211z) Il(a2+8al +8114)
D=-+

8 2A 2

Then if a <- 0, we have 1 # O.

8a =4a + I
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Proof. Assume h 0; then J0 0 if and only if

h - + 4A lal + 81o[4"-- Jaffa 2

__
8A I12 /

4A / I1=
Since this will not be true for [a[ 0 (unless 0), we may divide both sides by [a]4,
obtaining z2+4z +8= (z2+8z + 8)//z + 1, where z h/lal. Consider the equation
/z+l=(z2+8z+8)/(zZ+4z+8). Note that the real part of the left-hand side is
always positive for z 0. Bearing this in mind, we square both sides of the equation.
Thus, we see that z+l=(z2+8z+8)2/(z2+4z+8)2 if and only if +/z+l=
(z2+8z +8)/(z2+4z +8). Now z +1 =(z2+8z +8)Z/(z2+4z+8)2 if and only if z3+
8z 2 + 24z + 16 0. By differentiating, we see that z 3 + 8z 2 + 24z + 16 is an increasing
function for z real; hence, it has one real, negative root and two complex roots. Let the
complex roots be Zo and o. We will show that the complex roots are not roots of
/z + 1 (z 2 + 8z + 8)/(z 2 + 4z + 8). Note that it is enough to do this for one of them. So
we will show that Re [(Zo2 +8Zo+8)/(ZZo +4Zo+8)]<0. Using the cubic formula, we
find that

Re (Zo) -1/2[(17 + /172 + 8)a/3 (/172 + 8-17)1/3 + 8]
and

Im (Zo) (1//g)[(17 + /i7 + 8) 1/3 + (,/17 + 8 17)1/3].
Note that 17.233</172+8<17.234 and 1.732</g< 1.7321. Hence, we find that
3.246<(17+’,/172+8)1/3<3.248 and 0.6153<(/172+8-17)1/3<0.6163. We can
now estimate Zo, z 2o; we obtain

-3.5443 < Re (Zo) < -3.5432, 2.2293 < Im (Zo) < 2.2312,

7.5760 < Re (ZOO) < 7.5923, -15.816 < Im (z) <-15.7977.
Estimates on z + 8Zo + 8, z + 4Zo + 8 follow’

-12.7784 < Re (Zo2 +8z0+8) <-12.7533, 1.3988 < Re (z0z +4z0+8) < 1.4195,

2.0184 < Im (z +8Zo+8) < 2.0519, -6.8988 < Im (z02 +4Zo+8) <-6.8729.
The sign of Re [(z +8Zo+8)/(z +4Zo+8)] is equal to the sign of Re [(z0z +8Zo+
8)( +4o+ 8)], which we can now easily see to be negative.

We now consider the solution + to (5.2) with a Lp (R 2). Lettingh be the matrix in
(5.4), we see that for h g0 there is a unique solution with - because the
determinant of x,/, does not vanish on R z. It is also the case that all the components
of 1 satisfy the conditions of Theorem 3.7 with k 2, so that the map from a-->+ is
bounded on Lp(R2), 1 <p < oo. To prove this, note that if rill(a) and th2(a) satisfy the
conditions qf Theorem 3.7, then clearly so do/’/1 --/2 and rhlthZ. Hence, it is enough to
show that _., -, and 1/Do satisfy the conditions of the multiplier theorem.

THEOREM 5.7. _., ., and 1/1 satisfy the conditions of Theorem 3.7 with k 2.

Proof. Note first that / + =, / /12 1/ + [a 12, and h + [a 12 + [a [/h + ]a 12
cannot vanish unless h < 0. This is clear for /h + la 12. If h + 2al2 + 2[a I/h + la 12 0,

[2 2then ( /21l=)Z-all=(x /11=) so that 2 0; similarly, if +[a +[=l,/x /[1 -0;
we must have h ( + =) 0. Note that for this reason

(a) -ihaj

4zr4h + 1 IZ(; / 2lc = + 2lc [4A + 11=)
is continuous and .(a)[ O(1/]a [2) for large [a ]. Hence, (a) is bounded.
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We will only consider one term of _i(a), namely (-ici4x / IclZ)/(2rr(X +lc [z +
IIAIIZ)), which is also continuous and bounded by 1/4, so it is uniformly
bounded. The other term, iJ4lal, was shown to be a multiplier in 3. Now,

2#agl = + 2I+v, + I-I (4 +
i/’+

so

lal lal 1
+
16= I( + I-I:)1/: I + 21-1: +

+

2[+ +

s I10, .and so is bounded. Another different;ation_ shows that
also bounded. A similar calculation applies to .(). Now consider 1/D.D is a linear
combination of . and so that D satisfies the conditions of Theorem 3.7. Further-
more, since by Lemma 5.6 does not vanish and since is continuous and as
1 m, we have tha is bounded below. The fact that satisfies the conditions
Theorem 3.7 and that 1/ is bounded implies that 1/ satisfies the conditions of the
multiplier theorem, too. In this case (k 2), we have that

N max. max. I1 NC

and

=<C.
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It easily follows from Theorem 5.7 (in the same way that Theorems 3.10 and 3.11
were proved) that:

THEOREM 5.8. Given a Lo(R2), 1 < p < oo, and A gO, there is a unique solution
dO Lp(R 2) to (5.2) and II*IIL. ----< C(A)II IIL.. Furthermore, if a Ws’p (R2), then dO
Ws’p (R 2) and I1,I, -< c( )llallw....

6. Estimates for the solution of the boundary value problem. In this section, we
will consider the solution to (5.1) and the differentiability properties of that solution. In
particular, given A ; 0 with IAI 1, f Lp(H), for 1 < p < oe, and letting v, q satisfy (3.1),
we shall find the solution to (5,1) in the form w w(x, ), @ (x, ), where is found
as in 5. We shall also prove the estimate

(6.1) Ilwll / IIv,ll Ilfll for ]arg A < O’o < 7r.

We proceed as follows. First, we consider the solution w, to (5.2) with a
and show that this satisfies (6.1), and then we show that it is the solution to (5.1). Recall
that

0X3

where solves (5.2) with a as above. We consider first the term
4-00 4-c3

2 f__ I-- Opi(X- y)li(y)dye dy2.
OX3

The ]th component is

1 I_I) x3cdx c

Next let x OH, x H, and consider

hi(x)+ri(x---)=2 _x__347r I)oo f)oooo i(Y)bl}X)lx-y dy dy2.

2
x3

Ox Ox 4rlx yl2 d’(y) dyl dy2.

THEOREM 6.2. Let

hi(x) --- Ix yl
3&(y) dy dyz,

where is as dened above. Then all second partials ofh Lp(H), and in particular, we
wilt have II(o=h,/Ox ox,)ll .m C( o)llrll .m.

Proof. First of all, notice that (y) e W2-/P’P(OH). This is because [Lp(n), so
v W’p(H) and so -vl0u e W-/’p (oH) by standard trace theorems. Since Lp multi-
pliers satisfying Theorem 3.7 are in fact W’p multipliers, we then have
W-/’P(OH) and I1 11  - oom C( o)ll lkoCm. Now, the argument used in eorem
4.9 shows that h is continuous on H and that differentiation under the integral sign is
justified (because the integral converges locally uniformly in x), so that h 0 on H.
Now suppose that t e C (H). Since t will then be W’’ for all s, r, we will have W’
for all s and r satisfying 1 < r < m. Hence, (x) will be continuous and decreasing to
zero as [x m. We can then conclude, using arguments similar to those in Theorems
4.10 and 4.11, that lim.x%0u.u h(x)= (x)/2. Indeed, we calculate that if x3 < 0,
then
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Choose 6>0 so that if ly-xl<8, then Iqbi(y)-qbi(x)}<e and then let
x/(XlX1)2+(x2-x)2<6/2. We see that

hi(x)/ qbi()l<lx3l l lB Iqbi(y)-qb((3x)l dyl dy2=-Ud (xO Ix-y

Ix3’ f I Ibi(x?! dyl dy+- _(o Ix y

Nce+maxl(y)]cO as (Xl, X2, X3)(x,x,O)

This argument can also be used to show hi(x)llO. First, notice that because
Lp(OH), we have

ctlll.Ihi(x)l ixl<_) t0.

Now choose r such that if lyl>r, then I/(y)l < e. Choose x so that 4x +xr+ 1/e.
Then we have

Ib(y)l dyl dy2
Ix-y]3

<= ce + max 16(y)lce.
yOH

Hence, Ihi(x)l will be small if either Ix3] is large or /x + x2 is large. Thus, h(x)lxl._,O.
Thus, we see that hsatisfies Ahi 0 on H, hil0u bff2 and Ihi(x)l lxl_,0. Given

bi, this makes hi unique. However, if d Ws’r(OH) for all s and r with 1 < r <, then
there is a solution g to the problem

(6.3) Ag =0

satisfying

and

onH, glo =+,

g(x)-lxl--,O

"Xi OXj Lp(h)
l<=i,j<=3.

4-rr ]x-y

are in Lp(H), 1 <= j <= 3, and

]] ff If (xi- Y(2 3(y) dyl dy2ll <-- C(o’o)llf,,,,,.

Thus, the estimate is true for all Lp(H).
THEOREM 6.4. Under the same hypotheses as Theorem 6.2, we have that the

functions

Hence, we have, for a dense set of f Lp(H), that

IOxi OXjll Lo(H
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Proof. For simplicity, we shall ignore multiplicative constants throughout this
proof. Letak(Xl, x2) --I)k(X1, X2, 0). Then, using (5.4) and letting r2 a 21 + Ix 22, we have

4/3(ixl, a2) ialdl + iixEd2
rE

x/l+ rE
(1+2 -2rx/1 + rE) + 3,

where a =--Vl0H. We then use (3.5) and compute that

t3(IXl, IX2)-- /’k (IXl, IX2, Ix3)fk (IXl, IX2, IX3) dIX3,
where

(6.5)

.Note that k(IXi, IX2, IX3)= rhk(IXa, IX2, IX3)(IXkIX3/lIXl2), k 1, 2, and r’/3(IXl, IX2, IX3)=
rh3(IXl, IX2, IX3)r2/lIX] 2, where rhk(IXl, IX2, IX3) is an Lp multiplier. If we let

A I+I+_(xi-yi)b3(y)dydy2,g.(x)=--- Ix-y
we now see that

I- r+z(’’z ,,zl

+ 2r --z
2

+ 2

2/’/2(IXl, IX2, Z)f2(ixl, IX2, Z)

2/’/’3(IXl, IX2, Z)f3(Ol, IX2, Z)] dz.

Now we define operators Kik on Lp(R 3) via

Ol I- IXkZ
Kjkf(ixl, IX2, IX3)=

r2 +z
2/(IXl, IX2, Z) dz, k .1, 2,

(6.6) + 2
%’ I- r 2fl(l, 2, z) dz.g]3f(l, 2, 3)= r2+Z

Clearly, we will be done if we can show that K is a bounded operator on L(R),
1 < p < m. We will do this by proving that K is bounded on L(R 3) and that it and its
dual are both of weak type 1-1. A trivial calculation shows that eachK is bounded on
L(R). To give one example"

(r7i)2 dz f(ffi, a2, w)[2 dw da3 da2 dax
+ + + 2 2

c 7 1/(1, z, w)l2 dw d2 dal
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Letting

and

we see that

Og] OlkZ

2)Lik(Otl, Or2, Or3, Z)=
(r

. + z
k=l,2,

2

3(0fl, Of 2, Of 3, Z)--"
loll 2 re + z

2,

g]kf(x1, X2, X3)-- L/k(Xl- Yx, X2-- Y2, X3-- Y3, -z)/(y, Y2, Y3) dyl dy2 dz.

We now compute Lik and find that (mod multiplicative constants)

02 ( sgn (z) )Lk(X,X=,X3, Z)=oxOx----- (x/x/(ix31/lzl)2)/2,, ],k=l,2,

O ( sgn (x3) )(6.7) L3k(XI’Xz’X3’Z)=oZ’OXk (xY+x+(Ixl+lzl)=)/ k 1,2,

0( Ixl+lzl )L]3(X1, X2, X3, Z)-"
0XZ X21 -t- X2

2 q" (IX3’l-I-"]Z[)2)3’]

At this point, we see that Lik(Xl, X2, X3, Z)-" Ajk(Xl, X2, Ix3[ + Izl), and so
+o0 +x) +0{3

(6.8) gikf(X1, X2, X3)’-I- I- I- Aik(XI--Yl, X2--y2, IX3] q-[y3[)f(Yl, Y2, Y3)dy.

Since this operator is clearly self-adjoint, it is sufficient to prove that Ki is of weak type
1-1. The following is true"

LMMa 6.9. Let Tf(x IK(x, y)f(y) dy whereKis C’ except when x 0 or y 0
and

C C
b) IVxK(x, y)l <-Ix_yl"/’ and IVrK(x,

Then T is of weak type 1 1.
The proof of this lemma is an easy consequence of Stein [1, p. 29, proof of 2.2].
Since it is clear that

IrA(s1- ylx2- Y2, Ix3l + ly3[)l
((X yl)2 + (X2-- y2) + (Ix3l + [y3[)e)

the theorem follows.
We are now ready to consider the final estimates.
THZOREM 6.10. Let d be defined as in Theorem 6.2 and

(V4’)i 2 (x y)(y) dy dy2+ Ix y

Then VO e Gp(H).



RESOLVENT PROBLEM FOR THE STOKES EQUATIONS 223

Proof. Because of Theorems 6.2 and 6.4 we already know that VO Lp(H). The
proof that it is in G(H) is the same as the proof in Theorem 3.10.

THEOREM 6.11. If tb is as above, then w(x, b) and VO(x, b) satisfy

Aw-Aw+V6 =0 }V.w=0
inH.

Furthermore, w W2’p (H) and w, satisfy (6.1).
Proof. The first part of the theorem is true because differentiation under the

integral sign is justified by the argument used in Theorem 4.9. By exactly the same
argument as in Theorem 6.2, we see that w(x, b) Ixl-. 0 for smooth enough f. In this
case, w is a solution to

(6.12) Aw-Aw=V6 onH, and w[n=-vl0n,

which vanishes at infinity.
Such solutions are unique. Since A A is invertible on halfspace, there is a solution

g to (6.12) which vanishes at infinity. Furthermore,

Hence, w=g and satisfies (6.1) for smooth f. By continuity in L(H), w satisfies
estimate 6.1 for all f s L,(H).

Now we know that w(x; +), (x, +) satisfy (5.1). Estimate (6.1) follows immedi-
ately using Theorems 3.11 and 5.8.

7. The inverse of A -PA. Let f s L(H), A 0 and [A]= 1 be given, and let v, q and
w, be defined as in previous sections. Let u v + w, p q + ; then we have

A u Au + Vp f,

(7.1) V.u=0,

u0 =0,

and u Y. (H) 2.(H), Vp Lp(H) and

(7.2) U[lw+..)+l[Vp[[w,.)C(o)[[llw,.) if [argA<o<.

This is exactly what we proved in previous sections. We first deal with p 2.
LEMA 7.3. Let p 2. Then P is a self-adoint, nonpositive operator. For A O,

A-P" z’2(H)Jz(H) is onto. Hence, A-P is invertible and generates a
semigroup of contractions on Jz(H).

Proof. Let u C (H) with V. u 0. Then

Au fnu(Au+ VP) Au= -fn [AU[20"

Taking limits in the WZ’2(H)-norm, we see that is a nonpositive operator. Hence,
1- is symmetric and onto, so it is self-adjoint and is also self-adjoint.

The result that A- is invertible now follows in L because A -" 2,(H)
J(H) J(H) is onto, and because (7.1) and the fact that the operator is 1-1 if p 2
imply that the inverse exists and is bounded.

8. Conclusions. We will now state concisely what we have proven, We use 7
combined with 1 and 2.
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THEOREM 8.1. Let f Jp (H), 1 < p <. Let , > 0 and let h : 0 and let [arg hi<
0o< rr. Then there exists a unique u I2"p (H) fq Jp(H) and a Vp Gp(H) such that

u-u+Vp =f

(8.2) " u in H.

The following estimates are satisfied:

The consequence now follows that pPA generates a bounded, analytic semigroup
on Jp (H). Estimates on the semigroup also follow.

THZOZM 8.4. Let Uo Jp(H), 1 < p <. Let etpa( be the solution to the problem

(8.5)

Then

0u
t)= ,PAu(x, t)--(x,

for x H,
u(x, O) uo(x)

t>0.

d’e’a(Uo) - W2s’p (H)

for all n, s if Re (t); 0. Furthermore,

d"e a(Uo) c(Oo, p, n, s)t l-i

<- IlUoll w2’’(H) as O,

/fl arg tl< 0o < r/2 and Uoe ((/,tPm) I.
Proof. As is well known, analytic semigroups can be continued into the complex

plane. In fact, this theorem is a consequence of the fact that u[IZA generates an analytic
semigroup. (For the relevant properties, see Friedman [1]). Note that

dne t,AUo ," (A)"eaUo.

Now,

(A) (PA)" et"Pauo (A e (,,/(,,+s-t))Pa),,+s-t (pA)tUo.
Because any continuous semigroup maps the underlying Banach space into the domain
of the generator, we see that d" (et"aUo)/dt" ((A)s). Also, for any u 6 ((A)i), we
have IIUlw.,,a4)<--_ClI(1--A)iUlIL,,n). Letting u= d" (e’aUo)/dt", we see that

Lp(H)

c IIll=,..n)
i=o It] wi-/

l-i
CP

Iluo]l =/.. as t0.--t[n+s-I (H)
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We now consider the inhomogeneous problem for the Stokes equations using
standard techniques. Many theorems are possible, depending upon the sense in which
we define a solution to the inhomogeneous problem. We present one theorem here.
The inhomogeneous problem is

(8.6)

O---U(x, t)- ,PAu(x, t) f(x, t) for x H,
Ot

u(x, 0) u0(x).

The theorem below is a corollary of Kato [1, Chapt. IX, Thm. 1.27].
THEOREM 8.7. Let 1 < p < oo. Let dJi(t)/dt ((vPA)"-j) ]:or some n <= 0 and all

.< n, and let the map --> f(t) from {t C lt 0 or Re (t) > 0} be C("-j) if < n and be
locally H6lder continuous with exponent >0 if /= n. Then ]:or any Uo ((u[PA)"),
m _--> 0, u(t) etVPa(Uo) + J e(’-2)vPa(f(s)) ds is a solution to (8.6). Furthermore, if
] <= n + 1 we have

-1 (df(t.)dJu(t) (uPA)u(t) "" 2 (/PA)j-t-1
dt /=o dt ]"

We have the estimate

<C(,],n),’-"

C(,p,n,]) i-l- max
=o Olslt111 ds

+ Itl max (H)
Isll,ls21t [Sl Sz[

larg tl < 0o < r/2.
Proof. See Kato [1, p. 491] for the proof that

diu(t) (upA)iu(t) + (/fl3)m)J-/-1
dt =o

To prove the estimate, note that

l_idlf(t)
dt W2(n+I-i),p(H) dt W2(n-l),P(H

We have that

(uPA)iu(t) (uPA) Io e (’-s)Pa(f(s)) ds + (uPA) e rPa(Uo).

Note that

II(vPA) e (uo)ll=,-+,-,,..(,)-<
Itl
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Now consider

I](vPA)J lot e (t-s)"’a f(s ’sl] w,./,_,,..,,.,

L_-< (1-vPA)"+I-J(vPA) e

=<c X
l--n+l

Let < n + 1, and consider

(t-s)vPA ((l’lZ)If(s)) dsll Lo(n
max Ilffs)ll =,.,<.

0lsl-<ltl

Finally, consider

tvPAThe second term is equal to I[(vPA)"(1-e (t)ll,..()- cIIfllw=-.(,) (see Kato [1,
p. 491]. We have

(P) e(-(P)ff(t)-(s)) ds
Lv(H)

Io c

I-s

w2"’on) f 1IIf(s)- f(s=)lll ;o ,_ dsC max Is su It-slIsl,lsmlt

C[tl" max
Isxl,ls=lt Is1

The theorem follows, and the dependence of the estimates on v is obvious.
In conclusion, we wish to discuss the extension of our result to more general

domains in R 3. We conjecture that the Stokes equations generate a bounded analytic
semigroup in Jv (fl) if lq is a bounded open set in R 3 with sufficiently smooth boundary.
However, the results in halfspace cannot easily be extended. This is because of the
boundary value problem corresponding to the one discussed in 2 and 3. The
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dependence of solutions to the integral equation on h is an extremely difficult problem
in an arbitrary domain. This is in marked contrast to the ease with which the extension
can be proved in J:(fl) because there the operator uPA is a nonpositive self-adjoint
operator. We do not at this .time wish to make any conjecture about the semigroup
properties of the Stokes equations on general unbounded domains. Analysis of that
problem will undoubtedly prove difficult (see, for example Heywood [1]-[3] and Ma
[1]).

Appendix: The Hodge theorem in halfspace. In the appendix, we give a brief
sketch of the proof of Lemma 1.7 of 1. The Hodge theorem follows from the lemma
below.

LEMMA A. 1. Let f C (H). Then there is a unique decomposition

_
+ Vqb with

7" _X = 0, _X3(Xl? x2, 0) 0 and if 1 < p < oo, then

(A.2) _RII ,o()+ IIv w,(,)<--

Proof. We see that we must solve the problem
fa(Xl, x2, 0). Letting x* (xl, x2, -x3) we find that a solution is given by

4,(x) --- . Ix y
+

Ix* y
v. f(y) dy

because A(-1/(4rlxl))= 8(x) and

Since

( ) (1(1 1))1 1 1
---j iX_yl/lx,,_y (V.f(y))+f(y).V,--- [x_yl+lx,_yl

and f[0n 0, we have
1 [xi-yi x-yi)(x)= tlx-yl+lx* (Y)Y

(A.3) 1 I {xl--y1 ,) x2-y2

=4 R [x--y[
3I(y)+fI(y +IX __y]32(y)+f2(y*))

X3--Y3+ IX" y[a3(y)-f(y*)) dy dye dye,

if we extend f to be zero on H+. Estimate (A.2) now follows in the same way as the
estimates in 3. That is, one takes the Fourier transform of &(x) and, using the
multiplier theorem, easily sees that V belongs to W’(R) for all s, p because f
does. Uniqueness follows because if 1+V +e, then 1
V(&-&) V& and V. = 0 and (x, x, 0)= 0. Hence,

To prove Lemma 1.9, let J(H) and G(H) be as defined in 1. First note that if
e C (H) such that V. 0 and.& e C(H) such that V& e L(H), thenI ’ V&
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0. Hence, Jr, (H) f3 Gp (H) {0}. To see that Jv (H) Gp(H) Lp(H), let f Lv(H) and
fn f in Lv where f, e C (H). Then f, X, + Vb, as in Lemma A.1. By (A.2), lim
_X, _X and lim Vbn exist in Lv(H) and we have _X+= f. Finally, note that
_X e J, (H) and 0 Gp(H) by definition.
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EXISTENCE AND UNIQUENESS OF A CLASSICAL SOLUTION
OF AN INITIAL BOUNDARY VALUE PROBLEM
OF THE THEORY OF SHALLOW WATERS*

BUI AN TONi

Abstract. The existence of a unique solution in the spaces of functions with H61der continuous
derivatives of an initial boundary value problem in the theory of shallow waters is established. The solution is
local in time. The method of successive approximations and the Lagrangian coordinates is used.

The purpose of this paper is to establish the existence of a unique solution, local in
time, in the spaces of functions with H61der continuous derivatives of an initial
boundary value problem in the theory of shallow waters.

Let u be the velocity of the fluid, and gh be its geopotential. The motion of the fluid
is described by the initial boundary value problem

+u Vu -V(hVu)+h gradh=O on(0, T)xf,

(o.)
u (x, t) 0 on (0, T) x 0II, u (x, 0) Uo(X) on

where 12 is a bounded open subset of R 3 with a smooth boundary
Conservation of mass is expressed by the initial value problem

Oh
+u.gradh+hdiv(u)=0 on(0, T) x
Ot

(0.2)
h (x, t) > 0 on (0, T) 1, h (x, 0) ho(x) > 0 on 1.

The usual Coriolis term in (0.2) has been omitted since it does not affect the nature of
the equation. The system (0.1)-(0.2) is a coupled "parabolic-hyperbolic" nonlinear
system of partial differential equations. It is of a type arising frequently in the theory of
water waves and compressible fluids. Systems of the type (0.1)-(0.2) have been called
"incompletely parabolic" by Belov and Yanenko [1], Gustafsson and Sundstrom [3].

The existence of a weak local solution of (0.1)-(0.2) in Sobolev spaces has been
established by the writer [8] using the method of successive approximations and a
compensated compactness argument. In this paper, we shall show the existence of a
unique solution {u, h} in C2+a’(2+t)/2 (QT*) Cl+a’(l+a)/2 (QT*) of (0.1)-(0.2), using
Lagrangian coordinates and the method of successive approximations. The result
obtained seems new.

In 1962, Nash [5] initiated the use of Lagrangian coordinates together with the
method of successive approximations in the study of compressible fluids. The Nash
approach was also found independently by itaya [4] and used later on with some
modifications by Tani [7]. In this paper, we use an approach different from that of Nash;
it is related to the one introduced by Solonnikov [6] in the study of a free boundary
problem of water waves.

The notations, the main result of the paper and a detailed outline of the proof
of the theorem are given in 1. The transformation relating Eulerian to Lagrangian
coordinates is studied in 2. The existence of a solution of a linear parabolic initial

* Received by the editors April 15, 1980.
t Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6K 2R7.
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boundary value problem and an estimate for its solution are given in 3. The
construction of a sequence of successive approximations is carried out in 4. The proof
of the existence and uniqueness theorem is given in 5.

1. Let f be a bounded open subset of R 3 with a boundary 01"l of class C2+’

0 < a < 1 and let (0, T) be a finite time interval of the real line. The generic point of 1 is
X (Xl, X2, X3). Set Di O/Oxi, QT lq (0, T).

We denote

H (u; Or) sup flu(x, t)-- u(y, t)] IX Y[-},
OT

H’ (u; O) sup {lu(x, t)- u(x,

We define the following norms’

(,) Ilullo,o=o- Ilullo +n (u; QT)+ n’/z (u; QT),

(1.2)

and

3
(+/2 (u" Or)

]=1

(1.3)
3 3

+)/2 (Diu
Lk=l j=

It is not difficult to check that C+’+)/2 (O), 0 < s < 2, is an algebra.
The main result of the paper is the following theorem.
THEOREM 1.1. Let ho be a scalarfunc6on in Ca+ (), 0 < a < 1 with ho c > 0 on. Let Uo be a vector [unc6on in Cz+() with Uo 0 on O. Then them exist:
(1) a nonempty interval (0, T*),
(2) a unique {u, h} in CZ+’z+)/z(Or.) x Ca+’a+)/2(O.), a solution o[ (0.1)-

(0.2)
Before going into the details we shall first give a detailed outline of the steps

involved.
Step 1. It will be carried out in 2. The basic transformation

(.4) x + w(, s) s x(, t)

relating Eulerian coordinates x (x, xz, x3) to Lagrangian coordinates (, 2, 3)
will be studied. Let

Owk
a (, t) + (, s) s, 1 i, 3.

Conditions on w and on T so that the matrix A(, t)= ((ai (, t))) has an inverse are
given. Some simple estimates on A and on its inverse are established.

Step 2. Let

2
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with 8 small. In 3, we study the linear parabolic initial boundary value problem

0--V-V Vw(V) ]’(, t) on QT,
Ot

(.5)
v (:, t) 0 on (0, T) x 0f, v (:, 0) Vo($) on .

Vw is the operator A-V 3

i= aik(, t) 0/05, 1 k 3 where aik are the entries of the
inverse of the matrix A of Step 1. It will be shown that:

K is a constant independent of 8, t, Vo, f, v, w.
Step 3. It will be carried out in 4. We construct {v", p"} by the equations

(1.7) 0(, t)=Oo() exp (V_. v (, s) ds, v vo,

and by the initial boundary value problems

Ov -}
,-iv +V,_lp =0 onOr,

Ot p"
(1.8)

v" (, t) 0 on (0, T) x 0fl, v" (, 0) v0() on ,
where V (Ao)-V.

With (1.6), the estimates of Step 1 and noting that v (, 0)= Vo() on , one can
show that there exist:

(i) a nonempty interval (0, T*) independent of n,
(ii) a constant K independent of n such that

Moreover,

{v", p"}{v, p} in C+’(+/(Q.) x C+’(+/(QT. as n +.

Step 4. With {v, p} of Step 3 we go back to Eulerian coordinates via the trans-
formation (1.4) and the theorem is proved.

2. Let w be a vector function in C+’(+/ (Or), w =0 on 0x (0, T) and
consider the one-parameter family of transformations

(2.1)

of into ’t, Set

x + w(, s) ds X(, t),

ow(, s)
(2.2) a ik (, t) 8ik + O

ds, 1 <= j, k <= 3

where 6jk is the Kronecker delta function.
The matrixA(s, t) ((a ik (, t))) is the Jacobian of the transformationX connecting

Lagrangian coordinates e to Eulerian coordinates x. In this section, we shall study A.
It is known that without any further condition on w, det (A (s, t)) # 0 only for small

t. We express that restriction by assuming that:

(2.3) (T+ TO)llwll>.,=+,,=o)<a <1 1-=, o<<.
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PROPOSITION 2.1. Suppose that (2.3) is verified. Then

1/2 -<_ det {A (:, t)} -<_ for 0 <- -<_ T.

Proof. We have

ki-- max
i,k C(Ot) ],k C(Q)

With (2.3) we get

1/2<- 1-36 662-63 -<det {A(, t)} -<_ 1 + 36 +62 +66a -<}.
PROPOSITION 2.2. Let a(, t) be in C’/2 (Qr). Then

T

C,/2(Or)

Let e > 0; then there exists c (e) > 0 such that

a(, s) ds --< llallc(o,)/c() Ila(., s)llc(> ds.
C./2(Q0

Proof. The above simple proposition which is very useful has been proved by
Solonnikov [6, Lemma 3, pp. 1331-1332].

PROPOSITION 2.3. Let b(, t) be in C+’(+/ (Qr). Then
T

C+.(l+)/2(Or)

]= C(Or)

Let e > 0 be given. Then there exists c(e) > 0 such that

Proofi Cf. Solonnikov [6, Lemma 3, pp. 1331-1332].
LZMMA 2.1. Let w be in C+’(+/(Or) and satisfy (2.3). Let a(, t) be given

by (2.2) and A A(, t) ((a (, t))). Then

1)

2)

3) IIA -a Illc+.,+,/:o) <-- czllA Illc+.,+,/o) <= 2cz&

where c 1, C2 are independent of 6 and of w.
Proof. This is Lemma 4 of Solonnikov [6, p. 1332].
LEMMA 2.2. Let v, w be two vector functions in C2+’’(2+/2 (Qr) satisfying the

condition (2.3). LetAo, Aw be the Jacobian of the transformation (2.1) corresponding to v
and to w, respectively. Then for any e >0 them exists c(e) >0 such that

Proof. Cf. [6, Lemma 6, p. 1333].
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3. We shall carry out Step 2. The main result of the section is the following
theorem.

THEOREM 3.1. Let w be a vector function in C2+’’(2+’)/2 (QT) and suppose that

1 (1-)

with 6 small. Letfand Vo be in C’/2 (OT) and in C2+(E) respectively with Vo 0 on 012.
Then there exists v in C2/’’(2/)/2 (OT), a solution of the initial boundary value problem

(3.1) Ov-vvv=f onOT, v=O on(O,T)Oll, v(:,O)=vo(:) onll.
Ot

Moreover

]:or 0<t< T.
K is a constant independent of t, 6, w, v0, [, v. Vw is the operator

3 Oa- v <-_ <-_ 3,
i=1

and alk((, t) are the entries of the inverse ofA ((aJk(, t))) with a given by (2.2).
First we shall verify that (3.1) is uniformly parabolic in the sense of Petrowsky.
LEMMA 3.1. Let w and 7w be as in Theorem 3.1. Then

(3.2)
Ov z

wV 0 on Or
ot

is uniformly parabolic in the sense ofPetrowsky.
Proof.
1) From the definition of V we have

Thus,

VwV(:, t)=,YI= a(, t)-.

02v Oaik.3

E
s,j,k=l

,% a,pai.with
2) Equation (3.2) is uniformly parabolic in the sense of Petrowsky on OT if there

exists 61 > 0 SUCh that

max sup Re A-(, t; tz)=<-61
I1=1

for all (:, t) in OT where Ai are the roots of

det ((., (i/z)(i/x) A6,)) 0.
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A simple computation gives

det ((d,/k (i/zs)(i/xj) ASpk))= (A + aspajptJ,st.ti)2(A -b 2aspaipl..6sl,Zi).

A A 2 -aspaiplzsl.zi, A 3 -2aspajr,l.Zst.Zi.

We have

k=l r=l rp

Applying Lemma 2.2, we obtain

apaii ] 1{1 6(2cz8)- 3(2c26)3}.
Hence,

max sup Re Ai(, t; )-2{1-6(2c26)-3(2c2)3}-6,
1=1

if 8 is suciently small, which we shall always assume.
Proo/ o/ Theorem 3.1.
1) Since (3.2) is uniformly parabolic, the existence of a solution v in

C2+’2+)/2 (Q) of the initial boundary value problem (3.1) is known. We now
establish the estimate of the theorem. We have

v V: [+(V V) [+(V V)(Vw+V)
Ot

f+(A-X-I)V{(A +I)Vv}

=f+(A--I)V(A +I). 7v +(A--)(A +I)Vv =[+g.

Consider the initial boundary value problem

Ot

It follows from a well-known result of the theory of linear parabolic equations that

(3,3) I1 c=+,,=+,= K{IIIc,=o> + Ilgllc,=>+ I1011 c2+},
K is independent of t, v0, w, v, f and g. It depends on meas (OT), e.g., el. [2, Theorem 3,
p. 782] (with some trivial changes in the initial conditions).

2) We now compute I[g[[c,=o). Applying Lemma 2.1 we obtain

II(A -a- I)(A-a-

IIA--
So,

(3,4)
where c4 is a constant independent of , t, v, w.

It follows from (3.3)-(3.4) that

The theorem is proved.

The roots are
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4. We shall carry out in this section Step 3 of the proof of Theorem 1.1. First let us
introduce some notation. We denote

X" (, t) + Io v" (, s) ds, n=0,1,2...

and

A, (, t) 6jk +
0

ds

A is the inverse of A, whenever it exists. Set
3

7, a2a7 E a.(, t) 1 N k N 3,
/=1 O

where ai (, t) are the entries of A1.
Consider the equations

(4.1) on(, t) O0() exp. (7,-a s)

and the initial boundary value problems

(4.2)

ol)n 2 IVn-lpn Vn-ll)n-1 !
Ot

Vn_lO +Vn.-lp --[ j,
0 on Or,

p

v (’, t) 0 on (0, T) x 0II, v (, 0) Vo(’) on II.

The main result of the section is the following theorem
THEOREM 4.1. Let Vo be a vector]unction in C2+ (fl) with Vo 0 on Of and letpo be

a scalar function in C + (1) with po >= c > 0 on l). Then there exist:
i) a nonempty interval (0, T*) independent of n,

ii) {v n, 0 n} in C2+c’(2+a)/2 (QT*) X C l+a’(l+)/2 (QT*), a solution of (4.1)-(4.2).
Moreover, {v", pn} {v, p) in C2+a’(2+a)/2 (QT*) X Cl+a’(l+a)/2 (QT*).

First we have
LEMMA 4.1. Let v be a vector function in C2+’(2+)/2 (Qr) with v(, O)= Vo()

and

1 1-a

Let {Vo, po} be as in Theorem 4.1. Then
1) p (, t) defined by (4.1) is in Cl+t’(l+a)/2 (Ot) with

(4.3)
lip 111 cI+"I+"’/=(oT) gllpollc+((1 + Ilvo[I c=+())2

exp {Kt(1

2) there exists/)1( t), a solution of (4.2) with

(4.4)

3

exp{K.t(1 +llvoll=+o.)=l, ’or o<t< Z.

K1, K2 are independent of v, t.
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Proof.
1) It follows from Proposition 2.1 and from our hypotheses on v that A1, the

inverse of the matrix

exists. So,

has a meaning and

3 0

Vo=,21= ak(:, t)-/, k 1, 2, 3

pl(, t) po(s:) exp (7o" v)(, s) ds

is defined. We have

cl+.(l+)/2(Ot)

From Proposition 2.3, we get

C is independent of v, Vo, po, t. We have applied Lemma 2.1 to (Vo’ v). It is now easy
to check that

(4.5)

So,

(4.6)

2) Since v(, 0)= Vo() on lq, we have

Vv=VVo+VV-VVo.

With our hypothesis on v, we get

From (4.5)-(4.6) we obtain

(4.7)

K is independent of t, v po, Vo

0<t<T.
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3) For vl(:, t) we apply Theorem 3.1. Then,

(4.8)

Applying Lemma 2.1 and (4.7) we obtain

(4.9)

C is independent of t, 6, v, Vo.
Similarly,

(4.10)

(Vop. VoV)
1

p

Combining (4.8)-(4.10) we get the estimate of the lemma
LEMMA 4.2. Let Vo, 19o be as in Theorem 4.1 and v be as in Lemma 4.1. Then there

exist:

1) a nonempty interval (0, T*) independent of n,
2) {v", p"} in C2+’(2+a)/2 (OT*) X Cl+a’(l+t)/2 (QT*), a solution of the system (4.1)-

(4.2) with"

10
0</<.

2

M is independent of n.

Proof.
1) From Lemma 4.1 we have {v 1, pl} in C2+a’(2+a)/2 (OT).

IIv llc/.,-/,,=(o, g=( + IIollc,/( + Ilvollc=/() exp (K2t{1

K2 is independent of t. Thus, there exists a nonempty interval (0, T*) such that

(T* + (T*) )K2(1 + Ilooll ’+,. (. + Ilvoll =+,(.) exp (K2T*{1 + Ilvoll+,(.>}=) --< ,
with 0 </3 < (1 a /2. Hence,

(1 -a)
0<t3<2

2) With 0 < < T*, we have {/2 2 2}O and hence the right-hand sides of (4.3)-(4.4)
are independent of v ’, we obtain

and

lip =11 c,/,.,,/o,,--o, K,llpoll c,/..(.)(1 + Ilvoll c=/,.(.))= exp {Kt(1 +

IIv =11 c=/.,=/,--o, K2(1 + IlPoilc’/+ Ilvollc/) exp (K2t{1 +
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Therefore,

0</3<
2

with the same T* as before.
We may repeat the same argument again and by induction, we get the lemma.
Proof of Theorem 4.1. In view of Lemma 4.2, it remains to show that

n} C2+C,(2+)/2 1+,(1 +o)/2{v ,p +{v,p} in (Or*)xC (Or*).

1) We have

(4.11)

t9 -1 2 2 n-1 n-119t(v -v )-V.-lV "-7n-2V +Tn-lP --Vn-2P
n--1 n--2) --1(Vn-2P Vn-2V (Vn-llO Vn-lV+ n-1 0 on Q-.,
P p

n-X T* n-I)v -v =0 on (0, )=19D., (v"-v (:,0)=0 on

Set w v n- v "-1 and we have, by an elementary computation,

(4.12) 2 2 n-1 2--Vn_lV "[-Vn_2V --Vn_2W --(Vn-l--Vn-2)(Vn-- "[-Vn._2)V

Similarly,

n-l) __Vn_2)pn-1(4.13) Vn_liO --Vn_2P -l=Vn_l(p --p +(Tn_

A lengthy but completely elementary computation yields

(Tn-1 7n-lV (Tn-2P 7n-ZVon n-l) n-1 n-2)
+ n--1p p

n--l) -1{(Vn_l__Vn_2)p Vn_2v --2} {Vn-l(p --p Vn--lV }
n--1p p

(4.14) n-X n-1 n-1(o -o )V.-o V._lV
+ n-1 +

pp

n_l{Vn_l(Vn-2--un-1)}
"-Tn-lP n-1p

._ (V.-z- V._)v
n-1

get

n-2

We now apply Lemmas 2.1-2.2 and the estimates of Lemma 4.2. From (4.12) we

Ix, c(e) are independent of n, t. Hence,

(4.15)
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(4.16)

With (4.13) we get, by applying Lemmas 2.1-2.2 and the estimates of Lemma 4.2,

Applying the same lemmas to (4.14), we obtain

[[(Vn_2P n-1 Vn_2Dn-2)
C,/2(Ot)

p

(4.17)

It now follows from Theorem 3.1 and from (4.11)-(4.17) that

(4,18) Io’ }
The different constants K are all independent of n, t, 6, e.

2) We also have

0 -0 =0o ep V,-l"v ds -exp V,-2"v

N (V V Vn-2" O n-2) ds
c +,(x )/2(O)

exp V_ v- ds c.../(o,+ V_. v-a ds

An elementary computation as in the first part yields

(4.19)

n--1

3) Combining (4.18)-(4.19) we get

(4.20)
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The different K are all independent of n, e, t, 6.
Take e so that Ke <- 1- K6, then summing from n 1 to N, we obtain

N

AN(t) (1 -K6)
n=l

(4.21) <_-(1

..-c (. Io ][W,[c2+.(2+a)/2((s) ds + c (e Io AN(S)ds.

It follows that Aoo(t)is bounded and hence, the series Y=I
converges for 0 < < T*. Therefore v" v in C2+’’(2+)/2 (QT*).

From (4.19), we get p"-p in C1+c’(1+c)/2 (QT*). The theorem is proved.

5. We shall carry out the proof of Theorem 1.1 in this section. First we have
THEOREM 5.1. Let {Vo, Po} be as in Theorem 4.1. Then there exist"
1) a nonempty interval (0, T*),
2) {v, p} in C2+a’(2+)/2 (QT*) x Cl+a’(x+a)/2 (QT*) such that

(5.1) 0(:, t) 0o() exp. (V. v)(, s)

and

(5.2)

OV

v(, t) 0

---V(v)+Vvp-(VvP VvV)=o on Or*,

on (0, T*) x 0, v(, O) Vo(:) on fl.

Vv is the operatorA-1V =1 ajk(, t)O/Oj, 1 < k < 3 where aik(, t) are the inverse ofthe
matrix a ((6ik +o (OVk(, S))/Oi) ds)).

Moreover, {v, to) is unique.
Proof.
1) Let v" and p" be as in Theorem 4.1. We have {v", p"} {v, p} in

C2+’(2+)/2 (Q.). From (4.1)-(4.2) and the above properties, it is easy to see that {v, p}
is a solution of (5.1)-(5.2). Indeed, a proof as that of Theorem 4.1 gives the desired
result.

2) The solution {v, p} obtained is unique. Suppose that {Vl, pl} are two solutions of
(5.1)-(5.2). Set v vl-v2, p 01-02. Then from (4.19)-(4.20)we deduce that v 0
p since v(, 0) p(, 0) 0.

The theorem is proved.
Proof of Theorem 1.1.
1) Let u be in C:+’(:+)/2 (Or) with u 0 on (0, T)x 01". Consider the ordinary

differential equation

d
d-- Y(s; x, t)= u(Y(s; x, t), s),

(5.3)
Y(t;x,t)=x

for every (x, t) in Qr and 0-_< s-<_ t.
Since u is in C2+a’(E+a)/2 (QT), there exists a unique solution curve passing through

(s, t). Set

Y(0; x, t)= ’.
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Then the mapping (x, t)(, t) is a one-to-one mapping of QT- onto QT- and of
0f (0, T) onto 0f x (0, T). The inverse of that mapping we denote by X(:, t) x. For
u (x, t), h (x, t) we set

v(, t)= u(X(, t), t), p(, t)= h(X(, t), t).

Equation (5.3) implies that

(5.4) -dX(s, s)= v(s, s), X(, 0)= s.
Thus,

x X(, t) + v(, s) ds.

An elementary computation shows that (0.1)-(0.2) may be rewritten as

Op
(5.5) ---(s, t) + Vv’ v 0 on (0, T) x I), p(s, 0) po(s) ho(x) on f,

and

O__V.V V 2v + Vvla-
ola v

0 on 07,
Ot p

(5.6)
v (, t) 0 on (0, T) x 0f, v (s, 0) v0() Uo(X) on f,

with V as in Theorem 5.1.
2) From Theorem 5.1 we have a unique solution {v,p} in C2+’(2+/2 (QT.)x

C1+’(1+’)/2 (Or.), a solution of (5.5)-(5.6). Then with u(x, t)= v(X-(x, t), t) and
h(x, t)= (X-(x, t), t) we get {u, h} as the unique solution of (0.1)-(0.2) with all the
stated properties.
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ON DIRICHLET’S PROBLEM FOR ELLIPTIC EQUATIONS IN
SECTIONALLY SMOOTH n-DIMENSIONAL DOMAINS. II.*

A. AZZAMS"

Abstract. In a recent paper, [SIAM J. Math. Anal., 11 (1980), pp. 248-253] we studied the Diriehlet
problem for elliptic equations in sectionally smooth domains. Conditions sufficient for the solution to be of
class C(1 < , < 2) were given. In the present note this result is improved.

In [1] we studied the Dirichlet problem for the uniformly elliptic equation

(1) aii(x)ulii+ai(x)Uli+a(x)u f(x),

in a domain I)c R n, n->2 with sectionally smooth boundary F. F consists of (n- 1)-
dimensional surfaces F1,’ ", Fk of class C2/, 0 < a < 1. For simplicity we take k 2
and write F1 F2 S. Let P be any point on S. When aij(P)ulij 0 is transformed to
canonical form, the angle between F1 and F2 at P will be changed to to(P). In [1] we
considered the case to (P) < 7r, and obtained C(I)) statements for the solution, 1 < <
2. In this note, we introduce a new barrier function (cf. [1, Lemma 1 ]) which enables us
to improve the result of [1, Thm. 1] as follows.

TI-IEOREM 1. Let aii, ai, a andfin (1) be ofclass C,, (f). Ifthe boundary value ofu is
continuous on F and of class C2+(F\S), then u C(f), where , =min (2, zr/to-e),
to maxps to(P) and e > 0 is arbitrarily small.

This result may be accomplished by replacing the barrier function in Lemma 1 by

V(x)=-Mr cs h(0 )
where u=min (2, zr/to-e)<((r-26)/to)=h, e >0 arbitrarily small and 6>0 suit-
ably chosen. Note that taking/3 (zr- to)/2 we have cos h (0 zr/2)-> sin 6 for/3 =< 0 -<
to +/3. The rest of the proof of Lemma 1 remains almost unchanged. The proofs of
Lemma 2 and Theorem 2 remain unchanged if u -> 1. If u < 1, Lemma 2 is not needed,
and in the proof of Theorem 2, we deal with the function u and its H61der coefficient
H(u) rather than u’ and H_a(u’).
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LINEAR DECOMPOSABLE SYSTEMS IN CONTINUOUSTIME*

STEPHEN J. HEGNER"

Abstract. With the aid of mathematical tools from category theory and functional analysis, an algebraic
approach to the theory of continuous-time linear systems is presented. The dynamics of these systems are
described by infinitely differentiable semigroups of operators. A method of obtaining the canonical
input-output behavior of a system is given, based upon the concepts of free and cofree objects in category
theory. Reachability and observability are discussed using the categorical concept of image-factorization
system. It is shown that in the general case of infinite-dimensional systems, there are multiple concepts of
reachability and observability, one pair of such concepts for each distinct image-factorization system. In
particular, there is a distinct concept of canonical realization for each image-factorization system. Some
special results on the nature of the reachability map, observability map, and state space of systems whose
input and output spaces are finite dimensional are also developed.

Introduction. In Arbib and Manes (1974), the framework of decomposable
systems was introduced. This framework, which uses only very elementary concepts
from category theory, captures discrete-time linear systems, as well as some other types
of systems such as group machines, in such a way that the key concepts arise as natural
categorical constructions. It is the purpose of this paper to develop an analogous
approach for continuous-time systems.

As in the discrete-time approach, the heart of the continuous-time system is its
dynamics. In the continuous-time case, the one-step state-transition dynamics is
replaced by a differentiable dynamics. The precise characterization of such dynamics is
the differentiable semigroup. The full theory of these dynamics is developed in 1.

In the discrete-time case of linear systems, the natural structure for the inputs and
outputs over time is well-known. However, the natural structure of the inputs over time
in the case of group machines was not well-known until a framework akin to de-
composable systems was used (see Arbib (1973)). Similarly, the natural structure for
inputs over time in continuous-time systems was not known, and various structures
have been used. In 2, categorical techniques are employed to show what this natural
structure must be. The natural structure for outputs is also developed.

Central concepts in system theory are reachability and observability. They were
captured for decomposable systems in Arbib and Manes (1974) by using the categorical
concept of an image-factorization system. In the category of vector spaces and linear
maps, there is only one such system, and so only one concept each of reachability and
observability. However, in the case of continuous-time systems, although the use of
image-factorization systems is almost identical, there is more than one such system.
Hence, there is more than one natural concept each of reachability and observability. In

3, these ideas are developed in detail.
Of particular interest in linear system theory are those systems whose input and

output spaces are finite dirr/ensional. Some special properties of the reachability map,
the observability map, and the state space of such systems are developed in 4. Finally,
5 contains a brief comparison of the present work to other work on the general theory

of continuous-time linear systems.
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part upon the author’s doctoral dissertation at the University of Massachusetts at Amherst, which was
supported by the National Science Foundation under grant DCR72-03733 A01.
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Every effort has been made to keep the amount of knowledge of category theory
required for an understanding of this paper to a minimum. An understanding of that
provided in Arbib and Manes (1974) should prove sufficient. However, the reader is
referred to Arbib and Manes (1975), Herrlich and Strecker (1973), or Schubert (1972)
for help whenever necessary.

While the amount of functional analysis required for understanding this paper is
necessarily not minimal, an attempt has been made to isolate technical details as
lemmas and to explain intuitively some of the crucial constructions, so that the gist of
the theory may be comprehended without full understanding of the proofs.

Since the system-theoretic structures used in this paper are based upon those
developed in Arbib and Manes (1974), it is assumed that the reader is familiar with that
paper. Frequently, its concepts will be used to motivate the presentation given here.

O. Terminology and notation. In this section, some of the terminology and
notation used throughout the report is gathered. It is not meant so much to be read as to
be referenced when a question arises.

General notation. R/ denotes the nonnegative reals, with the usual topology. Q/
denotes the nonnegative rationals. N denotes the natural numbers.

Locally convex spaces. Schaefer (1971), K6the (1969) and Treves (1967) should
be consulted as general references for locally convex spaces.

K denotes either the field R of real numbers or the field C of complex numbers,
each with its usual topology. K is to be fixed in any particular context. 1.c.s. is an
abbreviation for locally convex, separated, topological vector space over K. If the
topology of the l.c.s. E must be explicitly indicated, the notation E[] is used. q/(E)
denotes the set of all convex neighborhoods of 0 of the l.c.s.E.

A subset U of a 1.c.s. E is called a barrel if it is closed, absolutely convex, and
absorbing; U is called bornivorous if it is convex and it absorbs every bounded subset of
E. E is callec barreled (resp. quasi-barreled, resp. bornological) if every barrel, (resp.
bornivorous barrel, resp. bornivorous set) is in q/(E).

E’ denotes the (continuous) dual of the 1.c.s.E. (E, F) denotes that E and F form a
dual pair which separates points. Polars in dual pairs are denoted by the symbol .

A continuous linear map f:EF of 1.c.s.’s is called a dense map if f(E)=F
(overbar denotes closure), a homomorphism if it transforms neighborhoods of 0 in E
into neighborhoods of 0 in f(E), a quotient map if it is a surjective homomorphism, a
near quotient if f(U) ql(F) whenever U q/(E), an embedding if it is an injective
homomorphism, and closed if f(E) is closed in F.

The completion of the 1.c.s. E is denoted E. If f’ E F, the extension of f to
completions is denoted f: /6. A 1.c.s. is quasi-complete if each of its closed, bounded
subsets is complete..The quasi-completion of E is denoted , and the extension of
f: E -F is denoted f: E - F.

The following notations for categories of spaces will be used. LN denotes the
category of all vector spaces over K, with linear maps as morphisms. LCS denotes the
category whose objects are the l.c.s.’s over K, and whose morphisms are the continuous
linear maps. CS (resp. QC) denotes the full subcategory of LCS consisting of the
complete (resp. quasi-complete) 1.c.s.’s.

Special locally convex spaces. An (F) space is a 1.c.s. which is metrizable and
complete (also called a Fr6chet space). A (DF) space is a 1.c.s. which admits a
fundamental sequence of bounded sets, and for which every bounded subset of its
strong dual, which is the union of a sequence of equicontinuous sets, is equicontinuous.
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The strong dual of an (F) (resp. (DF)) space is a (DF) (resp. (F)) space. A (B) space is
complete-l.c.s, whose topology is definable by a single norm. A Banach space has a
specific norm associated with it, and is not to be confused with a (B) space. A l.c.s, is a
(B) space if and only if it is simultaneously an (F) space and a (DF) space. A (S) space
(also called a Schwartz space) is a l.c.s, for which every continuous linear map from it
into a (B) space is compact.

Spaces of linear mappings. Let E andF be 1.c.s.’s. L(E, F) denotes the linear space
of all continuous linear maps from E into F. Let be a set of bounded subsets of E
which covers E (i.e., U E). On L(E, F), the topology of convergence is defined to
have as fundamental neighborhoods of 0, sets of the form {fir(A) U} where A
and U all (F). L(E, F) with this topology is denoted L(E, F), and the neighborhood
{fir(A) U} is denoted (A, U). When all finite sets (resp. all bounded sets),
the topology of @ convergence is called the topology of simple (resp. bounded)
convergence; L(E, F) is denoted L(E, F) (resp. Lb(E, F)). When E =F, L(E,F)
(resp. L(E, F)) is denoted L(E) (resp. L(E)).

Bilinear mappings and tensor products. For detailed special information on
bilinear mappings and tensor products, refer to Grothendieck (1955) and Treves
(1967).

Let E, F, and G be 1.c.s.’s, and let : E F- G be a bilinear map. For the purposes
of this paper, f is called hypocontinuous if it is hypocontinuous with respect to the
bounded sets of each space, i.e., for each V a//(G), A E bounded, there is a
U q/(F) such that f(A U) V, and for each V q/(G), B F bounded, there is a
W q/(E) such that f(W B) V. A family of equihypocontinuous maps is defined
similarly.

E (R)F denotes the tensor product of the 1.c.s.’s E and F. On E (R)F there are two
topologies of importance. The 7r (or profective) topology is the strongest locally convex
topology making the canonical bilinear map p’E xFE(R)F continuous, and is
denoted E(R)F. The fl (or hypocontinuous) topology is the strongest locally convex
topology making p hypocontinuous and is denoted E (R)F.

Differentiable functions and distributions. The theory used here is essentially that
developed by Schwartz (1954-55), (1957, 59), and (1966).

"(R+, E) (m N or m =o) denotes the space of all m-times continuously-
differentiable functions on R/ with values in the 1.c.s.E. The differentiation operator on
this space is always denoted by the symbol D. The topology of 8 (R/, E) is defined by
the family of seminorms of the form q-sup a(Dq(t)) where a is a continuous

tK
q_p

seminorm on E, K R/ is compact, and p N with p _-< m. If m-, (R+, E) is
denoted simply (R+, E).

A useful tool is the mean-value theorem for ’(R+, E), which may be stated as
follows.

THEOREM 0.1. LetE be a l.c.s., f (R/, E), a a continuous seminorm on E, and
I [a, b c R/ a compact, connected interval with b > a.

(a) a(f(b)-f(a))<-(b-a) suptta(Df(t)),
(b) a[(f(b)-f(a))/(b-a)-Df(a)]<-supta(Df(t)-Df(a)).
Proof. The proof is essentially the same as the case in which E is a normed space.

See, for example, Dieudonn6 (1960, 8.5.2 and 8.6.2).
The space g(R+, K) is denoted (R/). Let g(R) denote the space of all infinitely

differentiable functions from R to K with the topology of uniform convergence of each
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derivative on compact sets (analogous to the topology on (R/)), and let _(R) denote
the closed subspace of ’(R) consisting of those functions which are identically 0 on
]-oo, 0]. There is a canonical injection i: ff(R)/_(R)- (R/), given by sending a
representative of an equivalence class to its restriction to [0, o[. This injection is clearly
an embedding, and furthermore a surjection (hence an isomorphism), since any
f 8’(R/) can be extended to an f (R). (Use Borel’s theorem (Treves (1967, Thm.
38.1)) to show this.) Now (R) is an (F) and (S) space; hence, (R/) is also an (F) and
(S) space, the strong dual ’(R/) of ff(R/) can be identified with ff_(R) for the pair
(ff(R), "(R)), and f"(R/) is furthermore (DF), (S), bornological, complete (hence
barreled), and reflexive (see Grothendieck (1973, Ch. 4, Pt. 4)). As ’(R) is the space of.
all distributions on R with compact support, f’(R/) is the subspace of all distributions
which are 0 on each f f_(R), i.e., those distributions whose support is compact and
contained in [0, oo[. The differentiation operator on ’(R/) will be denoted byD in lieu
of the more cumbersome D’.

I. Differentiable semigroups.

Basic theory. In the discrete-time case of decomposable systems of Arbib and
Manes (1974), a central concept is system dynamics. It will be recalled here briefly. Let
f be any category. A system dynamics in f is a pair (Q, f) where Q is a f object and
f: Q --> Q is a f morphism. A Yf morphism k: Q -> R is called a dynamorphism for the
system dynamics (Q, f) and (R, g) provided that the diagram

commutes, k:(Q, f) (R, g) is written to denote this fact. System dynamics in Yf and
dynamorphisms form a category, denoted Dyn (Yf).

In the discrete-time interpretation of the system dynamics (Q, f), f is the one-step
state-transition map for a system. More precisely, a decomposable system in Yf is a
6-tuple M (Q, f,/, g, Y, h) such that (Q, f) is a system dynamics (Q is called the state
space and f the state-transition map), I is a Yf object and g" I Q a Yf morphism (called
the input space and input map, respectively), and Y is a Yf object and h’Q- Y a Y
morphism (called the output space and output map, respectively). In the case that Yf is a
subcategory of LS, the system may be thought of as described by the equations

(1)
q(t + 1)=f(q(t))+ g(i(t)),

y(t)-h(q(t)).

Consult Arbib and Manes (1974) for a complete discussion.
To convert the above equations to continuous time, the one-step transition must

be replaced by an infinitesimal transition. That is, the system must now be thought of as
described by the equations

dg(t)
f(q(t)) + g(i(t)),

(2) dt

y(t)-h(q(t)).
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However, it is not quite that simple, because dq(t)/dt does not make sense in an
arbitrary subcategory of LS, since an arbitrary vector space has no natural topology.
Furthermore, it must be guaranteed that f is nice enough so that the above differential
equation may be solved. It is this problem of characterizing continuous-time dynamics
that is next investigated.

Let E be a 1.c.s. A map T: R/ L(E) is called a differentiable semigroup (abbre-
viated d.s.g.) on E if it has the following four properties:

(sl) T(0)= 1E, the identity map on E.
(s2) T(s + t) T(s)o T(t) for each s, R/.
(s3) T is pointwise differentiable, i.e., limt-,0 [(T(t)(e)-e)/t] exists for each e E.
(s4) {T(t)lO<=t<=e} is equicontinuous for some e >0.

The function 7-L(E) defined by 7(e)=limt_,o[(T(t)(e)-e)/t] is called the

infinitesimal generator of T.
Semigroups of this form, which also satisfy the condition that {(T(t)- 1)/t 0 < =<

e} is equicontinuous for some e >0, were previously studied by Waelbroeck (1964).
This condition is not enforced here because it is not necessary.

Let 3’/" be any subcategory of LCS. The category of differentiable system dynamics
in ffc, denoted D-Dyn (gr/’), is the full subcategory of Dyn (’/’) whose objects are pairs
(Q, f) such that is the infinitesimal generator of some d.s.g. The morphisms of
D-Dyn (ff0 are thus just the dynamorphisms. A differentiable decomposable system in ffc
is a decomposable system M (Q, r, L g, Y, h) in if/" such that (Q, ]e) is a differentiable
system dynamics. A differentiable decomposable system may be thought of as governed
by (2) above. In order that this internal system description be useful, it is necessary to
know that the differential equation is solvable, i.e., that dq(t)/dt [(q(t)) has a unique
solution for each initial condition.

Let E be a 1.c.s. Recall that D: ’I(R/,E) ’(R/,E) is the differentiation
operator. By a linear differential equation on E is meant an equation of the form

Du(t)=A(u(t)),

where A L(E). A solution to this equation with initial condition u (0) x (x E) is an

f ’I(R+, E) such that f(0) x, and for each tR+, Df(t)=A(f(t)).
PROPOSITION 1.1. Let E be a l.c.s., and let T be a d.s.g, on E.
(a) T (R/, L(E)).
(b) DT(t) (7-) r(t) r(t)o(7.)P, for each p N.
(c) For every e E, the map from R+ to E given by T(t)e is in (R+, E).
(d) The canonical map AT-.E :E ’(R+, E) given by x-(t T(t)x) is continuous.

Proof. Note that (s3) is equivalent to T ’a(R+, Ls(E)). Hence, (a) follows from
(b), which is routinely verified. (c) is an immediate consequence of (a). To show (d), let
V q/(’(R+, E)). A fundamental such V is of the form {q [sup a(D(q(t)) <- e},

tK

with a a continuous seminorm on E, p N, K c R+ compact, and e > 0. Let U
{x Elsup a(DOT(t)x) <- e}. Clearly hT-.z(U)c V, so it suffices to show that U

tK

(E). By (s4), there is a 3’ >0 such that {T(t)[O<-_t<-/} is equicontinuous. Hence, it
follows that {DT(t)[q <-p and K} is also equicontinuous, so there is a continuous
seminorm a on E such that for any x E, if B(x) <-- 1, then a(DqT(t)x) <- e for any q _-< p
and K. Hence, {x

THEOREM 1.2. LetE be a l.c.s., Ta d.s.g, on E, and x E. The differential equation
Du(t) 7-(u(t)) has a unique solution with u(O)= x, which is given by t- T(t)x.
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Proof. Clearly t-- T(t)x is a solution of Du(t) r(u(t)) with u(0) x. It remains
to verify the uniqueness of the solution. Let g 8’1(R/, E) be a solution with g(0) x.
Let y R/\{0} and define gY" [0, y]E by t-- T(y t)g(t). For [0, y], + h [0, y],

gY(t+h)-gY(t) T(y-(t+h))g(t+h)-T(y-t)g(t)
h h

(T(y-(t+h))-T(y-t))g(t) T(y-t)(g(t+h)-g(t))-h h

+ (T(y (t + h )) T(y t))(Dg(t))

+ (T(y -(t + h))- T(y t))( g(t + h)- g(t)_Dg(t))h

As h 0, the first term tends to -(,qT-o T(y-t))g(t), while the second term tends to
T(y-t)Dg(t). The third term approaches 0 as h 0, since t-- T(y-t)Dg(t) is
continuous (use Proposition 1.1 (c)). To show that the last term goes to 0 as h 0, choose
any V q/(E). It suffices to show that this term lies in V for all sufficiently small h. Using
the equicontinuity of {T(y-(t+h))-T(y-t)[O<-t<=e} for any e >0 (follows from
(s4)) and the fact that (g(t+h)-g(t))/h-Dg(t)O as h0, there is an e >0 and
UqI(E) such that for all h, O<h<=e, (g(t+h)-g(t))/h-Dg(t)U and (T(y-
(t + h)- T(y t))U c V. Thus, the last term can be made arbitrarily small by choosing h
small enough. Hence,

Dg (t) -(DT(y t))g(t) + T(y t)Dg(t)

-T(y t)org(t)+ T(y t)Dg(t).

Thus, DgY(t)=O, since rg(t)=Dg(t). Now by Theorem 0.1, for any seminorm c

continuous on E, a(gY(y)-gY(O))<-supo_zya(DgY(z)), so gY(y)=gY(0). Hence,
T(0)g(y) T(y)g(0), and since y is arbitrary, g(t)= T(t)g(O)= T(t)x for all R/.
Hence, the solution is unique, l-]

A consequence of the above theorem is that the infinitesimal generator uniquely
determines the d.s.g.

THEOREM 1.3. LetE andFbe l.c.s.’s with S a d.s.g, on E and Ta d.s.g, on F. For a
continuous linear map ]: E -Fto be a dynamorphism in LCS from (E, s) to (F, r), it is
necessary and sufficient that the diagram

E E

r. F
T(t)

commute for each R+. In particular, if ys -, then $ T.
Proof. If the above diagram commutes for each R+, then f is clearly a

dynamorphism in LCS. Conversely, let x E, and suppose fys rf. The functions
t-f(S(t)x) and t-- T(t)(f(x)) are each solutions to the differential equation Du(t)=
yr(u(t)) with u(0) f(x), as is readily verified. Hence, by Theorem 1.2, they are equal,
so that fo S(t) T(t)of for all R+. !,I

The d.s.g, determined by the infinitesimal generator g will be denoted
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A characterization theorem. A very important characterization of (R/, E) and
hence d.s.g.’s will now be developed. Denote by A(R/) the subspace of ’(R/)
consisting of the distributions which have finite support. The elements of A(R/) are just
finite linear combinations of elements of the form DPSt, where p N and 8t is the Dirac
measure at R/ (see Schwartz (1966, Ch. III, Thm. XXXV)). The next result gives
some important properties of A(R/).

LEMMA 1.4. (a) A(R+) is dense in "(R+).
(b) Every boundedsubset of g’(R+) is contained in the closure ofa bounded subset of

a(R+).
(c) The strong dual of A(R+) is (R+).
(d) A(R+) is a (DF) space.
(e) ’(R+) is a quasi-completion and a completion of A(R+).
Proof. (a) is obvious.
(b) Let Uo, U1, Uz," be the fundamental sequence of barreled neighborhoods

of 0 in ’(R/) given by

Uk q e ’(R+) sup ID"w(t)l <
,0. k +
q<=k

"(R+) is the strong dual of (R+) so (U0), (U1), (Uz), is a fundamental sequence
of bounded sets in g"(R/). Denote by Bk the intersection of (U) and A(R+). B is
surely bounded in A(R/), and it suffices to show that (B) c U, for then (Bk) U (all
polars taken in ("(R+), ’(R+))). However, it is clear that (k + 1)DJ6,B for each
/’<_-k, t[0, k], so that p(Bk)lDJc(t)[<-_l/(k+l) for each f<-k, t[0, k], i.e.,, U.

(c) This follows immediately from (b).
(d) This follows immediately from the definition of (DF) space, since the strong

dual of A(R/) is an (F) space, by (c).
(e) ’(R/) is complete. Hence, it is a completion of A(R/) since A(R/) is dense in

’(R/) by (a). 8"(R/) is also a quasi-completion of A(R+) since A(R/) is a (DF) space, by
(d), and a quasi-complete (DF) space is complete (Grothendieck (1973, Ch. 4, Pt. 3,
Prop. 4, Cor. 2)).

Let E be a l.c.s. Define the map A(R+) x (R+, E)-> E by (DV6,, q)-->Dq(t).
This map is clearly bilinear. Much more is true, in fact, but first a notation is given. If

’(R+, E) and e’ E’, (, e’) denotes the function t->(q(t), e’), a slight abuse of
notation, t->(q(t), e’) is clearly an element of (R+).

LEMMA 1.5. Let E be a l.c.s.
(a) For x A(R+), o (R+, E), and e’ E’, (du(x, q), e’) x((, e’)).
(b) is hypocontinuous.
Proof. (a) is immediate.
(b) Let V ?/(E) be a barrel. Let A be an absolutely convex closed bounded

subset of ’(R+, E), and let B be an absolutely convex closed bounded subset of A(R+).
It suffices to find U //(A(R+)) and We //(g(R+, E)) such that Oz(UA)c V and
O(B x IV) V. It suffices also to assume that V is the closed semiball of a continuous
seminorm a on E.

A is bounded, hence for any compact K R/, p N,

sup sup a(Dqq(x)) M< oo.
oA xK

q<--p
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Hence,

sup sup I(o (x), e’)l M;
oA xK
e’ g

i.e., {(q, e’) q, A, e’ g} is bounded in g’(R+). Put U {(q, e’} q e A, e’ V}. Then,

sup e’)l sup Ix((q, e’))l sup Ix(y)[ 1.
xeU xeU xU
eA eA ye U
e’ V e’ Y

Hence, qE(U x A) c V.
Next, B is the polar of a neighborhood of 0 in g’(R+) (polar for the pair

(A(Ii+), g’(R/))). Say,

xg
qp

for some K c R+ compact, p N, : > 0, without loss of generality. Put

W=lq g’(R+, E) sup a(Dqq(x)) <-_}.
xK
qNp

Now,

sup I(E(x, p), e’)l sup Ix((p, e’))l 1,
xB xeB
W
e’ Y e’ Y

since W, e’ V (, e’) B. Hence,

O(B x W) c V.

O(x,-) is called the extension of x to vector.valued functions. If E is quasi-
complete (for example), then has a unique (hypocontinuous) extension

" ’(R+) x (R+, E) E, in view of Lemma 1.4(a) and (b). It is easy to see that this
extension is exactly the extension of distributions to vector-valued functions, as
developed (in an entirely different manner) by Schwartz (1954-55). It is and not this
extension which is of primary value here, however.

With these preliminary results, the characterization theorem for (R+, E) may be
stated and proved.

THEOREM 1.6. Let E be a l,c.s. There is an isomorphism i’(R+,E)
Lb(A(R+),E) given by (xO(x, )). The inverse of this map is[(tf(B)).

Proofi It is easy to see thatf(t[()) is both a left and a right inverse to i, so that
is a bijection. The continuity of is an immediate consequence of the hypocontinuity of. To show that -1 is continuous, let U ((R+, E)). Without loss of generality, it
suces to assume that

U={ (R+,E)[sup(D(t))l},
tK

for some compact K c R+, p N, and a a continuous seminorm on E. Now set V equal
to the unit semiball of a, and let

A {Dqt 6 ll(I+)]q <= p and e K}.
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Clearly,
o--1 ({e I/’(A) V}) U,

so it suffices to show that A is bounded. However,

A={ (R+) sup lDqo(x)[ <-_ l },
xK
q<--p

which is in //((R/)). Hence A is bounded, and so -1 is continuous.

Examples of d.s.g.’s. Let E be any 1.c.s. On (R+, E) define the left shift by
(tR+) to be 6et’-pt, where qvt(S)=qg(tq-S). Clearly, tL((R+,E)). Define
’R+ L(8’(R+, E)) by z(t) 6et. Define on ’(R+) a similar right shift by 6e’t" f--
ft, where ft(q)=f(pt) for q (R+). [(ft-f)/t](q)=f((qt-q)/t), so 6e’t L("(R+)).
Define "R+ L(8"(R+)) by ’(t) 6e’,. Finally, note that 6e’t (A(R+)) c A(R+). Define
a(t)" R+ L(A(R+)) by a(t)= 6e’t

THEOREM 1.7. (a) ’ is a d.s.g, on "(R+) with infinitesimal generator D.
(b) a is a d.s.g, on A(R+) with infinitesimal generator D.
(c) IrE is a 1.c.s., then is a d.s.g, on 8’(R+, E) with infinitesimal generator D.
Proof. (a) Clearly ’ satisfies (Sl), (s2), and (s3), just by definition. To show (s4),

first note that {’(t)[O<-t<=e} is bounded for any e >0, since t--’(t) is continuous,
[0, e is compact in R/, the continuous image of a compact set is compact, and every
compact subset of 1.c.s. is bounded. However, ’(R/) is barreled, and so every
simply-bounded subset of L("(R/)) is equicontinuous (Schaefer (1971, Ch. 3, 4.2)).
Hence, {T(t) 0 -< -< e} is equicontinuous for any e > 0.

(b) This follows immediately from (a), since restrictions of equicontinuous sets are
equicontinuous (Bourbaki (1966, Ch. X, 2, Prop. 4)), and Dx A(R/) for x A(R/).

(c) Recall from Theorem 1.6 that (R/, E) L(A(R/), E). Furthermore, under
the canonical identification i’q-(x--C,E(x,)), it is clear that E(t)()=pt=
i(p)oa(t). The result now follows from (b).

Relationship to (Co) semigroulS. The theory of equicontinuous semigroups of
class (Co) is an alternate approach to semigroups of operators on locally convex spaces.
It will now be shown how these semigroups compare to d.s.g.’s. Let E be a sequentially-
complete 1.c.s., and let T: R/ L(E) be a map which satisfies axioms (sl) and (s2). T is
called an equicontinuous semigroup ofclass (Co) (abbreviated e.s.g.) if the following two
axioms are also satisfied (Yosida (1971, Ch. IX, 2)).

(el) lim,-,o T(t)x T(to)X for any toe R/, x E.
(e2) {T(t)[t R/} is equicontinuous.
Let ={xE[limt_.o[(T(t)-l)/t](x) exists}, and define A’4E by x--

limt_,0 [(T(t)- 1)/t](x). A is called the infinitesimal generator of T, and is dense in E
(Yosida (1971, Ch. IX, 2, Th. 1)).

PROPOSITIOrq 1.8. Let E be a l.c.s., and let T" R/- L(E).
(a) If T is a d.s.g., then T is an e.s.g, if and only ifE is sequentially complete and

{T(t) R+} is equicontinuous.
(b) IrE is sequentially complete and Tis an e.s.g., then Tis a d.s.g, ifand only if the

domain of the infinitesimal generator is all ofE.
Proof. The proof is an immediate consequence of the definitions. [-1

{(t) R/} is easily seen to be not equicontinuous, so not every d.s.g, is an e.s.g.
Conversely, let C(R/) denote the space of bounded uniformily continuous K-valued
functions on R/ with the sup-norm topology, and define T(t)’R/L(C(R/)) by
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(T(t)f)(x) f(x + t). T is an e.s.g. (Yosida (1971, Ch. IX, 2, Example 2)), but not a d.s.g.
since not every uniformly continuous function is differentiable. Hence, not every e.s.g.
is a d.s.g. Thus, neither of these semigroup concepts is subsumed by the other.

If E is a (B) space, a map T’ R+ -, L(E) is called a (Co) semigroup if (Sl), (s2), and
(el) are satisfied. Note that (s4) is satisfied automatically because a (B) space is barreled
and {T(t) 0 _-< _<- e } is surely bounded, so it is not necessary to require (s4) in the case of
a (Co) semigroup on a (B) space. The infinitesimal generator of a (Co) semigroup is
defined as for an e.s.g.; its domain is dense in E also. (Co) semigroups are related to
d.s.g.’s by the following result.

PROPOSITION 1.9. Let E be a (B) space, and let A L(E). A is the infinitesimal
generator of a unique (Co) semigroup (which is also a d.s.g.) given by t--eAt.

Proof. Consult Rudin (1973, 13.36). 71
For a more complete discussion of e.s.g.’s, consult Yosida (1971).
2. Input-output behavior. One of the key features of the approach to discrete-

time systems given in Arbib and Manes (1974) is that given a decomposable system M, a
canonical input-output behavior may be constructed which M realizes. In this section,
it is shown that an analogous such canonical behavior exists for continuous-time
systems.

Input behavior. Let Y{ be a category, and I an object of Y{. A free system dynamics
over I is a system dynamics (I, z) in yr and a yr morphism 7" I I such that for any
other system dynamics (Q, f) and morphism g" I - Q, there is a unique dynamorphism
p" (I, z) (Q, f) such that

commutes. Free system dynamics are unique up to isomorphism, and exist in many
categories, including LS. In LS, a free system dynamics is given by I=
{(" , in, , io) lik I and only finitely many terms nonzero}, z" I I is left-shift one
space, and r/" I I is injection into the rightmost position. If M (Q, f,/, g, Y, h) is a
decomposable system in fig’, the map p is called the teachability map of M. When
ffg’=LS, pisgivenby(... ,in,’" io)-’,k_O og(ik).SeeArbibandManes(1974)for
details.

In the continuous-time case, the free system dynamics must be augmented with a
smoothness condition. Let Yg" be a subcategory of LCS. For a yc object /, a free
differentiable system dynamics over I is a differentiable system dynamics (It, d) in ffr
and a continuous linear map r/" I I such that for any other differentiable system
dynamics (Q, f) in ffc and if{ morphism g" I Q, there is a unique dynamorphism
p" (It, d) - (Q, f) such that
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commutes. Free ditferentiable system dynamics are easily seen to be unique up to
isomorphism, if they exist. If M (O, f,/, g, Y, h) is a differentiable decomposable
system in %’, p is called the teachability map of Mror continuous time. It will be called
just the reachability map of M for the rest of this paper; the discrete-time reachability
map will be explicitly qualified as such. In this section, it will be shown that free
differentiable system dynamics exist in LCS, as well as QC and CS.

The case of Y{" LCS will now be considered. Recall from 1 that A(R+) is the
space of all distributions on R+ which have finite support, i.e., which have the form
Y’-k=l akDPktStk NOW in the general case, the inputs in I are distributions of finite
support, but they are/-valued rather than scalar-valued. That is, they are of the form

k= ik DPk6,, with ik 1, Pk N, tk R/, for 1 --< k -< n. The proper mathematical way
of viewing such/-valued distributions is via the tensor product A(R+)(R)L with the
identification Y’,,= ik DP6, Y7,= DPkt ( ik.

Recall that a is the d.s.g, on A(R+) given by the right-shift operator, and that the
infinitesimal generator of this d.s.g, is just the distributional differentiation operator D
restricted to A(R+). Let I be a 1.c.s. A semigroup of operatorsa(R)I may be induced on
A(R+) (R)I by defining (a(R)I)(t) a(t) (R) lt. To make this a d.s.g., a topology must be
placed on A(R/)(R)L The appropriate topology, as will now be shown, is the hypocon-
tinuous topology A(R/)(R)L

LEMMA 2.1. Let E and F be l.c.s.’s, H c L(E) an equicontinuous family. Then,
H (R) 1 {f(R) 1 If H} is an equicontinuous subset ofL(E (R)F).

Proof. Let p: E F E(R)F be the canonical map, which is hypocontinuous by
definition. It suffices to show that p (H 1) {p (h 1)1 h H} is equihypocon-
tinuous. Let V a//(E (R)F) and let A c E be bounded. Since H is equicontinuous, it is
bounded, so H(A) is also bounded (Grothendieck (1973, Ch. 3, Prop. 3, Cor. 1)). Since
p is hypocontinuous, there is a U q/(F) such that p(H(A) U)= V. However,
(Hxl)(AU)=(H(A)U). Hence po(HI)(AxU)=V. Next, let B=F be
bounded. Since p is hypocontinuous, there is a W q/(E) such that p(W B) V.
Since H is equicontinuous, there is a Y q/(E) such that H(Y)c W. Hence po(H
1)(Y B) p(W B) V. Thus, po(H 1) is equihypocontinuous, so H(R) 1 is equi-
continuous in L(E (R)F).

LEMMA 2.2. Let I be a l.c.s. a(R)I is a d.s.g, on A(R+)(R)L with infinitesimal
generator D (R) 1 .

Proof. (st) and (s2) are trivial. (s4) follows from Lemma 2.1. Hence, all that need be
shown is (s3). To do this, it suffices to show that for every pair (x, i) A(R/) I and
V 0//(A(R+) (R)I), there is a toe R/ such that 0< t<= t0 implies that p(((a(t)x -x)/t-
Dx), i) V, where p: A(R/) I A(R+)(R)I is the canonical map. Since p is hypocon-
tinuous and {i} is bounded, U={yA(R/)l(y,i)p-l(V)}tl(A(R+)). However,
limt_o(a(t)x-x)/t-Dx=O. Hence, there is a to such that 0<to-<t implies that
(a(t)x-x)/t-DxU. Thus, p(((a(t)x-x)/t-Dx),i)V for 0<t_-<to, so
a(R) It is differentiable with derivative D(R) lt.

To avoid confusion, a(R)I will be denoted a(R)tI when it operates on A(R/) (R)L
To show that a(R)eI is a free differentiable system dynamics over/, it is necessary

to find the reachability map p for each ditterentiable system dynamics (Q, f) in LCS and
continuous linear map g" I Q. p is constructed as follows. Recall from 1 that
o:A(R+)’(R+, Q)-Q is the extension to vector-valued functions given by
o ,k=l akDPk6t, q)= Y.k= ak(DPo)(tk), and that this map is bilinear and hypocon-
tinuous (see Lemma 1.5). Now recall from Proposition 1.1 that Arr.o Q ’(R+, Q) is
given by q-(t 5Yr(t)(q)). That is, Ar.o takes q to the "natural response" of the
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dynamics (Q, f) with initial state q. Define the intermediate map gr’ A(R+)x I- Q by
lxg lxAgf,0 t:I0

A(R+) x z A(R+) x Q A(R+) x (R+, Q) -----, Q.

That is, to compute r on the pair (Yk--- akDP%, i), first compute the state g(i)
associated with q, then compute its natural response trr(t)(g(i)), and finally apply
,k= akDP% to this natural response, to get Yk= akDp r(tk)(g(i)). The linear map
gr" A(R+)(R)I Q associated with bilinear map r is the reachability map p. To show
this it is first of all necessary to establish that gr is continuous, which is equivalent to r
hypocontinuous.

LEMMA 2.3. Let I and Q be l.c.s.’s, let g I Q be a continuous linear map, and let
(Q, ) be a differentiable system dynamics in LCS. The map gr. A(R+) x I Q is bilinear
and hypocontinuous.

Proof. Clearly r is bilinear. Since 1 and Arr.o are continuous (see Proposition
1.1 (d)), they each map bounded sets into bounded sets, whence the hypocontinuity of gr
is immediate from the hypocontinuity of o (see Lemma 1.5(b)).

Define r/" I - A(R/) (R)I to be the canonical injection 80(R) i. r/is clearly linear.
It is continuous because it is the restriction of the canonical projection p" A(R/) I-
A(R/)(R)I to {80} L With these data, the main result may be stated.

THEOREM 2.4. Letlbe a l.c.s., let (Q, f) be a differentiable system dynamics in LCS,
and let g:I Q be a continuous linear map. The pair (7, (A(R+)(R)L D(R) 1i)) is a free
differentiable system dynamics overL gr is the unique continuous linear map which makes
the diagram below commute.

D(

r. A(R+) (R)o t . A(R+) (R)ol

Proof. The triangle commutes by definition of r/ and gy. The square commutes
because gro(D(R)li)(DPit(R)i)=gy(DP/lt(R)i)=DP/lr(t)(g(i))=fP/lr(t)(g(i))=
]’P/Io gr(DP/t (R) i), in view of Theorem 1.3. To show gr is unique, suppose that the
above diagram also commutes with k replacing gr. (k gr)(0 (R) i) 0, by definition of gr.
(k gr)(DP8o(R) i) 0, by induction on p. To show (k gf)(Dtrt () i) 0, note that
(k -gf)(DPSt@i) (A(t)@ li)(k -g)(DPSo@i) O.

Thus, given a differentiable decomposable systemM (Q, f, I, g, Y, h) in LCS, the
reachability map of M is gr. A natural interpretation of gr will now be given. View the
dynamics of the system as being described by

dg(t)
dt

f(q(t))/ g(i(t)).

An element of A(R/)(R)! may be viewed (as shown previously) as a finite sum of the
form k--1 ik DPkrtk Interpret a typical element of this sum, ik DPkrtk, as an instan-
taneous input occurring at --tk (note the minus sign) with value ik DPkio. Assuming
that the system was previously at rest, the state at --tk will instantaneously jump to
fPkg(ik). At 0, it will have decayed to rf(tk)fPg(ik) DPk’f(tk)g(ik), in the absence
of any further inputs. For a finite sum of such inputs, merely apply the superposition
principle to get the resulting state at time 0.
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In the classical case of finite-dimensional linear systems, the state at time (with
zero initial state) is given by q(t)= t_ ef(t-s g(i(s)) ds (see Padulo and Arbib (1974,
Ch. 6)). In the present case, ef(t-s) is replaced by the more general response f(t-s).
g(i(s)) is interpreted by g(k=l ik DPkttk)= "/=1 g(ik)DPkttk" If t_ is interpreted as
evaluation in the sense of distributions, then indeed q(t)= It_o -r(t-s)g(i(s)) ds, as is
easily seen. Therefore, the above construction does reduce to the classical case for
finite-dimensional systems.

The significance of the above result must not be underestimated. Just as Arbib
(1973) showed that the correct input construction for group machines is the coproduct
construction and not the free monoid construction, so too does the above show that in
the case of differentiable decomposable systems in LCS, the correct space of input
signals is A(R/)(R)tL and not anything else. Nonetheless, the reader may feel a bit
disappointed at this point. After all, inputs to continuous-time systems do not consist of
just trains of impulses. Rather, they include at least smooth functions with compact
support, and hopefully a lot more. Can these somehow be included? The answer is yes,
provided that the construction is carried out in the right category. The problem is that
there are too many differentiable system dynamics in LCS; categories with more
completeness properties must be used. The two subcategories of LCS which will be
considered here are QC, the category of all quasi-complete 1.c.s.’s, and CS, the category
of all complete 1.c.s.’s. Since the analyses of these two cases are entirely similar, they will
be developed completely in parallel.

The obvious approach to extending Theorem 2.3 to the categories QC and CS is
just to apply" or to every space and map on the diagram. However, it is not quite that
simple, because the quasi-completion or completion of a d.s.g, is not necessarily a d.s.g.
Fortunately, this approach does work in the cases considered here.

Before proceeding further, it is useful to recall that 8"(R/) may be identified as
both a quasi-completion and a completion of A(R+) (see Lemma 1.4(e)). However,one
may not immediately assert that "(R+))I A(R+))I and "(R+)(R)I A(R+)(R)L
since the extension of a hypocontinuous bilinear map need not be hypocontinuous.
Nonetheless, in this particular case, the necessary result can be shown.

LEMMA 2.5. Let I be a quasi-complete (resp. complete) l.c.s.
(a) Every hypocontinuous bilinear map on A(R/)x I into a quasi-complete (resp.

complete) l.c.s, extends uniquely to a hypocontinuous bilinear map on ’(R/) x L
(b) ’(R/)(R)I is a dense subspace of A(R+)@tI (resp. A(R+)I).
Proof. (a) By Lemma 1.4(b), every bounded subset of ’(R+) is contained in the

closure of a bounded subset of A(R/). The result then follows from a standard extension
theorem of hypocontinuous bilinear mappings (see Grothendieck (1973, Ch. 3, Prop.
10)).

(b) This follows immediately from (a). [3
From now on, if I is a quasi-complete (resp. complete) 1.c.s., ’(R+))I and

A(R+))0I (resp. g’(R+))0I and A(R+))0I) shall be identified with each other.
Now it is possible to show that the appropriate extension of a(R)t! is the free

differentiable system dynamics in the QC and CS cases. The only step remaining is to
show that this extension is a d.s.g., and this is demonstrated next.

LEMMA 2.6. For any l.c.s. ! and any e > O,

{ (’ (R)tI)(t) l o < <- and { (a(R)I)(t)- l o < e}
are equicontinuous.
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Proof. {(’(t)- 1)/t[O<t<-e}t.J{D} is bounded for any e >0, since it is compact,
being the image of [0, t] under the continuous map t--) (’(t) 1)/t for > 0 and 0--) D.
Now "(R/) is barreled, and so every weakly bounded subset of L(’(R/)) is equicon-
tinuous, hence {(’(t)-1)/tlO<t<=e} is equicontinuous (see Schaefer (1971, Ch. III,
4.2)). Since restrictions of equicontinuous sets are equicontinuous (Bourbaki (1966,
Ch. X, 2, Prop. 4)), {(A(t)--l)/tlO<t<--e} is also equicontinuous. An appeal to
Lemma 2.1 now completes the proof, lq

LEMMA 2.7. LetE be a l.c.s., and let Tbe a d.s.g, on E. If {(T(t)- 1)/t 10 < -< e} is
equicontinuous ]:or some e > O, then Thas a unique extension (resp. ’) to a d.s.g, on J
(resp. ). This extension is given by (t)(x) (T(t))’(x) (resp. (t)(x) (T(t))’(x)), and its

infinitesimal generator is (#,r)’(resp. (gr).
Proof. Only the completion case will be given; the quasi-completion case is

entirely analogous. Verification of properties (sl), (s2) and (s4) for T is trivial. To verify
(s3), proceed as follows. Extensions of equicontinuous families are equicontinuous
(Bourbaki (1966, Ch. X, 2, Prop. 4)), so {((h)- 1)/hi 0< h <= e} is equicontinuous.
Let V 07/(7), and let R+. {((t + h)- ’(t))/h [Ihl< e/2, + h R+} is also equicon-
tinuous, and so there is a U 0?/() such that

Ihl<e/2
t+hii+

’(t+h)- ’(t)_ ,(t)o(,qT.)^) (U) c V.
h

Let x E. Since E is dense in , there is a y E such that x-y U. Thus,

Hence

Ihle/2
t+hR+

’(t+h)-’(t)-’(t)o(7-)^)(x-y) V.
h

limh._)0 ("(t -+- h)-h (t)_ ,(t) (,qT.)^) (x y)= 0,

and since

lim (’(’ + h)- (t)_ 7(t)o (,7.)^)(y)= 0,

it follows that

lhimo ( (t + h )- ’(t)
h

(t) (,qT-)^) (x) 0.

Hence T ’I(R+, Ls(E)), so (s3) is satisfied, and T is a d.s.g. [3
Thus, if I is a quasi-complete (resp. complete) 1.c.s., ’(R)I extends uniquely to a

d.s.g, on "(R/)e! (resp. 8"(R+)eI). This extension will be denoted ’(R)eI(resp.
’I).

The desired extension of Theorem 2.4, which follows readily from the preceding,
may now be stated.

THEOREM 2.8. (a) Let ! be a quasi-complete l.c.s., let (Q, f) be a differentiable
system dynamics in QC, and let g:I--)Q be a continuous linear map. The pair
(, (’(11+) /,D 1i)) is a free differentiable system dynamics over I in QC. ,: is the
unique continuous linear map which makes the diagram below commute.
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(b) A completely analogous result holds for CS.
The problem of interpreting Theorem 2.8 in a system-theoretic context remains.

Of course, it is just an extension of Theorem 2.3, but it is helpful to have some sort of
further characterization of the spaces ’(R+)(R)tL "(R+)@L and ’(R+))/. To
analyze these spaces, g"(R+) is first examined in a bit more detail. A distribution
A "(R/) has compact support, and may be interpreted as a generalized-function input
signal which starts at (is zero before) =-max (supp (A)) (supp means "support of")
and ends at time 0. The space @(R+) of all continuous functions with compact
support may be canonically embedded in ’(R/). In fact, each element of ’(R+) is of the
form k=oDkfk, where fk (R+) for O<=k<=n, and the derivatives are in the
generalized sense (see Rudin (1973, 6.27)). Each element of g"(R+)@oI may then be
identified as a vector-valued distribution with compact, finite-dimensional support, in a
manner analogous to the representation of A(R+) (R)I given previously. Thus, the space
of input signals I consists at least of elements of the form g= ik DP"fg, with ik i,
p N, fk @(R+), for all 1 <-k-< n. While this is a rather rich space of inputs, the
quasi-completion or completion operator adds quite a bit more, in general.

The space of all/-valued distributions on R+ with scalarly-compact support is
defined to be Lb(g’(R+), I) (see Schwartz (1957, 59, Ch. 1, p. 52)). Each element of
g"(R+)(R)I may be identified with an element of Lb(g’(R+), I) via Y f (R) i Y. i f.
Unfortunately, the topology which Lb (g’(R+), I) induces on g"(R+)(R) I is (by definition)
the e topology (see Grothendieck (1955) for definition and properties of this topology)
and not the fl topology. Since g"(R+) is nuclear, the e topology is exactly the 7r topology
(again see Grothendieck (1955)). Hence, the problem of showing when ff’(R+) (R)I and
its quasi-completion and completion may be identified with Lb(g’(R+), I) or one of its
subspaces reduces to determining when the/? and 7r topologies coincide. The next
result answers this question for (DF) spaces.

THEOREM 2.9. Let I be a quasi-complete (DF) space.
(a) I is complete.
(b) ’(R+)(R) ’(R+)(R)L
(c) ’(R+)(eI=’(R+)eI=L((R+),I), the last isomorphism being the

completion of the canonical injection.
(d) Every element ofL((R+), I) has compact support.
Proof. (a) Consult Grothendieck (1973, Ch. 4, Pt. 3, Prop. 4, Cot. 2).
(b) It suffices to show that every hypocontinuous bilinear map on "(R+)x I is

continuous, which is true since "(R+) and I are (DF) spaces (see Grothendieck (1973,
Ch. 4, Pt. 3, Th. 1)).

(c) The projective (zr) tensor product of two (DF) spaces is a (DF) space, as is its
completion (see Grothendieck (1955, Ch. 1, Prop. 5)). Hence, the first equality follows
from (a). L(’(R+), I)is complete (see Grothendieck (1973, Ch. 3, Prop. 3)), and so the
isomorphism follows from the nuclearity of ge’(R+) (which makes the ,r and e topologies
equal).

(d) This is a theorem of Schwartz (1957, 59, Ch. I, pp. 62-63).
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The above shows that in case the space I is a (DF) space, then in both the QC and
CS constructions, the space of inputs I may be identified with Lb((R/), I), and each
element has compact support. While this is admittedly a special case, it does cover many
important applications. For example, every normable space (and in particular every (B)
space) is a (DF) space.

The question of whether, in the case of I a general quasi-complete (resp. complete)
1.c.s., "(R/))I (resp. ’(R/)I) can be regarded (algebraically) as a subspace of
L((R/), I) is an injectivity problem, typical to topological-tensor-product theory.
Such injectivity problems are in general open questions. See Grothendieck (1955, Ch. I,
3, no. 2) for a discussion of related problems.

The rest of the interpretation of the QC and CS cases is a straightforward extension
of the LCS case. Further details are not given here.

Outlut Iehavior. Returning briefly to the discrete-time case, let rr be a category
and let Y be an object of r. A coffee system dynamics over Y is a system dynamics
Y, z) and a dyer morphism e Y Y such that for any other system dynamics (Q, f) and
r morphism h Q - Y, there is a unique dynamorphism tr (Q,/) --, (Y, z) such that

Q

Y Y Y

commutes. Cofree system dynamics are unique up to isomorphism, and exist in many
categories, including LS. In LS, a cofree system dynamics is given by Y=
{(y0, yl," "’, yn," )IYk Y}, z Y- Y is left shift with dropping the leftmost term,
and e’Y- Y is projection of the leftmost factor. If M-(Q, f,/, g, Y, h) is a de-
composable system in yr, tr is called the observability map of M. When yr LS, tr is
given by q-(h(q), h of(q),..., h ofn(q), .). Consult Arbib and Manes (1974) for
details.

The continuous-time case is analogous. Let Y{ be a subcategory of LCS. For a Y{

object Y, a coffee differentiable system dynamics over Y is a differentiable system
dynamics (Y, d) in Y{ and a Y{ morphism e Y- Y such that for any other differen-
tiable system dynamics (Q,f) in Y{ and Y{ morphism h’Q Y, there is a unique
dynamorphism tr’(Q, f) (Y, d) such that

O ;O

Y’ tYt
d

commutes. Cofree differentiable system dynamics are unique up to isomorphism, if they
exist. If M (Q, f,/, g, Y, h) is a differentiable decomposable system in yr, tr is called
the observability map of Mror continuous time. It will be called just the observability
map ofM for the rest of this paper; the discrete-time observability map will be explicitly
qualified as such. In contrast to the free case, it is a pleasant surprise to discover that the
construction of cofree dynamics is very easy. The space Yt will turn out to be 8’(R+, Y)
in each of the cases LCS, QC, amd CS. As shown next, all three cases may be treated at
once.
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LEMMA 2.10. Let Y be a 1.c.s. If Y is quasi-complete (resp. complete), then
(R+, Y) is also quasi-complete (resp. complete).

Proof. By Theorem 1.6, (R+, Y) may be identified with Lb(A(R+), Y). If Y is
quasi-complete, this space may be identified with Lb(’(R+), Y), since by Lemma 1.4,
every bounded subset of ’(R+) is contained in the closure of a bounded subset A(R+),
and "(R+) is a quasi-completion of A(R+). Since "(R+) is barreled, Lb(8"(R+), Y) is
quasi-complete (see Schaefer (1971, Ch. III, 4.4 Cor.)). Since ’(R+) is also bornologi-
cal, Lb(’(R+), Y) is complete whenever Y is complete (see Treves (1967, Thm. 32.2,
Cor.)).

Define e: (R/, Y) Y by e(q) (0). e is linear and continuous because e()
y(8o,p). Define hr:Q(R+, Y) by q--(t--hor(t)q). In view of Proposition

1.1(d), h is continuous.
THEOREM 2.11. Let 3’{ LCS, QC, or CS. Let Y be a l.c.s, in 77, let (O, f) be a

differentiable system dynamics in ?Tf, and let h: O Y be a continuous linear map. The
pair (e, (’(R/, Y), D)) is a coffee differentiable system dynamics over Y. h is the unique
continuous linear map which makes the diagram below commute.

O ;O

f(R+, Y) , f(R+, Y) Y
D

Proof. In view of Lemma 2.10, the proof is identical in each of the three cases. The
triangle commutes by definition of hr and e. The square commutes because D hr(q)
D(t- h Tr(t)q) t- h r(t)of(q) h of(q). Uniqueness is obvious, l-1

The interpretation is very simple, hr(q) is the response of the system

dq(t)
f(q(t)) / g(i(t)),

dt

y(t)=h(q(t)),

starting in state q at 0, assuming that no other inputs are applied. Hence, it is just h
applied to the natural response, i.e., t- h(-r(t)q).

Behaviors in general. The ability to construct a canonical input-output behavior
for a given system is crucial to the rest of this paper. Call a subcategory ’f of LCS
continuous-time behavioral if for any ’{ object E, both free and cofree differentiable
system dynamics exist over E. A continuous-time behavior in ’f is defined to be a
dynamorphism from a free differentiable system dynamics to a cofree ditterentiable
system dynamics, i.e., a dynamorphism of the form k" (It, d) (Y, d).

The categories if{= LCS, QC, and CS are continuous-time behavioral, as was
shown in this section. System-theoretically, this means that given any differentiable
decomposable system M (Q, ,/, g, Y, h) in ’{, there is a canonical continuous-time
behavior associated with M. Specifically, this behavior is given by tro p" (It, d) - Y, d),
where p’(I, d)-(Q,f) is the reachability map (for continuous time) of M and
tr" (Q, ) (Y, d) is the observability map (for continuous time) of M.

In the next section, the problem of constructing a canonical realization of a
continuous-time behavior will be addressed.
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3. Realization, reachability, and observability.
General principles. Let " LS, and let M (Q, f, I, g, Y, h) be a (discrete-time)

decomposable system in /’. M is reachable if its discrete-time reachability map
p" I Q is surjective and observable if its discrete-time observability map or: Q Y. is
injective. In Arbib and Manes (1974), it is shown how to generalize these ideas to
arbitrary categories. The key idea is the following.

Let 9’/" be any category. A morphism in 9’/" is called an epirnorphism if for any
morphisms g and h with g h and h of defined, g of h of ::> g h. In LS, the epimor-
phisms are precisely the surjections. Dually, f is a monornorphism in 9’c if for any
morphisms g and h with fog and foh defined, fog=foh=),g=h. In LS, the
monomorphisms are precisely the injections. An image-factorization system for 3’c is an
ordered pair (E, M) such that E is a class of epimorphisms in 9’{ and M is a class of
monomorphisms in yc, each closed under composition and each containing all iso-
morphisms, such that each 9’g" morphism f has a factorization f m e with e E and
m M which is unique up to isomorphism in the sense that if f rn e is another such
factorization, then there is an isomorphism such that the diagram

commutes. (e, m) is called an (E, M) factorization of f.
In LS, the only image-factorization system is (surjections, injections). Therefore,

the following definition is compatible with that given above. Let M be a decomposable
system in ’/’, and let (E, M) be an image-factorization system for 3’/’. M is E-reachable if
its discrete-time reachability map is in E, and M-observable if its discrete-time obser-
vability map is in M.

The categorical formulation of reachability and observability extends to the
continuous-time case by replacing I (resp. Y) by I (resp. Y0. Specifically, let 9’g" be a
continuous-time behavioral category, let M (Q, f,/, g, Y, h) be a differentiable
decomposable system in 3’/" and let (E, M) be an image-factorization system for if/’. M is
E-reachablefor continuous time if its reachability map for continuous time p: I - Q is in
E, and M is M-observable for continuous time if its observability map for continuous
time r’ Q Y, is in M. The rest of this paper will deal exclusively with continuous time,
so the adjective "continuous-time" will be dropped from reachable and observable.

Unlike the LS case of discrete time, in each of LCS, QC, and CS, there is more than
one image-factorization system, so that reachability and observability will depend upon
(E, M). Image-factorization systems for each of these three categories will be discussed
in detail in this section.

The realization problem is the converse of the problem discussed in the previous
section. Let 3’/" be a continuous-time behavioral category, and let I and Y be 3’/" objects.
Define the category D-Sys(9’{,/, Y) to have as objects differentiable decomposable
systems in if/" which have input space I and output space Y. A morphism
b:(Ql, fl, I, gl, Y, hl)-(Q2, f2, I, g2, Y, h2) in D-Sys(YC,/, Y) is a dynamorphism
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b’(Q1, fl) (02, f2) in D-Dyn() such that

g f

02 02 - Y
commutes. Given a continuous-time behavior k: (it, d) - Y,, d) in {, a realization of k
is a system in D-Sys(Y’,/, Y) such that tr p k, where p is the reachability map of M
and tr is the observability map of M. Let (E, M) be an image-factorization system for ’c.
M is an (E, M)-canonical realization of k if it is both E-reachable and M-observable.
(E, M) is compatible if every continuous-time behavior in ffc has an (E, M)-canonical
realization. Existence and uniqueness of canonical realizations will now be investigated.

In the discrete-time case, the dynamorphic-image lemma was used to guarantee
the existence of canonical realizations (see Arbib and Manes (1974, 4.4)). This lemma
may also be used in the continuous-time case, although additional conditions must be
imposed to insure that the fill-in is a differentiable system dynamics. The details follow.

LEMMA 3.1. Let ’ be a continuous-time behavioral category and (E, M) an
image-factorization system for ’. Let (Q, f) and (02, f2) be differentiable system
dynamics in 77{, let r:(Q,f)(Q2,f2) be a dynamorphism in D-Dyn(’c) and let
Q1 03 Q2 be an (E, M) factorization of r in ?TL

(a) There is a unique 77 morphism f3:03 03 such that

fl

03 ,v. Q3

02 Q2

commutes.
(b) ff either e is a quotient map or m is an embedding, (Q3, 3) is in D-Dyn(ff{).
(c) (E, M) induces an image-factorization system ]’or D-Dyn(ff{) whenever E c

quotient maps or M embeddings.
(d) I]’ {[rl(t)-l]/tlO<t<=e} is equicontinuous ]or some e >0, and e is a near

quotient, (Q3, f3) is in D-Dyn(ffr) and unique up to isomorphism (although (E, M) may
not induce an image-factorization system on D-Dyn(ff{) in this case).

Proof. (a) The existence and uniqueness of 3 is guaranteed by the dynamorphic-
image lemma (see Arbib and Manes (1974, 4.4)).

(b) Start by noting that the dynamorphic-image lemma also guarantees the
existence of a fill-in T(t) for each R/ as indicated below.
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Q1

Q2

T(t)

Q2

Clearly T(t) satisfies (sl) and (s2). If e is surjective, the continuity of e immediately gives
limt_,o[(T(t)x-x)/t]=fa(X) for each x Q3, so (s3) is satisfied. The equicontinuity
property (s4) follows easily from the quotient property. If m is an embedding, T is
essentially a sub-d.s.g, of r3, so (s3) and (s4) are easily seen to be satisfied.

(c) This follows routinely from (b).
(d) Suppose e is a near quotient and {(rl(t)-l)/tlO<t<-e} is equicontinuous,

where e >0. Because e is a near quotient, {((t)-l)/tlO<t<-_e} is equicontinuous,
where T is T (in the above diagram) restricted to e(Q). By (b), T is a d.s.g, on e(Q1)
with infinitesimal generator rio3. By Lemma 2.7, may be extended to a d.s.g. on 03.
By the uniqueness of the fill-in, the infinitesimal generator of must beA )3. Now
restricting T to Q3 yields a d.s.g. T with infinitesimal generator f3, because f3 takes Q3
into Q3. The uniqueness of (Q3, f3) up to isomorphism is a consequence of the
dynamorphic-image lemma.

Note that the factorizations guaranteed by Lemma 3.1 easily lift from D-Dyn() to
D-Sys(r{,/, Y) for any/, Y in r, forif r’(Q,fl, I, g, Y, h)-(QE, f2,[, g2, Y, h2) is a
morphism in D-Sys({,/, Y) and Q -5 Q3 - Q2 is an (E, M) factorization of r which lifts
to D-Dyn(r) with (Q,fl)-5(Qa, fa)-(QE, f2), this factorization also lifts to D-
Sys(LC, I, Y), as illustrated below.

gt

O3 - O3
Y02 -O2

h

From this observation and Lemma 3.1 follow readily conditions under which canonical
realizations exist and are unique up to isomorphism.

THEOREM 3.2. Let { be a continuous-time behavioral category, (E, M) an image-
factorization system for 77{, and (I, Y) a pair of Y objects. Each behavior k" (I, d)
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(Y,, d) in D-Sys(Yf, L Y) has a canonical realization which is unique up to isomorphism
in D-Sys(Yf, I, Y) if any of the conditions below is satisfied.

(i) E quotient maps.
(ii) M = embeddings.

(iii) E= near quotients and (I, d) is such that {(-a(t)- 1)It, 0<t-<_e} is equicon-
tinuous for some e > O. [3

Examples. The three categories LCS, QC, and CS will now be studied in the
context of canonical realizations. The first step is to characterize epimorphisms and
monomorphisms in these categories.

PROPOSITION 3.3. Let Y(be a full subcategory of LCS which contains K, and letfbe
a 77 morphism.

(a) f is an epimorphism if and only iff is dense.
(b) f is a monomorphism if and only iff is infective.
Proof. (a) Suppose f" E F is a dense map, and g and h are morphisms such that

gof h of. Now g(x)= h(x) for all x f(E), by construction. However, {x F[g(x)=
h(x)} is closed in F (see Bourbaki (1966, Ch. I, 8.1, Prop. 2, Cor. 1)). Hence, g h.
Conversely, assume f: E F is a Yf morphism which is not dense. Pick x F\f(E), and
let g F’ with g(x) 1 and g(f(E)) 0 (the existence of such a function is guaranteed by
the Hahn-Banach theorem). Now let h" K E be any nonzero linear map (necessarily
continuous), h g is a Y{" morphism, and (h g)of 0of, yet h g 0. Hence, f is not an
epimorphism.

(b) Every injection is clearly a monomorphism. Conversely, let f:EF be a
monomorphism which is not injective. Pick x ker(f), and define g’ K E by a a x.
g is necessarily continuous. Now let h F’\{0}. Clearly, fo(goh)=foO, yet goh 0.
Hence f is not a monomorphism. [3

The LCS case will be treated first.
THEOREM 3.4. Each ofthe following is a compatible image-factorization system for

LCS.
(a) (quotient maps, infections).
(b) (surfections, embeddings).
(c) (dense maps, closed embeddings).
Proof. Each of the factorizations is standard (see K6the (1969, 15, 4 (3 and 4))).

Let f’EF be a continuous linear map. E E/ker(f)F with fl the canonical

quotient map and fz:x-f(x) is a factorization for (a). Ef(E)F with f3"x-f(x)

and f4 the inclusion map is a factorization for (b). Finally, E f--F with fs" x -f(x)
and f6"xx is a factorization for (c). The compatibility in each case follows from
Theorem 3.2. I-1

Thus, in the LCS case, there are at least three distinct concepts of reachability. The
(quotient maps, injections) case is reachability in the strongest sense; each state may be
reached and the topology from the input space is preserved. Correspondingly, obser-
vability is in the weakest sense; the observability map is injective and continuous, but no
other properties are preserved. In the (surjections, embeddings) case, reachability is
weaker in the sense thatthe reachability map need not be a homomorphism. However,
observability is stronger in that the observability map is a homomorphism as well as an
injection. Finally, in the (dense maps, closed embeddings) case, the reachability is
weakest in the sense that states need not actually be reached, but rather only
approached to an arbitrary degree of approximation. Conversely, observability is in the
strongest sense; the observability map is an isomorphism of a closed subspace.
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An obvious approach to extending the image-factorization systems of Theorem 3.4
to QC (resp. CS) is to construct the quasi-completion (resp. completion) of the
image-factorization for LCS. That is, if f: E F is a continuous linear map of quasi-
complete (resp. complete) 1.c.s.’s, and E- G-F is an (E, M) factorization of f (where
(E, M) is an image-factorization system for LCS), regard the factorization E- F
(resp. E- t-F) as the induced factorization in QC (resp. CS). This technique works
for each of the image-factorization systems of Theorem 3.4, although the proof for the
(quotient maps, injections) case is not trivial.

Since a closed subspace of a quasi-complete (resp. complete) 1.c.s. is itself quasi-
complete (resp. complete), QC (resp. CS) inherits (dense maps, closed embeddings) as
an image-factorization system.

THEOREM 3.5. (dense maps, closed embeddings) is a compatible image-factoriza-
tion system for QC (resp. CS). 71

Thus, the weakest kind of reachability, together with the strongest kind of
observability, extends naturally to QC and CS. This is not the case for the other
image-factorization systems.

Since the completion of a linear subspace of a complete 1.c.s. is closed, it is
immediate that the extension of the LCS image-factorization system (surjections,
embeddings) to CS is just (dense maps, closed embeddings). The extension for QC
requires a new definition. Call a QC morphism f:E-> F a quasi-sur]ection if F is
isomorphic to a quasi-completion of f(E) (when f(E) has the relative topology induced
by F), and call f a quasi-closed embedding if it is an embedding and f(E) is quasi-closed
in F. (f(E) is quasi-closed in F if each closed and bounded subset of f(E) is closed in F.)

THEOREM 3.6. (quasi-surjections, quasi-closed embeddings) is an image-
factorization system for QC.

Proof. Thefactorization is lust the quasi-completion ofthe (surfections, embeddings)
factorization in LCS. That is, if f: E -F is a continuous linear map of quasi-complete
1.c.s.’s and EGF is a (surjections, embeddings) factorization of f in LCS, then
E- (-F is a (quasi-surjections, quasi-closed embeddings) factorization in QC. The
verification of the image-factorization system properties is routine. The compatibility is
a straightforward consequence of Theorem 3.2 and Lemma 2.7. [3

The extension of (quotient maps, injections) is substantially more difficult to
handle than the other two. The less-than-obvious part of the construction is showing
that the quasi-completion (resp. completion) of the monomorphic part of the factoriza-
tion is monomorphic. That is, show that rh (resp. rfi) is injective. To do this requires the
use of some relatively advanced concepts from category theory. The definitions may be
found in Schubert (1972). The reader who is not familiar with these concepts should
read the definition of quasi-quotient below and then skip to Theorem 3.9.

A QC morphism f: E F is called a quasi-quotient if it is a homomorphism andF is
a quasi-completion of f(E) (regarded as a subspace of F).

LEMM, 3.7. LetE andFbe quasi-complete (resp. complete) l.c.s.’s, letf EFbe a
continuous linear map, and let G {(x, y) s E xE Ix y s ker(f)}.

(a) G is a quasi-complete (resp. complete) l.c.s., regarded as a linear subspace of
EE.

(b) GE is a kernel pair orEE, where px’(x, y)x and pz’(x, y)- y.
(c) [ is a coequalizer in QC (resp. CS) ifand only if it is a quasi-quotient (resp. near

quotient), and in this case it is a coequalizer of G E.
Proof. (a) Since the product of quasi-complete (resp. complete) 1.c.s.’s is quasi-

complete (resp. complete), it suffices to show that G is closed in E x E. However, G is
fxf (-)

the kernel of the continuous linear map E xE F xF F, whence it is closed.
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(b) Clearly fop1 =fop2. Let H be a quasi-complete (resp. complete) 1.c.s. and let
gl :H-E and g :H-E be continuous linear maps such that fog1 fog2. Define
h:H G by x (gl(x), g2(x)), h is clearly linear and continuous, and it follows that the
diagram

/-/

E F

pl,p2

commutes. The uniqueness of h is clear. Hence, GE is a kernel pair of f in
QC (resp.

(c) It is easy to verify that the quotient maps are precisely the coequalizers in

LeS, and that the quotient map q" E E/(p-p)(G) is a coequalizer of G
in LeS. Also, note that LeS -, Qe (resp. ^: LOS--, eS) may be regarded as a functor,
and that (resp. ^) has a right adjoint, namely the inclusion functor Qe--, LeS (resp.
C$ LC$), and so preserves all colimits, particularly coequalizers. Hence, f is a
coequalizer if and only if it is the image under (resp. ^) of a quotient map.

LEMMA 3.8. Let ’be a category which has kernel pairs and coequalizers of kernel
pairs, and suppose that the class of all coequalizers is closed under composition. Then
(coequalizers, monomorphisms) is an image-actorization system .for ’, and iff is a ’morphism, a (coequalizers, monomorphisms) factorization ofis given byf m e, where
e is a coequalizer of a kernel pair (a, b) of, and m is the unique morphism making the
diagram

commute.

Proof. Consult Schubert (1972, 18.4.7).
THEOREM 3.9. (a) (quasi-quotients,.in]ections) is a compatible image-factorization

system ]’or QC.
(b) (near quotients, in]ections) is a compatible image-factorization system for CS.
Proof. That each is an image-factorization system follows from Lemmas 3.7 and

3.8. The compatibility follows from Theorem 3.2 and Lemma 2.7.
Thus, in summary, it is seen that there are several distinct concepts of reachability

and observability for infinite-dimensional linear systems. This is true not only of
continuous-time systems, but for topologized discrete-time systems as well (see Hegner
(1978b)).

4. Finite port systems.
Basic ideas. In this section, some detailed properties of differentiable de-

composable systemsM (Q, f, I, g, Y, h) for which I and Y are finite-dimensional will
be considered. Such systems will be termed finite port, to emphasize that it is the input
and output spaces, and not necessarily the state space, with the property of finite
dimensionality. Without loss of generality, it shall be assumed that when M is a finite
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port differentiable decomposable system, I K and Y Kp for some nonnegative
integers rn and p. Such a system will also be called m-input p-output. A continuous-time
behavior B’ (K", d) - (K(, d) in any LCS continuous-time behavioral category will be
termed a finite port behavior.

LEMMA 4.1. There are the following natural isomorphisms.
(a) A(R+)(R) K (A(R+))".
(b) 8"(R+)(R) K 8"(R+)) K f’(R+) K - (f’(R+))’.
(c) g’ (R/, Kp) g’ (R+)).
Proof. (a) For any 1.c.s. F whatever, there is a natural map F(R) K F given by

f(R)(kl,"’, k,)--(klf,’’’, k,f). It is easily verified that this map defines an iso-
morphism.

(b) From the proof of (a), "(R/) (R) K (ff’(R/)) can be deduced also, whence
the result, since g"(R/) is complete.

(c) The natural map ’(R/, Kp) ((R+))p given by (R/, K") (g’ (R+))p given
by f-- (rl of, , 7r, of), with rk the projection onto the kth element, is easily seen to
be an isomorphism. q

A finite port differentiable decomposable system, as defined above, has rn input
lines and p output lines. The signals applied to each input line are elements of A(R/) in
the LCS case, and elements of "(R/) in the QC and CS cases. The output signals on
each line are elements of g’ (R/) in all of the cases. As explained in 2, the input signals
are interpreted as occurring in negative time (--< t-< 0), while the output signals
occur for t>-0, after nonzero inputs have ceased. Given a specific behavior
B:(A(R/))m(’(R/)) (or B:(’(R/))"(g’(R/))), the mp matrix over g(R/)
whose (i, ])th entry is rioB(ini(o)), where ini is the ith canonical injection and cry. is the
]th canonical projection is called the weighting pattern WB of B. In words, the (i, ])th
entry of WB is the response on the/’th output line for _-> 0 due to an impulse at 0 on
the ith input line. Conversely, any m p matrix over *(R/) is the weighting pattern of a
unique behavior, as is shown below.

THEOREM 4.2. Let Wbe any m p matrix of elements of *(R+). Then Wuniquely
determines the behavior B of an m-input, p-output differentiable decomposable system in
LCS, QC, and CS.

Proof. Define B:A(R+)"f(R+)p by roB(ini(Dkt))=Dkft, where f is the
(i, ])th element of W and ft(x) f(t + x). B is a behavior by construction. In the cases of
QC and CS, there is a unique extension to ("(R+))m, since A(R/) is dense in f’(R/) (see
Lemma 1.4(a)). ]

Some properties ot realizations. Some specific properties of the reachability map,
observability map, and state space of certain realizations of a finite port differentiable
decomposable system will now be developed.

LEMMA 4.3. Let Q be a l.c.s., and let k: (’(R/)) Q be a continuous linear map.
(a) If k is a quotient map, then Q is complete.
(b) If k is surfective and Q is barreled, then f is a quotient map.
Proof. (Consult Schaefer (1971, Ch. IV, 8) for definitions and results used in this

proof.)
(a) Since (.f’(R/)) is the strong dual of the reflexive (F) space (f(R/))", it is

B-complete. The quotient of a B-complete space is B-complete, hence complete, so Q
is complete.

(b) This follows from (a) and the homomorphism theorem. q
Part (a) of Lemma 4.3 shows that for a finite port behavior B, the (quasi-quotients,

injections) factorization in QC and the (near quotients, injections) in CS are each simply



LINEAR DECOMPOSABLE SYSTEMS 267

the (quotient maps, injections) factorization. Furthermore, since (g(R+))p is an (F)
space, a quasi-closed subspace is already closed. Hence, the (quasi-surjections, quasi-
closed embeddings) factorization in QC reduces to the (dense maps, closed embed-
dings) factorization. Thus, for the image-factorization systems considered in this report,
thgre is no difference between the QC and CS cases for finite port systems.

THEOREM 4.4. Let Yg" LCS, QC, or CS, let B be the behavior of a finite port
differentiable decomposable system in Y{, and letM (Q, f, L g, Y, h) be a realization of
B. If the reachability map p is a quotient map or the observability map cr is an embedding,
then the state space Q is normable only if it is finite dimensional.

Proof. Consult Grothendieck (1955, Ch. II) for definitions and results used in this
proof. 8’(R/) and 8"(114) are each nuclear, and an appeal to the fact that subspaces and
quotient spaces of nuclear spaces are nuclear shows that Q must be nuclear. However, a
normable nuclear space must be finite dimensional, so Q can be normable only if it is
finite dimensional, l3

The above theorem has a rather remarkable implication. In each of the categories
LCS, QC, and CS, equipped with any of the image-factorization systems developed in
3, a canonical realization of a finite port differentiable decomposable system can have

a normable state space only in the very special case of a finite-dimensional system. This
has the further implication that unless the behavior admits a finite-dimensional
realization, there are at least two distinct concepts of canonical realization, as is now
shown.

THEOREM 4.5. Let B be a finite port behavior in LCS, QC or CS. The (quotient
maps, infection) factorization orb coincides with the (dense maps, closed embeddings)
factorization if and only if the resulting state space (in each case) is finite dimensional.

Proof. The state space in the (quotient maps, injections) case is a (DF) space,
because (A(R/)) and (8"(R/)) are each (DF) spaces, and the quotient of a (DF) space
is a (DF) space (K6the (1969, 29, 5.(1))). The state space in the (dense maps, closed
embeddings) case is an (F) space because (g’(R/))p is an (F) space, and a closed subspace
of an (F) space is clearly an (F) space. Hence, for the two realizations to coincide, the
state space must be both an (F) space and a (DF) space. However, this implies that it is a
(B) space, which, by Theorem 4.4, can happen only if it is finite dimensional.

Finally, a result which characterizes the case of a barreled state space is presented.
THEOREM 4.6. Let B be a finite port continuous-time behavior in any of the

categories LCS, QC, or CS, letM (Q, f, L g, Y, h) be a realization orB, and suppose the
state space Q is barreled. Then if the reachability map p is surfective, it is necessarily a
quotient map.

Proof. In the QC and CS cases, when the space of input signals is (ff’(R/))", the
result follows immediately from Lemma 4.3(b). In the LCS case, let " (’(R+)) t be
the completion of the reachability map. It suffices to show that is a quotient map, for
then p will also be a quotient, completing the proof. It is immediate that if k: E F is
any dense embedding with E barreled, then F must be barreled also. Via the natural
embedding Q p((8"(R/))"), it then follows that O(("(R+))") is barreled. Hence, in
view of Lemma 4.3(b), (g"(R/))"/ker(p) p (("(R/))). However, ("(R/))"/ker(p) is
already complete by Lemma 4.3(a), so it is complete dense subspace of , hence it must
be all of (. Thus is a quotient map.

COROLLARY 4.7. Let B be a finite port continuous-time behavior in any of the
categories LCS, QC, or CS, and let M (0, f, I, g, Y, h) be a realization of B. If the
teachability map p is surjective, then the state space 0 cannot be an infinite-dimensional
(B) space.
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In closing, it should be noted that it can be shown that the results 4.4 through 4.7
hold (at least) in the more general case that the input space I is the strong dual of a
reflexive nuclear (F) space and the output space Y is a nuclear (F) space. However,
these extensions do not seem to be of sufficient interest to justify the additional
complications involved in their presentation.

5. Remarks. Other workers in the algebraic theory of continuous-time linear
systems have used an ,"(R/) module framework rather than a semigroup approach. In
order to compare their work to that of the present report, it is necessary to recast the
d.s.g, approach in a module framework.

LEMMA 5.1. A(R+) and $"(R+) are each commutative rings with unit 80. Addition is
]ust that defined by the vector space structure; multiplication is convolution ofdistributions
and is continuous.

Proof. Proof of these properties for ’(R/) may be found in Treves (1967, Thm.
27.7). It is easy to see that A(R/) is a subring of ’(R/), so it inherits the required
properties.

LEMMA 5.2. (a) There is a bi]ective correspondence between differentiable system
dynamics and A(R+) modules whose action is hypocontinuous, the association being
given by

(Q, ) (io)" a(R/) x O -, Q,

b’ A(R+) x O - Q--(Q, q--b(o1, q)).

(b) There is a bifective correspondence between differentiable system dynamics on
quasi-complete (resp. complete) spaces and 8"(R+) modules on quasi-complete (resp.
complete) spaces whose action is hypocontinuous, the association being given by the
natural completions o] those of (a).

Proof. (a) Verification that (io)r is a module action is trivial. Reference to Lemma
2.3 and the preceding discussion provides verification of the bijectivity and continuity
properties.

(b) Follows from Lemma 2.5 and part (a). El
LEMMA 5.3. Let (Q, ]) be a differentiable system dynamics, with Q a (DF) space.

Then the associated module action is continuous.
Proof. Follows from Theorem 2.9(b).
Example 5.4. Kalman and Hautus (1972) deal exclusively with finite port systems

over the real field. A behavior in their framework is essentially a continuous
module morphism b: ($"(R/)) ((R/))p for finite m, p >0. (They explicitly reverse
the time variable and use 8"(R_) rather than "(R/), but this is merely a matter of
convenience.) As long as all spaces involved are at least quasi-complete (which is the
case in their framework), a behavior in their sense is equivalent to a finite port behavior
in QC. For simplicity, the rest of the discussion will be confined to the case m =p 1.

Their approach differs substantially from the one presented here in the way in
which they define a realization. Rather than invoking semigroup theory to ask how the
behavior describes an internal realization, they attempt to construct a differential
equation directly. However, as they observe, it is impossible to define a natural
truncation operator ’(R) 8"(R/). Thus, the complete meaning of a behavior in the
algebraic sense, namely truncating the input for > 0 and observing only the natural
response, cannot be extended without modification to the continuous-time case. To
remedy this situation, they define the state trajectory not as a function q(t) of time,
but rather as a function -,q(q) of test functions. Let @ be the space of infinitely
differentiable functions R K with compact support. The input at "time" # @ for
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i ’(R+)is (i*q)v @_ ’(R), where :@ @: (.)--o( .). Since (i*) @, trun-
cation is possible. Let Tr: @ *’(R/) be defined by Tr(q)(t) (t) for => 0 and 0 for
< 0. This lifts to the subspace of "(R/) consisting of those distributions defined by

elements of @. Factoring b’*’(R/) ’(R/) as an open surjection followed by an
injection "(R+)Q ’(R/), the state at "time" @ under input ’(R+) is
p (Tr(i*p)). The part of the state space Q on which a dynamics is constructed is (Tr(@)).
A differential equation is then defined on this space by

d
d-q (p F(q()) + G(i(p )),

where

The output side of the dynamics is defined by

H:Q- ’(R+) q -- o- (q)(0).

There are a number of drawbacks to this approach. First of all, the differential
equation is not of the usual variety. It also appears difficult to consider any evolution of
solutions of it, since dq(p)/dt need not be in the domain of F. At any rate, the dynamics
is only defined on part of Q. The approach of this paper does not share these difficulties.
Because all dynamics used are inherently endowed with a differential structure, this
truncation problem does not enter into the construction of an internal dynamics. Thus it
is possible to define a meaningful ordinary differential equation describing the dynamics
on the whole state space. It is easily verified that if (Q, f, K, g, K, h) is a QC realization
of a behavior b: ’(R+) *(R+) in the sense of this paper, then by defining F f[Tr(),
G g, H h, the triple (F, G, H) describing the internal dynamics in the sense of
Kalman and Hautus is recovered. Thus, their dynamics is a restriction of that developed
in this report.

Example 5.5. Bensoussan, Delfour and Mitter (1975) also use the module ’(R/)
as a starting point. (Actually, as in the case of Kalman and .Hautus, they use ’(R_).) A
behavior in their framework is an ’(R/) module morphism b:LI((R/),I)
’(R/, Y), where I and Y are reflexive separable (B) spaces, and LI(g’(R/), I) is the
space of nuclear operators from ’(R/) to L However, since (R/) is nuclear,
L!((R+),I)=L((R+),I)’(R+)(I=’(R/))L A proof of the first equality
may be found in Schaefer (1971, Ch. 3, 7.2); the last two isomorphisms are found in
Theorem 2.9. Thus, a behavior in the sense of Bensoussan, Delfour, and Mitter is a
special case of the concept of behavior of this report, with the category being either QC
or CS.

They factor the behavior using a (quotient maps, injections) factorization to.get a
natural state space. To verify that this corresponds to the factorization of this report, the
following extension.of Lemma 4.3 is needed.

LEMMA 5.6. Given a reflexive (B) space 1, a quotient of "(R/)I is always
complete.

Proof. In view of the proof of Lemma 4.3, it is only necessary to establish that
’(R/)(R)I is the strong dual of a reflexive (B) space. For a proof of a more general
result which establishes this fact, consult Grothendieck (1955, Ch. 2, 4, Lem. 9). I-1
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Example 5.5 (continued). Let ’(R+))I-g Q-g ’(R+, Y) be a (quotient maps,
injections) factorization of a behavior b in the framework of Bensoussan, Delfour and
Mitter. They define an internal representation (Q, F,/, G, Y, H) by identifying Q with
’(R+) (R)//ker(b) and defining F’ Q Q by F(p(i)) 6o) p(i), G(i) p(6o (R) i),
H(p(i)) p(tr(i))(0). It is easy to see that this is exactly a (quasi-quotients, injections)
canonical realization in QC and a (near quotients, injections) realization in CS, in view
of Lemma 5.6. Because they use a direct construction rather than universal con-
structions to arrive at the internal description, a rather involved procedure using infinite
series representation of nuclear operators is needed to show that the system behavior
satisfies the differential equation. Nonetheless, their results do correspond exactly to
realizations in QC and CS of systems whose input and output spaces are reflexive
separable (B) spaces.

Neither the Kalman and Hautus paper nor the Bensoussan, Delfour and Mitter
paper consider the problem of constructing a natural behavior from an internal
description, a key feature of the work reported here.

Kamen (1971) has also used an ’(R+)-module approach to describe continuous-
time linear systems. However, his work is primarily concerned with a module approach
to structure, and does not directly represent the internal dynamics with a differential
equation.

Because an ’(R+) module gives rise under suitable conditions to a differentiable
system dynamics, approaches using such modules as dynamics have a substantial
common base with the work of this report, and so relatively detailed comparisons have
been presented. On the other hand, there are numerous other approaches to the theory
of continuous-time linear systems. Two of the more recent are discussed in the next
examples. They differ fundamentally from differentiable decomposable systems in that
they do not require that the dynamics be differentiable. Instead, other assumptions are
made to provide a tractable theory. Only those aspects of these approaches which admit
a reasonably compact comparison to the present framework are discussed. Charac-
terization of systems within a categorical framework whose dynamics more closely
resemble those in the following two examples is the subject of other reports (Hegner
(1980a), (1980b), (1980c)), to which the reader is referred for more detailed discussions.

Example 5.7. Baras, Brockett, and Fuhrmann (1974), Baras and Brockett (1975),
and Baras and Dewilde (1976) consider systems of the form M=(Q,f, I, g, Y, h),
where Q is a Hilbert Space, f is the infinitesimal generator of a (Co) semigroup of
operators on Q, I and Y are finite dimensional, and g:I Q and h:Q Y are
continuous linear maps. Such systems are termed regular.

The weighting pattern of a regular system with I K and Y K is the m p
matrix of continuous functions from R+ to K whose (i,j)th entry is
roh T(t)ogoini, where in is the injection into the ith component, r is the projection
of the fth component, and T is the (Co) semigroup generated by f. The elements of the
weighting pattern matrix need not be infinitely differentiable, so there are regular
systems which are not differentiable. On the other hand, a necessary condition that a
matrix of continuous functions be the weighting pattern of a regular system is that it be
of exponential order (Baras and Brockett (1975, Thm. 4)). Since there are infinitely
differentiable functions which are not of exponential order, there are finite port
differentiable decomposable systems which are not regular. Of course, the framework
of this report also includes systems which are not finite port, whereas those cited above
do not.

A more interesting comparison is that of the concepts of reachability, obser-
vability, and canonicity. In Baras and Dewilde (1976), the systemM is called reachable
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if for any q Q, g’ T’(t)q 0, for all _-> 0, implies x 0. Using duality, this transforms
to the equivalent condition that {T(t)og(i)li I and R+} is dense in Q. This set
corresponds exactly to those states which can be reached by applying inputs which
consist entirely of finite linear combinations of impulses occurring for t-< 0. In the
context of differentiable decomposable systems, this transforms to the reachability map
p being dense when restricted to the subspace of (AR/))" consisting of those elements
which are in the linear span of {t It R+}’. It is not difficult to show that this subspace is
dense in (A(R/))", so this concept of reachability just corresponds to p being a dense
map. In the same paper, M is called observable if h T(t)q 0, for all _-> 0, implies
q 0. This is easily seen to be equivalent to the observability map tr" q h T(t)q being
injective. Finally, a canonical system in the framework of Baras and Dewilde is one
which is both reachable and observable. Since in any reasonable category of 1.c.s.’s,
every epimorphism is dense and every monomorphism is injective (Proposition 3.3),
this definition cannot distinguish between various types of canonicity. Theorem 4.5
shows that if this definition is used, there are always nonisomorphic canonical realiza-
tions of differentiable decomposable systems in LCS, QC, and CS, except in the case of
a finite-dimensional state space. Thus, if one accepts the restriction that a canonical
realization should be unique up to isomorphism, then this definition .cannot be
satisfactory. On the other hand, the concepts of canonical realization introduced in this
report, by their very nature, guarantee uniqueness up to isomorphism of canonical
realizations.

Example 5.8. Yamamoto (1978) has recently developed a theory of realization for
.continuous-time linear systems. He defines an m-port input signal to be an element of
(li__mL[-n, 0]) ", and a p-port output signal to be an element of (!im L2[0, rt])p. Here,
LE[a, b is the Hilbert space of all square integrable functions on the interval [a, b ], and
li__m (resp. li._m) denotes inductive (resp. projective) limit. A behavior in his framework is
a continuous linear map b" (li__m LE[-n, 0]) - (li.__m L2[0, n ]) which commutes with the
natural shift operators on these spaces, and which is subject to the additional technical
constraint that continuous functions be mapped to continuous functions in an appro-
priately smooth fashion.

Because the input and output signals are not parts of free or cofree constructions,
Yamamoto’s approach does not always yield a differential equation description such as
(2) of 1 as internal dynamics. Rather, a function of the form States Inputs over
[0, t] States must serve as the fundamental definition of internal dynamics, with the
existence of a differential equation describing the dynamics only occurring under
certain conditions.

On the one hand, since certain of the systems realizable within Yamamoto’s
framework do not have differentiable dynamics, and on the other hand, since all of his
systems are finite port, his approach overlaps somewhat that presented here, but neither
subsumes the other.

In constructing a canonical realization, Yamamoto correctly observes that there
need not be a unique (dense maps, injections) realization of a behavior. He then argues
that the state should be continuous determinable from the output, or equivalently, that
the observability map should be a closed embedding. Thus, he advocates the use of
(dense maps, closed embeddings) as the correct factorization to yield a canonical
realization, which does exist uniquely up to isomorphism. In the work presented here,
(dense maps, closed embeddings) is an image-factorization system for the categories
used, and so yields a concept of canonical realization. Thus, Yamamoto’s concept of
canonical realization is a particular member of the family of concepts of canonical
realization presented in this report.
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In closing, it is emphasized that while others have studied the problem of going
from behavior to internal dynamics of continuous-time linear systems, this paper
presents for the first time a canonical way to go from internal dynamics to behavior. The
concepts of reachability and observability depend fundamentally upon the way in which
the behavior is defined, and it is only after a satisfactory definition of canonical behavior is
found that a satisfactory definition of canonical realization may be found.

It is also possible to develop a general duality theory of differentiable de-
composable systems. However, it is necessary to introduce substantially more category
theory to do so. Consult Hegner (1978a) for details.

Acknowledgment. The author wishes to thank M. A. Arbib, E. G. Manes and T.
A. Cook for many helpful discussions during the course of this work.
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DESCRIBING THE BEHAVIOR OF EIGENVECTORS OF RANDOM
MATRICES USING SEQUENCES OF MEASURES ON ORTHOGONAL

GROUPS*

JACK W. SILVERSTEIN?

Abstract. A conjecture has previously been made on the chaotic behavior of the eigenvectors of a class
of n-dimensional random matrices, where n is very large [J. Silverstein, SIAM J. Appl. Math., 37 (1979), pp.
235-245]. Evidence supporting the conjecture has been given in the form of two limit theorems, as n -.
relating the random matrices to matrices formed from the Haar measure, h,, on the orthogonal group

The present paper considers a reformulation of the conjecture in terms of sequences of the form {,},
where for each n, tz,, is a Borel probability measure on 7,. A characterization of tz,, being "close" to h for n
large is developed. It is suggested that before a definition of what it means for {/x,} to be asymptotic Haar is
decided, properties {h,,} possess should first be proposed as possible necessary conditions. The limit theorems
are converted into properties on {tz,}. It is shown (Theorem 1) that one property is a consequence of the other.
Another property is proposed resulting in the construction of measures on D D[0, 1] which converge
weakly. It is shown (Theorem 2) that under this necessary condition for asymptotic Haar, not only is the
conjecture in general not true, but that the behavior of the eigenvectors of large dimensional sample
covariance matrices deviates significantly from being Haar distributed when the i.i.d, standardized
components making up the matrix differ in the fourth moment from 3.

1. Toward a definition of asymptotic Haar. In [6], a class of large dimensional,
symmetric, positive semidefinite random matrices resulted from a model for the
generation of neural connections of a hypothetical organism at birth. Denote by reV, one
of these random matrices which is n n, where n is very large. Briefly, W, is of the form
(1/C,,)V,V,, where V, (1)i]) is n dn and d is fixed; the l)i]’S are independent; l.)i] is 1
or -1 with equal probability, or zero; P (Pij) is n dn, where Pj Prob (v . 1), is
formed under rather general conditions, and, in particular, every row of P is a rotation
of the first row; and C, is the sum of the first row of P. It is shown in [6] that if C, -> o as
n--> oo, then the empirical distribution function F, (x) of the eigenvalues of W, con-
verges in probability as n--> o for each x to a fixed continuous distribution function
F(x). This result complements those on large dimensional random matrices (see for
example [2], [3], [5], [7], [9], [11], [12], [13]), in particular, results on sample covariance
matrices and matrices associated with the statistical theory of spectra.

In [10], a question is raised as to the behavior of the eigenvectors of W,. It has been
conjectured that this behavior is completely chaotic, and an attempt at formalizing this
conjecture has been the following: for each n let tT, denote the orthogonal group
consisting of n n orthogonal matrices, and let O t be distributed according to the
normalized Haar measure, h,, on tT,. Let D, be a nonrandom n n diagonal matrix with
diagonal elements arranged in nondecreasing order and such that the spectrum of D,
approaches F as n. The conjecture is that, for n large, the distribution of
W’, =-O,D,O r. is close (in some sense) to the distribution of W,.

Evidence supporting the conjecture is provided in [10] in the form of results which
demonstrate that W, and W’, have similar properties. Let {Pa oo(M)}a=0 be the spectral
family of M" W, or W’, let {x,}, x, l ", be any fixed sequence of unit vectors, and let
M’,M be two independent generations of M". Then it is proven in [10] that for
M"= W. or W’,

(.1) T i.p.
x,,P, (M")x. F(a) as n for every a [0, o),

* Received by the editors May 28. 1980. and in revised form September 3. 1980.

" Department of Mathematics. North Carolina State University. Raleigh, North Carolina 27650.
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and

(1.2)
1 i.p.
-tr [(P,I(M’;)-Pa2(M))E]---->F(al)+F(az)-2F(al)F(a2) as n
n

for every a 1, a2 [0, a3) where tr is the trace function. The belief has been that these two
results are enough to prove the conjecture.

The validity of the conjecture will imply certain properties of the neural model.
However, the same question can be asked of other classes of large dimensional random
matrices, at least for those not constructed from Gaussian variables. It is known, for
example, that the Wishart matrix W(I, dn) behaves like W’ except Dn is random (see
[1, Chapt. 13]). We remark here that the results in [10] are true for sample covariance
matrices in which the elements in the sample vectors are i.i.d., mean 0, having moments
of all orders (the results in 10] rely totally on [6, Lemma 1 ], and the proof of this lemma
can be slightly modified to include these cases). It is also believed that these results are
valid for more general random matrices. Thus, statements concerning Wn are relevant
for a large class of random matrices.

The present paper continues the investigation of the eigenvectors of Wn primarily
by developing some ideas toward a well-defined statement of the conjecture. To begin
with, it seems more fitting to shift the attention from Wn to the measure it induces on
Let On tTn be random, defined on the same probability space as Wn, and such that
Or,WnOn An, where An is diagonal with its diagonal elements arranged in nonde-
creasing order. We may as well assume that the distribution of On is the same as that of
OnJ for each diagonal J containing + l’s along its diagonal. Also we may assume that,
conditioned on any collection of subsets of eigenvalues of Wn being equal within each
subset, the distribution of On is the same as that of OnK whenever K (7n transforms
only among each subset of columns of On corresponding to a subset of equal eigen-
values, and leaves all other columns unchanged. Let ’n be the Borel probability
measure induced by

The conjecture can now be expressed in terms of vn and hn being "close" for n
large. We will use the expression asymptotic Haar to describe this, at present a vague
property on sequences {/zn} where, for each n, /xn is a Borel probability measure
on

The most obvious and by far the strongest statement of asymptotic Haar is: for
every e > 0, we have for all n sufficiently large I/xn (A)- hn (A)] < e, for every A Bn ---the collection of Borel sets of tTn (the metric on n being induced from the operator
norm). This definition is too restrictive if we do not want to exclude from being
asymptotic Haar all sequences {/zn} of atomic measures. If we let Sn, represent the
collection of all open balls on n having Haar measure 6, then another definition which
would allow certain sequences of atomic measures is: for every e > 0, 1 -> 6 > 0, we have
for all n sufficiently large ]/xn(B)-hn(B) < e for every B Sn,. Several alternative
definitions can certainly be proposed along the same lines.

It is the author’s view that, instead of initially focusing on one definition of
asymptotic Haar, attention should be drawn on intuitive and reasonable consequences
of the definition. Various properties {hn} possess should be considered as necessary
conditions for asymptotic Haar. Also, examples of sequences that should not be
asymptotic Haar need to be found. For example, (1.1) and (1.2) can be restated in terms
of the following properties.

We say that {un} satisfies property I if for any sequence of unit vectors {xn}, xn ,
any number b such that O-<b-<_ 1, and any sequence of integers {ran} satisfying
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0 -<_ m. -<_ n and m,,/n --> b as n , we have,
T T i.p

(1.3) x.O,,D(n, m,,)O,,x. b as n-,

where O,, is/x,-distributed, and where D(n, m,) is n n and has 0 for all its entries
except for l’s in the first m, diagonal entries.

We say that/x, satisfies property II if for any bl, b2 such that 0 =< bl, b2 <= 1, and any
.}, {m .} satisfying 0 _-< m <= n and m ’,,In --> bi as n oo,two sequences of integers {m 2

1, 2, we have,

(1.4)
1 a.tr [(O,D(n, m )0,, O’,D(n m2,,)0’,,7")2]

i.r,.

b + b2-2blb2 as n c,
n

where O,, and O’,, are independent and/x,-distributed.
The sequence {h,} satisfies I. The easiest way of seeing this is to use the fact that

xO,D(n, m,)O,x, is beta-distributed with mean m,/n which goes to b, and variance
2m,, (n m,,)/n 3 which goes to 0 (see 10, proof of Theorem 1 ]).

The sequence {u,} also satisfies I. The proof is elementary and technical and will be
omitted.

Theorem 1 in the next section shows that ii is a consequence of I, a somewhat
surprising result. Thus, we have so far only one necessary condition for asymptotic
Haar.

At this stage, we are in a position to consider whether I is enough to characterize
asymptotic Haar. For each n let/x, be absolutely continuous with respect to h,, having
density f.. Let {x.}, {m.} be as in I. Using the fact that xr.O,,D(n m,,)O 7".x. is beta-
distributed when O. is h.-distributed, we get from the Cauchy-Schwarz inequality:

2

x.O.D(n, m.)O.x. f,,(O,,) dh.(O.)
n

(1.5) <= x,,O.D(n, m.)O.x. dh.(O.) [2(O.)dh,,(O.)

n

Thus, if Ie f(O,,) dh,(O) o(n), then we get L-convergence in (1.3) so that {x}
satisfies I. This is true if {’,,} is any uniformly bounded sequence of densities. For
example, if f, 2 on a closed subset of ff, having Haar measure 1/2, and 0 elsewhere, then
{x,} satisfies I. Under the quite reasonable assumption that the above sequence should
not be considered to be asymptotic Haar, then we must conclude that I is not enough to
characterize asymptotic Haar.

Other properties of {h} therefore, need to be considered.
The remainder of this paper is devoted to developing another property, and

considering the consequences, if this property is to be a necessary condition for
asymptotic Haar.

For O e ff Haar-distributed and any unit vector x e N", we have Orx,-dis
tributed like (’1, ’_,""", ’,)/(F.__.I ’)/, where ’, ’,.. ’, are i.i.d, n(0, 1). Form

( [nt]h )n 1
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where [s] is the greatest integer -< s. We have Xn (t) a random element of D D[0, 1]
(the space of all r.c.l.1, functions on [0, 1]) and from straightforward applications of
Donsker’s Theorem and the theory of weak convergence of measures [4], we have:

(1.7) X, L W,
where W is a Brownian bridge. Hence, another necessary condition for asymptotic
Haar:

We say that {/xn} satisfies property III if, for every sequence {x,,}x, R qf unit
vectors, if (st1, st2, , ’n) Or,xn where On is/xn-distributed, and if Xn (t) is as in (1.6),
then (1.7) holds.

This property seems to be a reasonable necessary condition for asymptotic Haar. It
ensures that TO,,xn be close totbeing uniformly distributed on the unit sphere in R

TIn fact, O nXn need only have a distribution resembling the distribution of
(Y1, Y2,’", Yn)/(= y/2)1/2 where the Y’s are i.i.d, with E(Y)=I and
var (y2)= 2.

It would also seem reasonable that the behavior of the eigenvectors of large
dimensional sample covariance matrices be a prime example for asymptotic Haar. But
with the inclusion of III as a necessary condition, this is not the case. Let {u0}, i, f
1, 2,..., be i.i.d, random variables having mean 0, variance 1, and satisfying
E(lul")=<m for all integers m >2 and for some a. For each n let Un =(ui),

1, 2,. ., n, 1, 2,. , s, where n/s -+ y > 0 as n -+ oo, and let/zn be the measure
on 7n induced from (1/s)UnUr,. Theorem 2 in the next section shows that if E(u.) # 3,
then {/zn} does not satisfy III. The proof relies on standard tools used in the theory of
weak convergence on metric spaces, along with a recent result on the almost sure
convergence of the largest eigenvalue of sequences of sample covariance matrices [5],
where the above growth condition on the moments of lu{ is assumed.

In the formation of Wn, letting P0 P for all i, j where p : 1/2, we are in the above
case with E(u141) E(()ll/Xp)4) lip. We must therefore conclude that with III as a
necessary condition for asymptotic Haar, the original conjecture is, in general, false. It
may be argued that III is too strong, and it may be possible to find interesting properties
shared by {un} and {hn}. Moreover, {un} may still satisfy III when p 1/2 or when the Pii’s
are not all the same. However, we feel that failure to satisfy III indicates significant
departure from Haar measure.

The requirement that E(u11)= 3 suggests that for sample covariance matrices, in
order to satisfy III, the u0.’s have to be near to being Gaussian distributed, as in the
Wishart case. It appears worthwhile to determine what conditions on the ui’s are
needed to ensure III.

In conclusion, it should be emphasized that one purpose of this paper is to begin an
investigation on how to characterize the closeness of measures on n to Haar measure,
where n is large. The considerations given are clearly the author’s view on how to
proceed in defining asymptotic Haar. We suggest continuing the characterization by
finding other mappings of Tn onto a common metric space S, resulting in weak
convergence of the measures on S induced by {h,}. Intuitively, the mappings Fn: Tn S
should all be similar, sort of invariant across dimensions. They should also illuminate
the intrinsic uniformity of Haar measure.

We find it interesting that the Wn’s do .not in general fall into the present
characterization of asymptotic Haar. Still, {vn} and {hn} are similar, and a first step
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toward determining just how similar they are would be to understand those sequences
{Ix,} satisfying I.

The fact that sequences {tz,} arising from sample covariance matrices do not in
general satisfy III is of even greater interest, and this suggests a behavior of the
eigenvectors of these matrices for large n which runs counter to our intuition. A
description of this behavior is important to multivariate theory, and work in this area
should be pursued.

2. The theorems.
THEOREM 1. I-* II.
Proof. Assume {,} satisfies I. Let P(m,, O,)=-O,D(n, m,)Or. Convergence of

Tx,P(m,, O,)x, to b in probability is equivalent to

(2.1) E(x 7" Ie 7".P(m., O.)x.)= x.P(m., O.)x. dlx.(O.)b asn

and

(2.2) E((x.7"P(m., O.)x.)2) f (x 7- )2 2.P(m., O.)x. dlz.(O.) b as n-o.

The expected values in (2.1) and (2.2) are polynomials in the components of x, and are

therefore continuous in x,. Let {x’} and {x} be the sequences such that
/’(m,E(x O,)x,) attains its maximum at x, and its minimum at x’,’. Since (2 1) holds

for all sequences of unit vectors, it is certaintly true for {x’,} and {x}. Therefore,

(2.3) E(x.rP(m., O.)x.) b + o. (x.) where la. (x.)l <= a. and a. 0 as n az.

Similarly,

(2.4) .7"P(m., b 2E((x O.)x.)2) +/3. (x.) where I/3. (x.)l -</3. and/3. 0 as n .
Also, for any two sequences {x,}, {y,} we have

.7.p(m.
i.p.

b2(2.5) (x O.)x.)(yP(m., O.)y.) as/I

and as above we have

(2.6) .7.p m. 7- b 2E((x O.)x.)(y.P(m., O.)y.))= + y.(x., y.),

.}, {m]} be as in II. Sincewhere [y.(x., y.)[ 3’ and y. 0 as n - c. Let {m

(2.7)

1 2 rex. m2 1
O.)P(m 2 0’.)tr [(P(m., O.)-P(m., 0.))2] +--tr P(m,,

n n n n

1
--trP(m 2 0’ 0.),.)P(m.,
n

it is sufficient to prove

(2.8) tr P(m ., O.)P(m 2., 0’.) blb2
n

as n c.
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We have

1 1
On)O 2 tTtr P(m 1,,, O.)P(m2., 0’.) tr P(m .D(n, m .)0,,

(2.9)

1
tr onTp(ffl 1., O.)O’D(n, m)

E (O’,,Tp(m ’., 0.)0’.).
n=l

Y oYYn(m’., O.)o,,
Hi=l

where o’i is the ith column of O’ For fixed O’ we have, from (2.3)

1 "- 2 1 "., o’irP(m1. O,)ol, dtx,,(O,,)=m----e"b+ ., Oln(Oli)
n i=1 H i=1

and

Oln(Oi) <--Og

Therefore,

(2.11) ( 10,*)P(m20’))=(m2"IE tr P(m., \----/bl+n,
where g:, -+ 0 as n --> , and so

(_ 10,)p(m 2 0’))(2.12) E tr P(m,, ->bib2 as n --> .
We have

1 O,,)P(m, 0’,, , o m,,,tr P(m,,,
n i=1

(2.13)

For fixed O’ we have

1 m
.i P(m,,, 0,)oZ (O ,T

n i=1

+-- Z (o’iTp(m O,)oti. )(i2P(m’n, On)0!.i2 )"
n ii2

tr P(m

(2.14)
_,m(\---/ b21 + Z Pn (O li) "- Z ln (O.il, O.i2),

n i=1 n il#i2

from (2.4) and (2.6). The absolute value of the sum of the last two terms is bounded by
+ ,/. Therefore,

(2.15, E((nl-- 2 ,))=(mtr P(m ., O,)P(m,, 0,) \--- b+ r,
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where r/. - 0 as n o, so that

(2 16) E((n1-- tr P(m 10n)P(m, O’ (bib2)2 as n - c.

From (2.12) and (2.16) we get (2.8) and we are done.
THEOREM 2. Let {uij}i, j 1, 2,..., be i.i.d, random variables having mean 0,

variance 1, and satisfying E([u[’)< m for all integers m > 2, and for some a. For
each n let U (uij), 1, 2,. ., n, 1, 2,. , s, where (n/s) y > 0 as n c, and
let/ be the measure on ? induced from M --(1/s)UU.

If {/z} satisfies III, then E(ux)- 3.
Proof. Let F(a), a [0, ) be the empirical distribution function of the eigen-

values of Mn. Let Fy (a) be the limiting distribution function which is given in Theorem
2.1 of [7]. Since Fy(a) is continuous for a [0, o) we can conclude from Theorem 3.2 of
[7] that

(2.17) sup [F(a)-F(a)[ 0 as n.
[0,)

The functions F(a) and F(a) are elements of Do=Do[0,)-
{x D[0, c): lim,_, x(t) exists and is finite} [8]. From (2.17), it follows that

(2.18) F(a)----F(a) as n inDo.

Assume III and let {x,} be given. For our purpose X, (t) of (1.6) can be constructed
directly from M,. In fact, we have

P,, (Mn(2.19) X,,(F,(a)) -(x )x, -F,(a)),

where {P(M)} is the spectral family of M,. A simple extension of the material in [4, pp.
144-145] to nondecreasing functions in Do[0, ) and [4, Theorem 4.4] leads us to

conclude that III and (2.18) imply

0(2.20) X,(F,(a)) WFy(a Wa in Do.

For every positive integer r, we have

xMx trM a dX(F (a)) rar-lX(F (a)) da,

where we have used the fact that with probability 1, Xn(F(a)) vanishes outside a
bounded set.

For any b >0, the mapping that takes x Do to ob rar-lx(a)da is continuous.
Therefore, from [4, Theorem 5.1],

fo
b Io(2.22) ra-aX,,(Fn(a)) da ra- WY da.

With the growth condition on E(lull’) we have from [5] that the maximum
eigenvalue ofM converges almost surely to (1 + 4)2. Therefore, when b > (1 + 4)z we
have

f? fo
b

(2.23) ra-Xn(F,(a)) da- rar-x,(F,,(a)) da -------0 as n.
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Therefore,

)Iox,M,,x, trM - rar-1W] da ra r- W] da.
aO

The limiting distribution is thus Gaussian, with mean and variance only depending on
Wa.

Let r 1. We have

(1 ) 1
(2.25) x/ - tr Mn 1 ns yi,j (u.- 1),

which has mean 0 and variance (1/s)(E(u411)- 1) 0 as n - o. Therefore, we need only
consider 4-/4-)(x ,M,x,- 1). Let x, (1, 0, , 0). Then

(xr (1 ) ; 1
Mx- 1)= ui- 1 E (u- 1),

which from the Central Limit Theorem converges in distribution to n (0, (y/2)(E(u)
1)). Therefore, III depends on the value of E(u) which must be 3, because in the
Wishart case, u is n (0, 1).

We remark that from preliminary work, it is believed that E(u )= 3 is enough to
ensure (2.24) for all r 1.
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BOUNDS AND MAXIMUM PRINCIPLES FOR THE SOLUTION
OF THE LINEAR TRANSPORT EQUATION*

EDWARD W. LARSEN"

Abstract. Pointwise bounds are derived for the solution of time-independent linear transport problems
with surface sources in convex spatial domains. Under specified conditions, upper bounds are derived which,
as a function of position, decrease with distance from the boundary. Under other conditions, lower bounds are
derived which increase with distance from the boundary. Also, sufficient conditions are obtained for the
existence of maximum and minimum principles, and a counterexample is given which shows that such
principles do not always exist.

1. Iniroduction. The purpose of this article is to derive pointwise bounds on the
solution of time-independent linear transport problems for convex subcritical spatial
domains D with nonnegative surface sources and no interior sources. Our results have
potential applications for radiative transfer, neutron transport and other linear neutral-
particle transport processes.

In general, the bounds we derive are space-dependent. For certain problems, we
obtain upper bounds which are decreasing functions of distance from the boundary, and
for other problems we obtain lower bounds which are increasing functions of distance
from the boundary. We begin by treating forward and adjoint energy-dependent
transport problems, and then as a special case we consider one-speed problems. Also, if
the coefficients of the transport equation satisfy a certain condition, we show that a
maximum (or minimum) principle holds: the solution ,(x, I,E) of the forward
transport equation is bounded from above (below) by the supremum (infimum) of its
values over x 0D, 1"), pointing into D, and all E. For the adjoint equation, the sup (inf) is
taken over x 0D, 1 pointing out of D, and all E. To conclude this article, we present an
example which shows that a maximum principle does not always exist.

The derivation of pointwise bounds and maximum principles for the solution of
linear transport equations has been considered previously by other authors 1-3]. In 1 ],
Case and Zweifel derive a pointwise bound in order to prove the convergence of a
Neumann series. We show later that this bound is considerably different from the
bounds derived here. In [2], Bensoussan, Lions and Papanicolaou, and in [3], Williams,
derive a maximum principle for the solution 4’* of the adjoint time-dependent transport
equation in a "locally conservative" medium (one for which the collision process
conserves particles at each spatial point). This maximum principle has the following
form: for 0 =< <_- T, 4,*(x, fl, E, t) is bounded from above by the larger of the following
two quantities: (1) the supremum of *, over all x, 1), and E, of its values for 0, and (2)
the supremum of 4’* over x OD, all D,, all E, and 0 _-< t _<- T. Although the analyses in [2]
and [3] are inherently time-dependent, the maximum principle for the analogous
time-independent transport equation, which is derived here, is implicitly contained in
these results when combined with some analysis in [4]. (This was pointed out to the
author by M. Williams.)

In this article, we consider forward and adjoint energy-dependent transport
problems in 2, and we specialize our results to one-group transport problems in 3.
Then in 4 we discuss a subcritical transport problem for which a maximum principle
does not exist.

* Received by the editors January 4, 1980 and in revised form September 8, 1980. This work was
performed under the auspices of the U.S. Department of Energy.

Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los Alamos, New
Mexico 87545.
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2. The energy-dependent transport equation. Let D denote an open, convex
spatial domain with boundary OD possessing a piecewise-continuously varying unit
outer normal n, let S denote the unit sphere, and ,(x, fl, E) denote the flux of particles
at the point x e D, travelling in the direction fl e S, with energy E B [E0, Eli. To
simplify notation, we introduce the following phase spaces"

P {(x, II, E)[x e D, leS, E B},
F-= {(x, , E)[x e D, . n<0, E B},

R {(x, E)lx D, E B}.

The transport problem which t satisfies is then [5], [6]

(2.1) fl VxO + ETO XsO, (x, D,, E) P,

(2.2) $ f, (x, 1), E) e r-,
where the operators Xr and Xs are defined by

(2.3) XT@(X, ’, E) O’T(X, E)$(x, 11, E),

(2.4) XsO(X, l, E) I trs(X, f. D,’, E’ - E)O(x, f’, E’) dl’ dE’.

(For neutron transport problems, the operator Es accounts for all scatterings; elastic,
inelastic, and fission.) We require f, trT, and Ors to be nonnegative measurable functions
satisfying

sup f(x, fl, E) < oo
F-

and

(2.5) I rs(X, II. IT, E’ E) df’ dE’ <-_ CO’T(X E), (x, E) R,

where c is a nonnegative constant. We seek in the Banach space X of bounded,
measurable functions h (x, tl, E), defined for (x, 11, E) P U F-, and satisfying

Ilhl] sup Ih (x, n, E)I < oo.
PUF-

By integrating along a characteristic curve, we may invert the operator on the left
side of (2.1) and obtain an integral equation for :
(2.6) (I-L)d/= O.

Here

(2.7)
d(x,)

L$(x, D,, E/= fo exp (- O’T(X-- sO, E) ds (Xs$)(x- tIl, fl, E) dt,

d(x,n)

(2.8) O(x, n, E) fix- d (x, n)n, n, E] exp (-fo efT(X-- S 12, E) ds,

and d(x, 11) denotes the distance from x D to OD in the direction of -fl (see Fig. 1).
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FIG. 1. The functions d(x, D,) and O(x).

If r denotes the maximum optical thickness of D, i.e.,
d(x,f)

r sup f O’T(X-- sIl, E) ds,
P a0

then for any h X, (2.4), (2.5), and (2.7) give
d(x, 1"1)

]Lh (x, D,, E)I -< I0 exp (-fo O’T(X--S’, E)ds)ccrT(X--tf, E)llhll dt

and so,

(2.9) IILIlc(1-e-).
Thus, L is bounded, and if spr (L), the spectral radius of L, is less than 1, (2.6) can be
solved by means of a Neumann series,

(2.10) O E L"O.
n=0

The nth term of this series has the physical interpretation of being the flux of particles
which have undergone exactly n collisions.

Throughout this article, we shall assume spr (L)< 1, which means physically that
the transport problem (2.1), (2.2) is "subcritical" [6]. The case spr (L) 1 [or spr (L) >
1] corresponds physically to a "critical" [or "supercritical"] transport problem [61,
which does not have a physically meaningful solution for f> 0 even if a mathematical
solution exists.

Since f is nonnegative and bounded, O is nonnegative and an element of X. Then
since L is a positive operator, (2.10) implies => 0. Thus, we have:

THEOREM 1. There exists a unique, nonnegative solution X of problem (2.1),
(2.2).

THEOREM 2. For any h X, h >- O, there exists a unique, nonnegative solution ck X
of the integral equation (I- L)& h.

To proceed, let us define the function p (x), for x D, as the shortest distance from x
to OD. Equivalently,

(2.11) p(x)= inf d(x, II)
S
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which implies

(2.12) p(x)=<d(x, f), xD, D,S.

Also,

(2.13) p(x-sl)>=p(x)-s for x, (x-s)D.

(This inequality is obvious for s _>-p(x), since then the right side is nonpositive. For
s < p(x), Fig. 2 and the triangle inequality give

p (x- s) + s _-> Ix0 xl--> p (x),

which is equivalent to (2.13).)

FIG. 2. Geometrical properties of p(x).

Now we can prove our main result:
THEOREM 3. Let there exist a function of *(E) Xand a constant a >-_ 0 such that

(2.14) f(x, II, E) -<_ xF(E), (x, II, E) F-,

and

(2.15) a(E) + (s)(x, E) =< err (x, E)(E), (x, E) R.

Then the solution 4 of problem (2.1), (2.2)satisfies

(2.16) 0 _-< 4t(x, 11, E) -<_ (E) e -s(’), (x, II, E) P.

Proof. exists and is bounded and nonnegative by Theorem 1. To obtain the right
half of the inequality (2.16), we shall derive

(2.17a) (I-L)((E) e-(x)) (2 + W,

where

(2.17b) WX and W->0.

We subtract (2.6) from (2.17a) to obtain

(I- L)(xlr(E) e-’0)- ,(x, II, E)) W,

to which Theorem 2 applies, giving the desired result.



286 EDWARD W. LARSEN

Now we shall derive (2.17). First let us note that (E)e-’Cx) X, and since
L"X+X is bounded, (Q + W)X. Then since Q X, we have W X. Therefore, it
remains to show W-> 0, or equivalently,

(2.18) (I-L)(XP’(E)e-’W’))>=O(x, fl, E), (x, 1"1, E) P.

To derive (2.18), we use the inequality (2.13) and get
d(x, fl)

-L(*(E) e-(x)):-f exp (-y o’T(X--Sfl, E)ds)(,s*)(x-tl),,E)e -a(x-ta) dt
aO

d(x,l)

_-> -e-(x) Io exp (at-Io o’r(x-sl,E) ds)(Y_,s)(x-tl,E)dt.
However, the inequality (2.15) can be written as

--(.--.SXII)(X, E) _--> (O O’T(X, E))(E),
and so

-L((E) e -’(’))
(,a)

io s)>-e-S(")[ exp(at- o’r(x-sfl, E) d (a-r(x-ta, E))(E)dt
0

(x,)

e [-*(E) -(X){exp(d(x,") T(X s",E)ds)-l}
Rearranging this inequality and making use of (2.12), (2.14) and (2.8) gives

d(x,)

(I-L)((E) e-() N e(a(’n-((E) exp (-o r(-s, E)ds)
d(,)

*(E) exp (-[ T(X-- s", E) ds)
aO

Q(x, a, E).

This establishes the inequality (2.18) and completes the proof of the theorem.
At this point, we shall briefly discuss the existence of (E) and a, as described in

Theorem 3. For the special case Es 0, which corresponds to a purely absorbing
medium, we can obviously take

a inf g(x, E),
R

(E) sup /(x, 1, E).
xOD,l.n<0

If Y-.s # 0 and D is homogeneous, i.e., if O’T and O’s are independent of x, then it is
useful to consider the eigenvalue problem

(2.19) Ax(E) -o’r(E)x(E)+ J o’s(E’ + E)x(E’) dE’,

where we have defined

o’s(E’ .+ E) f o’s(’ 1, E’ .+ E) dfVo

This problem is closely related to that of computing the time eigenvalues for an infinite medium, for
which a lengthy discussion is given in [7].
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Rearranging (2.19) gives

(2.20) o.s jE ... E)
x(E) A(k )x(E) =- I (E) + , x(E’) dE’.

The condition (2.5) implies that for

k >-tr, =-inf trr (E),
B

A(h) is a bounded, positive operator on the space of bounded functions of E with sup
norm. Moreover, A (h 1) >A(A a) for -r, < h < h a, and A(k) - 0 as h o.

If2 rs and rr are such that for each h, A (h) possesses an eigenvalue/x (h) with a
corresponding positive eigenfunction gx (E), then ix(k) is a continuous, decreasing
function of h with (+c)= 0. If also (h)> 1 as h -r, then there exists a unique
value ho>-r, such that /x(ko) 1, and then (2.19) is satisfied with h =ho and
x(E) Xxo(E). If, in addition, ho-<-0, then a and (E) in Theorem 3 exist and may be
taken to be

-ho, (E) aXo(E),

where a is a suitable nonnegative constant.
The following is a simple consequence of Theorem 3.
THEOREM 4. (Maximum Principle). If

(2.21) O’T(X,E)>-- f trs(X, fl. tY, E’E) dfl’ dE’, (x, E) R,

then

(2.22) 4,(x, , E) _-< sup f, (x, 1, E) P.
F-

Proof. The inequality (2.21) implies that in Theorem 3 we may take

(E) sup f(x, n, E)
F-

and a 0. Then Theorem 3 immediately gives (2.22). V1
The proofs of the following two theorems are nearly identical to those of Theorems

3 and 4.
THEOREM 5. Let there exist a function dO(E) X and a constant fl >= 0 such that

and
O(E) _-< f(x, n, E), (x, II, E) F-,

/3 O(E) + cr(x, E)O(E) <= (XsO)(x, E), (x, E) R.

Then the solution O of the (assumed subcritical) problem (2.1), (2.2) satisfies

O(E) e"(x) _-< 4,(x, , E), (x, , E) P.

THEOREM 6. (Minimum Principle). If

I trs(X, 1). IY, E’ E) dl’ dE’, (x, E) R,O’T (X, E)

Conditions on A(h) which guarantee this are given in [8], 9], 10]. Generally, if/() exists, it is not less
in magnitude than any other eigenvalue of A(). If the given transport problem is multigroup 6], then rs and

rr are step functions of E’ and E with a finite number of jumps, and/z(h), (E) exist provided inf rs
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then

inf f_-< $(x, tl, E),
F-

(x, 1, E) e P.

For certain problems, the existence of/3 and q(E), as described in Theorem 5, can
be shown. For example, if D is homogeneous and (2.19) has a solution A0, Xxo(E) with
A0_-> 0 and Xxo(E)> 0, then we may take

fl Zo, (E) aXo(E),
where a is an appropriate nonnegative constant. Also, we show later in 3 that the
assumptions of Theorems 5 and 6 are not necessarily inconsistent with the subcriticality
condition on D, and that the assumptions of Theorems 3-6 reduce to explicit conditions
for one-group problems.

Now we shall consider adjoint energy-dependent neutron transport problems.
These can be written as [6]

--’’ Vxt* -{" XTt* XS**, (X, ’, E) ( P,

$*(x, fl, E) g(x, l), E), (x, fl, E) r+,
where E is defined by (2.4) with E’ and E interchanged in trs, and F+=
{(x, fl, E)[x OD, l) n > O, E B}. If we define

(2.23) n(x, n, E) ,*(x, -n, E),

then the problem for r/is

(2.24) fl. Vxr/+ Xr/= X/, (x, fl, E) e P,

(2.25) r/(x, II, E) g(x, -ll, E), (x, D,, E) e F-.

Thus, r/satisfies a "forward" transport problem of the type we have considered above
for $. In fact, the only difference between problems (2.24), (2.25) and (2.1), (2.2) is that
E and E’ are interchanged in the kernel of the scattering operator Xs. Thus, all of the
above results for , can be applied to r/, of course provided one everywhere replaces
Ors(X, 1)’. l, E’ E) by Ors(X, IT. fl, E - E’). Since the resulting pointwise bounds on
r/are independent of 1", then by (2.23) these bounds apply to $* also. Finally, it is clear
that if r/is bounded from above (or below) by the supremum (infimum) of its values on
F-, then $* is bounded from above (or below) by the supremum (infimum) of its values
on F+.

At this point, we can make contact with the ideas in [2] and [3], mentioned in 1. If
D is a spatial medium with the property that for every particle which enters a collision,
exactly one particle is emitted, then the medium D is termed "locally conservative" in
[2] and [3]; a necessary and sufficient condition for this is

(2.26) O’T(X E) I O’s(X, 1’. 1", E E’) d1’ dE’, (x, E) e R.

Under this condition, Theorems 4 and 6 both apply to the adjoint transport problem,
and so

(2.27) irn+f g _-< *(x, fl, E) =< Sr g, (x, fl, E) e P.

A weaker version of the right half of this inequality, described in 1, is derived for
time-dependent problems in [2] and [3].
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and

The following simple direct proof of (2.27) can be given. Let

se(x, 1, E) 6"(x, 1"1, E) irn+f g,

0(x, 1, E) SrU+p g $*(x, 1), E).

The functions : and 0 satisfy the adjoint transport equation, due to the condition (2.26),
and are nonnegative on F+, due to their definitions. Hence, they are nonnegative, and so
we obtain (2.27).

In [1 ], a bound on the solution 0 of (2.6) is obtained in the following way. First, it is
clear that (in the sup norm)

I]O]l supf=M.
F-

Next, the following estimate for IlLll is obtained:

(See (2.9).) With c required to be less than 1, one obtains immediately from (2.10),

M
O(x, 11, E) < IlOl[ < ----, (x, 11, E) P.

This bound is a constant, i.e., independent of x, fl, and E, but it.appears to be
applicable to problems for which Theorem 3 does not apply (since Theorem 3 depends
on the existence of a suitable function W(E)). However, this bound gives no informa-
tion about spatial decay from boundaries, and one cannot derive a maximum principle
from it.

3. The one-speed transport equation. We consider the one-speed transport
equation for two reasons. First, it is a model transport equation (all particles are
assumed to have the same energy) which has received wide theoretical attention.
Second, our results here are more general and explicit than in the energy-dependent
case.

We take D, OD, n, and S to be defined as in 2. Then the one-speed transport
problem is [5], [6]

(3.1)

[l’V0(x, fl)+tr(x)O(x,l)=r(x)c(x) I k(x,lr.l)0(x,l’)dtr, xsD, flsS,

(3.2) 0(x, fl) f(x, 1"1), x OD, 1. n < O.

Here, ,(x, 1) is the flux of particles at x s D travelling in the direction fl S, o"- (x) is
the mean free path at x, c (x) is the average number of particles emitted per collision at
x(c (x) 1 in a conservative medium), k is a nonnegative measurable scattering integral
normalized by

(3.3) I k(x, [1’. 1"1) drY= 1, xD,

and f is bounded, nonnegative, and measurable. We also require o-(x) and c(x) to be
nonnegative and measurable.
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Equations (3.1) and (3.2) can be converted into an integral equation which is
completely analogous to (2.6), and by repeating the analysis in 2 with very minor
modifications, we obtain the following results"

THEOREM 7. If
(3.4)

and

sup f(x, 12) M,
0D,l’l.n<0

inf tr(x)[ 1 c (x)] a => 0,
xO

then

0<-(x, l)<-Me-(x), xeD, IeS,

and consequently b is bounded from above by the supremum of its values on OD ]:or
II. n<0.

THEOREM 8. IfD is subcritical,

(3.5) inf f(x, If)= m,
0D,l’l.n<0

and

then

sup tr(x)[c (x)- 1]=/3 -> 0,
xD

and consequently 4 is bounded from below by the infimum of its values on OD ]’or
If. n<0.

We note that Theorem 7 holds if 0<= c(x)<= 1, Theorem 8 holds if 1-< c(x)<_-Co
(where Co is the constant critical value of c), and the results of both theorems are
independent of the scattering kernel k. We also have"

THEOREM 9. If cr(x)[1-c(x)]=O for each xeD, then with m and Mdefined as in
(3.4) and (3.5), 6 satisfies

m <-(x, II)_-<M, xeD, llS.

Theorem 9 applies in a conservative region [c(x)- 1], a vacuum fir(x)= 0], or a
composite region consisting of a conservative part and a vacuum part. Also, Theorem 9
has a simple direct proof which is analogous to that for (2.27).

The remarks made at the end of 2 concerning adjoint problems apply here also,
but now with the simplification that r/(x, ll) satisfies exactly (3.1) with a boundary
condition of the type (3.2). Therefore, all of the results in this section apply directly to r/,

and hence to *, with no need to redefine a or/3.
We conclude this section with three example problems for which the bounds in

Theorems 7 and 8 are "sharp".
First, we consider (3.1) and (3.2), c(x)= 1 and f(x, 1)=M constant. Then the

solution of (3.1) and (3.2) is exactly (x, ll)- M, which agrees with Theorems 7 and 8
since a =/3 0.

Second, we take c(x) 0, tr(x) cr constant and f(x, II) M constant. Then

(x, 1) Me-rd(x’a),

met(x) <p(x, 11), x6D, leS,
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and so

sup 4(x, D,)=Me-(x).

This is exactly the upper bound on given in Theorem 7, since a fi.

Third, we take c (x) c constant, fi(x) fi constant, f(x, 11) M constant,
and k (x, ’. II) 6 (1 II’. II). [This (singular) kernel describes a scattering process in
which the direction of a particle is unchanged in a collision.] Then for any c _-> 0,

For c -<_ 1,

0(x, 1)) Me -’(1-c)d(’’n).

sup 4(x, 1)=Me-r(1-c)o(x)

which is exactly the bound on given in Theorem 7, since a fi(1 -c). For c _-> 1,

inf g(x, l’l) Me’(c-a)(’)
DS

which is exactly the bound on O given in Theorem 8, since/3 fi(c 1) and m M.

4. A counterexample. Here we describe a simple example problem which shows
that a maximum principle need not exist in a subcritical medium. We consider the
transport problem (2.1), (2.2) with:

where

f(x, 1, E) M constant,

fiT(X, E) 1 (and SO ET I),

1 f O(E)(E’)
,Y_,s t (x, 1, E)

E1/2- Eo
0(x, ll’, E’) d’ dE’,

1, Eo<-E <-- E1/2,
O(E)

0, E1/2 <E <-_E1,

&(E) { 0, ENE<=Ex/2’
1, E1/E<E<-E1,

and E1/2 is any fixed number between Eo and El.
Since E2=0,s then one can easily show L2=0. Hence, spr (L)- 0, and so D is

subcritical. Also, the above definitions imply

ETa(X, 1, E) dlI dE.
0

Therefore, the average number of particles which are scattered out of any collision is
less than one.
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The explicit solution of this transport problem is

4,(x, tl, E)=

where

Me -d(x,fl) E/2<E<-E,

E1/2 Eo] Jo
e-ill(x- tl)) d Eo <= E <--El

1 I -d (x,l"l)H(x) -- .e dil.

The function H(x) satisfies 0 <H(x) <= 1 for all x D. For any point Xo D and direction
1o S, E/2 can be chosen close enough to Eo to make the ratio (E1-E/2)/(Ex/2-Eo)
sufficiently large so that $(x0, fl0, E)>M for Eo E E/2. In such a situation, the
maximum principle cannot hold. The mechanism which causes this is the scattering law,
which sends every scattered particle initially outside the interval leo, E/2] into this
interval, thus (potentially) causing the particle flux in this interval to be greater than the
largest value of the incident flux on the boundary.

Although the above problem does not, in general, possess a maximum principle,
we note that Theorem 4 applies to the adjoint problem, and so the adjoint flux * does
satisfy a maximum principle’

$*(x, fl, E) sup $*(x, fl, E), (x, fl, E) P.
F
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MARKOV CHANNELS ARE ASYMPTOTICALLY MEAN STATIONARY*

JOHN C. KIEFFER AND MAURICE RAHE

Abs(racL A type of discrete channel is defined which includes the finite-state channel of Blackwell et al.
(Ann. Math. Statist., 29 (1958), pp. 1209-1220) and the finite-state source encoder of Shannon (Bell System
Tech. J., 27 (1948), pp. 379-423,623-656) as special cases. It is shown that if the input source to the Markov
channel is asymptotically mean stationary in the sense of Gray and Kieffer, then the resulting input-output
pair measure is asymptotically mean stationary also. An application to probability theory is given regarding
the asymptotic behavior of a sequence of random stochastic matrices.

Introduction. Let (iq, ) be a measurable space and T:D,--> D. a measurable
transformation. Following Gray and Kieffer (1980), we say a probability measure/x on

-1 n-1
is asymptotically mean stationary (AMS) if limn_,o n i=o z(T-iE) exists, for all
E.

We state some properties of AMS measures which will be needed in this paper. We
refer the reader to Gray and Kieffer (1980) for their proof.

Properties of AMS measures. (In the following,/x is a fixed probability measure
on (fl, ).)

1. tz is AMS if and only if there exists a probability measure /2 on (fl, ),
stationary with respect to T, such that/x (E)=/2 (E) for every invariant set E e -.

2. is AMS if there exists a probability measure/2 on , stationary with respect to
T, such that if E is invariant and/2 (E) 0 then/x (E) 0.

3. If T is invertible,/x is AMS if and only if there exists a probability measure/2 on, stationary with respect to T, such that/z is absolutely continuous with respect to/2.
4. If /x is AMS and f:fl-->(-o, ) is a bounded measurable function, then

n-1 Tlimn_, n -1 Ei=O f" exists a.e. [g ].
Property 4 indicates why AMS measures are importantnamely, because the

individual ergodic theorem holds for bounded functions. We refer the reader to Gray
and Kieffer (1980) where numerous examples are given to show how AMS measures
may arise.

We define a source Ill,/x to be the pair consisting of some measurable space lq and
a probability measure/x on fl. If there is understood to be some measurable trans-
formation T:iq--> fl, we say the source [fl,/x] is stationary, ergodic, or AMS if is
respectively stationary, ergodic, or AMS relative to T.

A channel is a triple Ill, A, u l, where D,, A are measurable spaces and u

{Ux :x s l-l} is a family of probability measures on A, such that for each measurable subset
E of A, the map x--> u(E) from I-l--> [0, 1] is measurable. If Ill,/x is a source and
Ill, A, u] a channel,/u denotes the measure on the product measurable space l) A
such that

/x.(E) Jn .x(Ex) dtx(x)

for each measurable subset E of f x A, where E {y A: (x, y) E}. Suppose it is
understood that there are certain measurable transformations T1 1 - f and T2 A- A.
Let T x T2 :lq x A-. flx A be the measurable transformation such that

(Tl Tz)(w, h (Txw, .Tzh ), oo 1", h
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We define the channel [f/, A, u] to be stationary if

VTx(E)= vx(T-E), x fl,

E a measurable subset of A. [l), A, v] is AMS if for every AMS source [fl, tz ], tzv is
AMS relative to T1 T2. [f, A, v] is ergodic AMS if it is AMS and tzv is ergodic relative
to T T2 for every ergodic AMS source IDa, ].

If (f, ) is a measurable space, we let (1"/],) be the measurable space of
one-sided sequences from f; that is, f is the set of all sequences (0, 02, .) from
and is the usual product or-field of subsets of f]. We let (foo, --) be the
measurable space of two-sided sequences from f; that is, f is the set of all sequences
o (0)_o from f and is the usual product or-field. On the sequence spaces
f]o, f/, we always fix the measurable transformation to be the appropriate shift. That
is, the shift on f/] is the map T" fo -’) such that

T(091,092,’’ ’)=(092,093,’’ ");

the shift on foo is the map T:I)-f such that T(o) (o), where oI o+, Z, Z
denoting the set of all integers. We use the symbol T to denote a shift; the context
should make clear what space the shift operates on. If x f/ or I, x denotes the/th
coordinate of x, and Ix] denotes (x, xi+,..., x).

Sources of the form []o, tz], Ill,/z] are respectively called one-sided and
two-sided sources. Channels of the form [f], A], v], [I), A, v] are respectively
called one-sided and two-sided channels.

We fix for the rest of the paper measurable spaces (A, ), (B, ), where (A, ) is
arbitrary but B is a finite set and is the set of all subsets of B. We take B of the form
B {1, 2, , b} for some positive integer b. We let { Yg Z} denote the family of
maps from B-B such that Yi(y) yg, y B, Z. We let {Y 1, 2, ..} denote
the maps from B] - B such that Y (y) yg, y B, 1, 2,. .

We let be the set of all b x b stochastic matrices P {P(i, f): i, ] 1,. , b}. We
get a metric on by defining the distance [[P-P2[[ between Px, P2 to be

Eii=l [P(i, f)-P2(i,/’)]. (With this metric, may be thought of as a subset of b-dimensional Euclidean space.) With this metric, is a compact topological space.
We adjoin to the g-field/3() of all Borel subsets of , making a measurable
space. Hence, the one-sided and two-sided measurable spaces
(oo,/3 ()oo) are defined. We can also place on or the product topology, which
by Tychonoff’s theorem is compact. We note that if/3(),/3() denote the Borel
subsets of the topological spaces o, , then/( =/3() and/3() =/().
Hence, for example, the open and closed sets in (]o) are in

We define a map 4’ A]o -, to be stationary if 4" T T. 4. Similarly, we define
what it means for a map 4:A- oo to be stationary.

If P ]o, we let (P) be the set of all probability measures on] with respect to
which Y, Y,... is a Markov chain with transition matrices P1, P2,’". That is,

:g(P) if and only if
n-1

A[Y y,. , Y’,, y]= A[Y y] l-I P,(yi,
i=1

yl,’’’,ynB, n=l,2,....

Similarly, if P e oo, we let (P) be the set of all probability measures on such that

A[Ym=y,,,, Yn =yn]=A[Y,, =Y,,,] 1-I Pi(yi,
i=m

m, n Z, m <= n, y,, yn B.
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We define a one-sided channel [A,B1, P] to be Markov if there exists a
stationary measurable map 4" A’ such that Ux e (4(x)), x A. Similarly, we
define a two-sided channel [A, B, u] to be Markov if there is a stationary measurable
map 4’A such that Ux /(b(x)), x A.

Examples.
(a) Let C, D be finite sets, m be a positive integer, and E {1, 2,..., m}. Let

{Pc" c C} be stochastic m x m matrices. Let f: E D be given. Fixing some So e E, we
define a channel [C, (ExD) 1,u] where for all n=l,2,..., sl,...,snE,
yl,’", yn eD, and x e C,

,[(s’ y’)e (ExD)7" (sl yl) (s y) (s’ y,) (sn, y,)]

I Px,(si-l, si) ifyi=f(sg), i=l,...,n,
i=1

0 otherwise.

This is easily seen to be a Markov channel. It is called a finite-state channel. It was first
defined by Shannon (1948) in a formally different but equivalent form; Blackwell,
Breiman, and Thomasian (1958) and Breiman (1960) were the first to prove coding
theorems of information theory for this type of channel. The elements of E represent
channel states. Initially the channel is in state So and input symbol xl is introduced. The
channel then moves to state S with probability Pxl(So, s l) and emits the symbol
yl =f(Sl). Then input x2 is introduced, the channel moves to state s2 with prob-
ability Px2(Sl, s2) and y2 f(s2) is emitted. Successive inputs x3, x4, are processed by
the channel in this same manner.

(b) A finite-state source coder [Shannon (1948), Ziv (1978)] consists of finite sets
C, D, S and maps f: C x S S, g" C x S D. $ represents the set of states of the coder.
The codbr starts in state Sl S, and codes a sequence Xl, x2, of input letters from C
in the following way: The coder reads in xl and then emits the output yl g(xl, sl). The
coder then moves to state s2 =f(xl, s 1). The next symbol x2 is read in, an output
y2 g(x2, s2) occurs, and then the coder moves to state s3 f(x2, s2). Proceeding in this
way, a sequence x (Xl, x2," ")
D, while the coder moves through states f*(x) (Sl, s2, ’) S. We may think of the
action of this coder as being represented by the Markov channel [C, (S x D), u],
where

Vx[(S, y)

The main result of this paper (Theorems 6 and 7) is that one- and two-sided
Markov channels are AMS. Thus, if an AMS source [A, tz is the input to a Markov
channel [A, B, v], the resulting input-output joint distribution/xv is AMS. Thus, the
individual ergodic theorem will hold for/zv and also the Shannon-McMillan theorem
(see Gray and Kieffer (1980)). From an information-theoretic point of view, this is a
useful fact. For example, one of the steps in Breiman’s (1960) derivation of the capacity
of a finite-state channel was the demonstration that the Shannon-McMillan theorem
holds for/xv if [A,/x is a Markov source (a type of source defined later in the paper).
Since Markov sources are AMS (Theorem 9), we have considerably widened the class of
inputs [A,/z] for the finite-state channel for which the Shannon-McMillan theorem
will hold for

Main results. Our starting point on the lengthy road to proving Theorems 6 and 7
is a result due to Blackwell (1945) on the structure of finite state nonhomogeneous
Markov chains.
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Before stating this result, recall that a subset S of a vector space is a simplex if it is
the set of all convex combinations of a finite set of affinely independent vectors. There is
only one such set of affinely independent vectors which spans S; we will call this set the
basis for $. The dimension of S is the number of vectors in the basis for S.

If 12 is a set and M is a family of functions from fl- (, ), we let (M) denote
the smallest tr-field of subsets of l-I with respect to which all the functions in M are
measurable.

Let denote the left-hand tail -field <0 {Y: n }.
THEOREM 1 (Blackwell, (1945)). Let P. Then (P) is a simplex. If

{Q1," , Qk} is the basis for (P), then Qa, Qk are singular over ; that is, there
exist disfointF1, , Fg such that Qi() 1, 1,.. , k. Also, each Qi is -trivial
that is, Qi (F) 0 or 1, F , 1,. , k.

DEFIYIWION. We define P to be recurrent if for every open subset O of
containing P, O also contains Tip for infinitely many > 0 and infinitely many < 0. Let
R be the subset of consisting of all recurrent points. Then R is a measurable subset
of (for, in verifying the condition for membership in R, one can restrict oneself to
those O in a countable base for the -topology). We also note for later use that R is a
shift-invariant subset of , and that if is any probability measure on (, ())
stationary with respect to the shift, then (R)= 1.

In the following, if C,D are subsets of some common set, let CD=
{w C: wgD}. If C , let Ic :fl {0, 1} be the indicator function for C; that is, Ic is
{0, 1}-valued and is equal to one precisely on C.

LEMMA 1. LetP . Let {Q1,’ , Qk} be the basisfor(P). Then foreach n Z,
there are disjoint subsets B B k ofB such that

lim Q(YB)=I, ljk.

Proof. Let Q k -1 i Qi. Then Q (P). Fix disjoint F,..., Fg such that
Qi(.) 1, 1 k. By the Markov property,

O(G.]r,)=O(G.lr,, r,+,...) a.e. [03, ljk.

So by the martingale convergence theorem

Q(.]Y)Q(.I)=IF a.e.[O] asn-, ljk.

It follows that
Q(.[Y,)I a.e.[Q], ljk,

Q(.IY)O a.e.[Q,], ]f’, lj,f’k.

For each n Z, define B B g,.. as follows:

B {y B" O(.1 Y. y) > } {y B. O(F,I Y y) > } 1 ] k.

DEFINITION. For each k 2, 3,..., if is a probability measure on B, and
P,..., Pk_ , let A (, P,..., P_) be the probability measure on B such that

k-1

(, P," ", P-)(y, ", y) (y1) H P,(y,, y,+x), y,..., y, B.
i=1

THEOREM 2. LetP R. Let {O," , Ok} be the basisfor(P). For each n Zand
l]k, let

A={yB" Oi(Y,=y)>O}.
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(a) If y Aj., then

Y. P,(y,y’)=l, neZ, l<=j<-k.
y’A+I

(b) For each n Z, the sets A in,..., A k are disfoint.
Proof. We have

I=I/[Yn+IA+I] Oi[Yn=y]{ Y’. Pn(Y,Y’)},yA y’A+I

from which (a) follows.
Now we show (b). Fix m, a positive integer. Choose 6>0 so small that if

Pl, PZm i, Jl, ",/ltZm G i, and II/3, -/6,11 < 6, 1 <= <- 2m, then

(I) [h (o-,/3,,...,/3=)(E)_ h (o’,/51, ..,/5,,)(E)[ < m -I,
for every subset E of B2"+1 and every probability measure tr on B. Set W=
{s < 0: IIP / - Pill < -m -<i < m}. Since P is recurrent, W is infinite. For each n Z,
let B n,1... B kn be the disjoint subsets of B given by Lemma 1. Now for each 1 < j < k,

(m )lim A(o-, P-m,"" ", Ps+m-1) X B+i 1,

is the distribution of Ys-, under Qi. Hence, there must exist some s W suchwhere O-s
that

h (o’, P-., ", Pro-l) X B > 2m-1 l<-j<=k.

Doing this for each m 1, 2,..., and then letting m oo through an appropriate
subsequence, we will obtain measures 0(1)..., O()(P) and for each n s Z,
disjoint subsets E,..., E of B, such that

Q(J( ( EO=I, l<-j<-_k.
i------co

Since Q(I,..., Q(k are mutually singular, they are affinely independent, and so,
reordering Qt,..., Qtk if necessary, we have Q1- Q,’", Qk Qk. We must
then have A E, n Z, 1 <-] <-_ k, and so (b) follows.

Notation. If f is a set and x e 12, then for each Z, x denotes the sequence
(xi, x+,...) f. Similarly, if x ef and 1, 2,. , x denotes (x, x+, ..)e f.

THEOREM 3. LetP R. Let {Q1, , Qk} be the basis for (P). For each n e Z, let
A n,1... A be the disjoint subsets ofB given by Theorem 2. Let Q (P). Then

lim Q Y’e U A =1.
noO 1=1

Proof. Let A+ B\[U=I A] n 1 2,... By Theorem 2(a)

O[Y’ Y n+]=O[Y n+], n ,,...
Hence, the sequence {O(Y A+)} decreases to a limit a, which we must show to
be zero. Suppose a 0. Fix a positive integer m 2a -. As in the proo o Theorem 2,
choose 0 so small that (1) holds. We now define

W-- {s >0" IlP+i-PII < -m <_-i < m}.
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By recurrence of P, W is infinite. For each s Z and 1 _-< j _<- k, we have

A (crY, P_,, ", P+m-) A,+ 1,

is the distribution of Y_ under 0. Also, if s > m,where O’s

h(tr,P_,’..,P,+_x) X A,+] Ca,

where is the distribution of Y’_ under O. Hence, there must exist s W such that

a (, P-m, ", P-) N A. > 1 m-, 1 <] =< k

and

A(o’,P_,’",P-I) X A{+ >-
i=--tn 2

If we do this for each m and then let m - oo through an appropriate subsequence, we
will obtain Q,.. , Q+I (P) and disjoint sets El, ,Ek+I in 3oo such that

and

Oi(Ei) 1, l <-_i <-k,

O’/ E/) >--.
This would force the dimension of /(P) to be greater than k, a contradiction.

In the following, we regard R as a measurable space by adjoining to R the tr-field
of subsets of R consisting of those subsets of R which are contained in ()oo. Since R
is shift-invariant, we will regard the shift transformation as a map from R R.

DEFINITION. Let [R, B, 7] be the stationary channel such that, if P R is such
that //(P) has basis {Q,. , Qk}, then Tp k- jk=l Qj.

The channel JR, Boo, tT] is clearly stationary, for if QI,"" ’, Qk is the basis for
(P), then QI" T-l, Qg T-1 is the basis for I(TP), and so

k

Tp(E) k- , Q T-(E)= p(T-E).
=1

The hard part is to show that the map P- p(E) is a measurable map from R - [0, 1],
for each E e oo.

THEOREM 4. For each E oo, the map P- p(E) is a measurable map from
R [0, 1].

The proot is lengthy; it will be accomplished by a series of definitions and lemmas.
DEFINITION. If P , and C, D are nonempty subsets of B, we say CP-leads to D

if i/ P(i, j)= 1, C. Let * be the set of all finite sequences of disjoint nonempty
subsets of B. (Note for later use that 3" is a finite set.) If P and (C1,’’’, Ci),
(D,...,D) *, we say (C,..., Cj) P-leads to (D,...,D) if and only if j= k
and Ci P-leads to Di, 1<-i--< k. For N =0, 1,..., if 0"-v,"’’, ’v) (.)2N+1, we let
E0"-N, ’, ’N) be the set of all P e R such that there exists . (*)oo for which "i
Pt-leads to "i+, Z, and [,]v 0"-r, ", ’v).

LEMMA 2. E(’r) is a measurable subset of R, - (3")2v+1, N 0, 1,....
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Proof. Fix N and (z-v, , "iN) (,)2N+l. E(’I_N, ,IN) will be measurable if
it coincides with the set of all PeR such that for each K>N, there exists
(’-K, ", "?K) (*)2K+1 such that "iPi-leads to "i+1,-K _-<i <K, and (’-N, ’, "v)
(,I-m, ", ,IN) (for it is easy to see that the latter set is the intersection of a closed subset
of with R, and is therefore measurable). Clearly, E(,I-N, , ,Iv) is contained in the
set just defined. To show the reverse inclusion, let P be in the set just defined. Then we
can find, for eachK > N, a sequence ,I(K) (3,) such that [’I(C]_NN (,I-zv," ", ,IN) and
(:) Pi-leads toIi ,Ii+x,-K <-j<K. Placing the discrete topology on * and then the

product topology on (*) shows that (*) is compact since * is finite. Therefore,
we may choose a , (*) which is a limit of a convergent subsequence of {,I(}. By
definition of convergence in the product topology, we have for each 1, 2,... that
[,I]_i agrees with for infinitely many K. This implies that , P-leads to "g+l, Z,
and []u (r-u, ", ru). Hence, P E(r-u, ’,

DEFINITION. For N =0, 1,..., let us call a measurable map a" R
admissible if P E(a(P)) for each P R. If K > N, we say a"R (,)2+ extends
a" R (,)2u+a if a’(P)= (,I-K,’", ,IK) implies a(P)= (,I-u,"’,

LEMMA 3. Let N be a nonnegative integer. Let a" R (,)2u+1 be an admissible
measurable map. Then for any K >N there exists an admissible measurable map
a R (,)2K+1 which extends a.

Proof. Fix K > N. For each (,I-K, ’, ,IK) (,)ZK+, let

E ,I-t, ,IK {P R a P ,I-u, ,Iu } E ,I-:, ,IK

Let P R. Then P E(a(P)), since a is admissible. Thus, there exists r (,)o such
that ,I. Pi-leads to ,Ii+,iZ, and [,I]u=a(P). This implies PE’(,I_,...,,I).
Therefore,

(2) U E’(r)=R.
r(*)2K+1

Let r(1) ,I(s) be an enumeration of the elements of (,)2K+1 Let a’:R + (.)2K+1
be the measurable map such that

{P 6R:a’(P) r(i)} E’(r(i))\ [ O E’(r(i))], i=l,...,s.

(By (2), a’ is defined on all of R.) Then PE’(a’(P)), PR. It follows that a’ is
admissible and extends a.

LEMMA 4. There is a measurable map a: R (1") such that:
(a) If P R, then ]:or each Z, a (P)i has length equal to the dimension of J/l (P).
(b) IfP R, and the dimension ofel/l(P) is k, we have, setting ot(P)i (A_ i, _A/k)

for each Z, that A_ Pi- leads to A_ +I, Z, 1 <= <- k. There is an ordering of the basis
elements {01, Ok} of(P) so that

l<_j<_k.

Proof. Observe that U,, E(r)= R. (In fact, E(B)= R.) Let r,..., ,Ir be an
enumeration of * so that if < i then r has length at least that of r,. Define ao" R -+ *
to be the admissible measurable map such that

By Lemma 3, pick a sequence , c,.. of maps such that for each 1, 2,...,
is a measurable admissible map from R (,)i/ which extends _. Define
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a’R -(*) so that

ICe (P)I-i- oli(P), O, 1,

Then a is measurable. Fix P f R. Then by admissibility of each ai it follows that a (P)n
Pn-leads to ce (P)n+l,/7 f Z. Hence, all the a(P), have the same length, say k’. We show
that k’ is the dimension k of J//(P). Let {Q1, , Qk} be the basis for t/(P) and for each
n f Z, let A, ., A,k be the disjoint subsets of B given by Theorem 2. By Theorem 2
we have (A,... ,Aok)f * and P f E(Ao, ,Ao). Hence, by definition of a0, the
length k’ of ao(P) is at least k. Suppose k’> k. Letting a (P)i (_A ,.. , _A/’), f Z, we
have that _A{ Pi-leads to _Ai+l, if Z, l<-_j <-_k. Hence, we may construct measures
Q(1), Q(k,) fill(P) such that Q(i)(X=_o A{)=_ 1, 1 =</" < k’. Since Q(1), Q(k’)
are singular, they are aftinely independent; this contradicts the fact that the dimension
of //(P) is only k. Thus, k’- k and so (a) follows. We note that (b) follows by replacing
k’ by k in the preceding argument.

In the following, if S is a finite set, let ]S] denote the cardinality of S.
Proof of Theorem 4. Let a:R (.)o be the map of Lemma 4. Let K:R-,

{1, 2, ..} be the map such that K(P) is the dimension of (P), P f R. The map K is
measurable because c is measurable and K(P) is the length of a(P)o, Pf R. Fix
k f {1, 2,. .}. Let Rk {P f R: K(P) k}. If P f Rk, let

a (P), (_A (P),.. , _A(P)).
For each 1 <-I" <--k and N 1, 2,. ., we define a map O’Rk-),/ttN, where s is
the measurable space of probability measures on B2N+1 with the obvious (r-field of
measurable sets. If P f R,, (i-s, , iN) B2s+1,

Q(P)(i-s, iN)= Pt(it, it+l) [4]-N(P)I,
N

i-s f _Ai(P

0, otherwise.

Since a is measurable, the maps Q are measurable. (Measurability of Q means that
for each E B2s+1, the map P Q(P)(E) is a measurable map from Rk [0, 1].)
Note that by Lemma 4(b)

(3) Q(P) 1.

For each P f R and 1 =</_-< k, define Qi(P) as the element of JJ(P) such that, for
M 1, 2, ., and (Y-M, ", YM) B2+,

Qi(P)[ Y-M Y-M, ", Y YM]

lim Q(P)[(y_,..., y)B2s1" (y_,..., y)= (y_,..., y)].

(The limits all exist; otherwise by (3) there would be two elements of t/(P) concen-
trated on Xi=__Ai(P), which is impossible by Lemma 4(b).) It follows that, for P f Rk,
{Qx(P), , Qk(P)} is the basis for //(P), and for each 1 <_-j <_- k and E f, the map
P- Qi(P)(E) is a measurable map from gk--) [0, 1]. Hence, it follows that the map
P p(E) is a measurable map from R - [0, 1] for each E f N.

DEFINITION. For each y f B and P f, let QY(. ]P) be the element of (P) such
that QY(Y’x y[P) 1. Then, if P f, Q f ,//(P) and E

(4) Q[(Y,"" ")fiE] E O[Yn-1 y]QY((Y,"" ")fEIP-I), n fZ.
yeB
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If P , Odd(P),E3,
(5) O[(Y’,...)E]= Y O[Y’-I =y]OY((Y,...)EIP_I), n>=2.

THEOREM 5. Let PR. LetE={Y" in}. Suppose e[(Y, Y2," ")
El=0. Then O(E) 0 [or every O (P).

Proofi For each n Z, let A,, ,A . be the disjoint subsets of B given by
Theorem 2. By Theorem 3,

O(E)N 0 E Y’ e A
n=l ]=1

Fix the positive integer n. Since E is a tail event, there exists E. e such that

E ={(Y’+,...) E}.

By (5),

By (4),

LJ A X X O(Y’n=Y)OY((Y,
=1 j= yeAin

0 ’P[(Y1,’" ")eE]= P[(Y,+I,"" ’) e E,]., P[Yn =y]O((Y, )eE,,IP, ).
yB

k
Since P[Yn y]>0 for y Uj= An, we must have

O((Y’, .)E,]P) O,

This implies

k

y LIAr.
i=1

Q ECI Y U A =0, n=1,2,...

Hence, Q(E) 0.
THEOREM 6. Every one-sided Markov channel is AMS.
Proof. Let [A, B, v] be a one-sided Markov channel. Let "A be the

stationary map such that Vx e /((x)), x eA. Let [A], tz] be an AMS source. Let fi
be the stationary measure onM such that fi (E) Ix (E) for every invariant event E in
M1. Let & "A --> be the stationary map such that O’(x)g =&(xoo )1, iZ,xAoo
Note that

(6) &’(x) (x), xeAoo.

Let fi* be the stationary measure on such that

fi*[( Y1,"" ") e E] fi (E),

Let R’= {x eAoo" ’(x) e R}. Since fi*. (0’)-1 is a stationary measure on oo, the set R
has measure one under this measure. This implies fi*(R’)= 1. Let [Aoo, B, ] be a
stationary channel such that Px ,,(x, x e R’. Then/2" is a stationary measure on
Moo 3oo. Let (fi*P)’ be the stationary measure on M x3 induced by fi*P. Let
E be an invariant set in M x such that (/2*P)’(E) 0. We will show #v(E) 0.



302 JOHN C. KIEFFER AND MAURICE RAHE

(This will then imply tzv AMS, so we will be done.) We have

(fi*)’(E) IA ,,[(Y1, Y2," ")E,,7]dfi*(x)=O.

Hence, for/2*-almost all x R’,

t74,,(x)[(Y1,"" ")ExT]= 0.

Using Theorem 5 and the fact that fi*(R’)= 1, we have, for fi*-almost all x e A,
O(Exyl’(x))=O for all y

By (6), this reduces to the fact that for/2-almost all x e

(7) O(Exl(x))=O, y eB.

Now by (5) and the invariance of U, we have, for n 1, 2,...,

O (E. 10 (x)) O ((Y’+,. .) e E,+

--< E O((Y,’’ ") e E/,(x)).

Hence,

(8)

But

OY(Exl(x))<-B N-1 E
n=l

0 (( Y.,’" ") Ex/, I(Xn)) 0

for fi-almost all x e A 1, since

O(El(x)) O((Y’,

for fi- almost all x, by (7). Thus, the right-hand side of (8) converges to zero for each x in
some invariant set F of fi-measure 1. Since (F) =/./(F), the convergence also occurs
with/-measure 1. This forces Or(Exl(x))=O for/x-almost all x eA’. Since
((x)),

vx(E,,) Vx((Y:," ")eEx) <= E QY((Y’:z,
yeB

E O(Exl4)(x)),

and so Vx (Ex)= 0 for -almost all x e A’. Now

p.u(E)= f ux(Ex) die(x),

so uv(E) O.
THEOREM 7. Every two-sided Markov channel is AMS.
Proof. Let [A, B, v] be a two-sided Markov channel. Let 4, A- be the

stationary map such that vxe/((x)), xeA. Let R’={xeA’(x)eR}. Let
[A, B, ] be a stationary channel such that

Px ,(x), x e R’.

Let [A, be AMS. By Property 3 of AMS measures, let fi be a stationary measure on
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M such that/x is absolutely continuous with respect to/2. We will show that/xv is AMS
by showing that/xv is absolutely continuous with respect to the stationary measure
and then again appealing to Property 3. Suppose/.I,(E) 0. Then

Aoo
#x(Ex) d(x) =0.

This implies x(Ex) 0 for/2-almost all x Aoo. If x R’, then #x k-l(Q1 +" + Qk),
where {Q1,..., Qk} is the basis for d// (b (x )). Since Vx is a convex combination of
Qx," "’, Qk, we have that Vx is absolutely continuous with respect to , x R’. Since
/2 (R ’) 1, this gives Vx (Ex) 0 for -almost all x Aoo. But/x is absolutely continuous
with respect to/2, so v(E)- 0 for/x-almost all x. Thus,

/d,P(E) fA px(Ex) d/.,(x) 0.

Remark. The foregoing proof is much easier than that given for the one-sided
case, because for P oo the sets rid(P) have a simple structure. The sets rid(P), for
p o, do not have this structure. Intuitively speaking, the two-sided channels are
better behaved because the input source starts at time -oo, and therefore if we look at
the output at any finite time t, the output has had an infinite amount of time to "settle
down" before reaching time t.

If P -, recall that a nonempty subset B’ c B is a closed set of states for P if

Y P(x, y)= 1, x B’.
yB’

P is decomposable if there exist two disjoint closed sets of states. Otherwise, P is
indecomposable.

DEFINITION. Let b" A fg be a stationary measurable map and [Aoo1,nl ,v]a
one-sided Markov channel such that v, d// (b (x )), xA. We say the channel is
indecomposable if, for every xA and every positive integer n, the product
b (X)l$ (X )2 $(x)n is an indecomposable stochastic matrix. In similar fashion, one
can define what it means for a two-sided Markov channel to be indecomposable.

THEOREM 8. Indecomposable Markov channels are ergodic AMS channels.
Proof. We prove this for a one-sided channel. (The proof for the two-sided case is"

similar and so is omitted.) Let [A,B, v] be a one-sided Markov indecomposable
channel. Let b"A o be the stationary map such that v, (b (x)), x A. As in
the proof of Theorem 6, b’:Aoo is the map such that

ck’(x)i=qb(XT)l, Z, x Aoo.
Also, R’ (b’)-l(R) and [Aoo, Boo, 9] is a stationary channel such that

x v-,,, x R’.

Let [Aoo,/x be stationary and ergodic. We show/x# is ergodic. (At the end of the proof,
we show that this implies that [A, B, v] is an ergodic AMS channel.) For each n Z,
let ’n, I7", be the maps from Aoo Boo to A, B respectively, such that

X,,(x, y)=x,,, Y,,(x, y)=yn, (x, y)AxBoo.
Let -_oo be the tail o--field f"ln<o {’i, "i’i>-n} of subsets of d x@. /xt9 will be
ergodic if every invariant event in ff_oo has measure zero or one. (Since /z# is
stationary, given any invariant eventF in Moo x @oo, there is an invariant event E in
with/z#(EAF) 0; so we need only look in _oo to determine ergodicity.)
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Now if x R’ the dimension of /(O’(x)) is 1. (Otherwise, by Theorem 2, there
must exist positive integers m < n such that O (x),O (x),,/ & (x),, is decomposable,
contradicting the indecomposability of the channel.) Hence, {,,} is the basis for
//(&’(x)), x R’. Let E _oo be invariant. Then

For each x,

Exe= 71 {Y: i<=n},
n<O

and so #(E) 0 or 1 for/.,-almost all x, since #x is -trivial for x R’ by Theorem 1,
and (R’) 1. Now the invariance of E and the stationarity of [Aoo, B, #] imply that,(E) #T (ETx) for/.,-almost all x. Hence, there must exist a real number a such that
#x (Ex) a for tt-almost all x, since/., is ergodic. Thus, either 3 (Ex) 0 for/.t-almost x,
or (E,)= 1 for/.,-almost all x. In the one case, this gives t,#(E)= 0 and in the other,
(E) 1.

To complete the proof, we now let [A, be an arbitrary one-sided ergodic AMS
source. We show/v is ergodic. Let/2, be the stationary ergodic measure on s such
that coincides with tt for invariant events. Let/.Z* and (*)’ be as defined in the proof
of Theorem 6. Then, by the first part of this proof, * is ergodic and so (/2,*#)’ is
ergodic. But, as observed in the proof of Theorem 6, (*)’ has the property that if E is
invariant and (d,* )’(E) 0, then tv(E) 0. Hence, ergodicity of (/X* )’ implies that of

Remark. Pfaffelhuber (1971) did part of what we did here for the case of a
finite-state indecomposable channel [A, B1, v]. He gives an explicit construction of a
two-sided stationary channel [Aoo, B, v’] which is roughly the same as our channel
[Aoo, Boo, ] in the sense that v’ ,,, x R’. He shows that for a stationary ergodic
source [A,/],/.iv’ is ergodic. However, he does not show that the original channel

1, v] is an ergodic AMS channel.
DEFINITION. A one-sided source [A, is a Markov source if A is finite, if there

exists a finite set S and a map f: S--> A, and if there is a homogeneous Markov chain
X1, Xe,. with state space $ such that the ioint distribution of f(X1), f(X), is .
Similarly, one defines two-sided Markov sources.

The following could be deduced directly using properties of Markov chains, but it is
interesting to note that it follows from Theorems 6 and 7.

THEOREM 9. A Markov source is AMS.
Proof for one-sided case. Let [A, ] be a one-sided Markov source. Let

(X1, Xe, .) be the homogeneous S-valued Markov chain such that the distribution of
(f(X1), f(X2),"" ") is . Let A be the distribution of (X1, X2,’" "). Define a channel
[A], S], ] where A for all x A]. This is a Markov channel, so if [A], or] is any
stationary source, then o-v is AMS. Hence, the distribution of the measure induced by
try on S] is AMS. But this measure is A. Thus, (XI, X2," ") has an AMS distribution.
This implies (f(X1),/(X2),’’ ") has an AMS distribution. Therefore,/z is AMS.

Application. We conclude the paper by presenting another application, this time
to probability theory. We obtain an ergodic theorem for a random sequence of
stochastic matrices.

THEOREM 10. Let X1, X2,’" be a sequence of -valued measurable functions
defined on some probability space, whose joint distribution is AMS. Then the sequence
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{n -1 Ei=I XlX2 Xi} converges almost surely as n o. (We are using the obvious
notion of convergence of matrices here; we say a sequence of b b matrices
MI, M2, converges if limn_.oo M, (i, f) exists, 1 _-< i,/" <- b.)

Proof. Let [,/x] be the AMS source where /z is the joint distribution of
u] be the Markov channel where(X1, Xz," ’). Fix Yl B. Let [, B 1,

P OYl( IP), P .
By Theorem 6, g is AMS. Let , , be the maps from xB B such that

i=1,2, (P,y)e xBi.Y/(P, y)= y,,

If yz e B, we have that

n+l }-1n Y If,=,.
i=2

converges almo.st s.urely with respect to zu as n-o. (See Prope.rty 4 of AMS
measures.) Let X1, X2," , be the maps from xB - such that Xi(P, y) Pi,
1 2,... (P,y) B 1. By a property of conditional expectation,

converges almost surely as n - oo, where E,, denotes expectation with respect to zv. It
is easily verified that

E.. n -1 E I{#,=y2)21=P,2z=P:, --n -1 E (PIP:"" Pi-1)(yl, y2).
=2 i=2

Translating this back in terms of the original sequence X1, Xz,’" we see that
--1n E (Xx""" Xi)(yl y2) converges almost surely for each (yl y2) B B. Hencei=1

{n-1 i=1 X1 Xi} converges almost surely.
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helpful conversations regarding the content of this paper.

REFERENCES

D. BLACKW’ELL (1945), Finite non-homogeneous chains, Ann. Math:, 46, pp. 594-599.
D. BLACKWELL, L. BREIMAN AND A. J. THOMASIAN (1958), Proof of Shannon’s Transmission Theorem

for finite-state indecomposable channels, Ann. Math. Statist., 29, pp. 1209-1220.
L. BREIMAN (1960), Finite-state channels, in Trans. of the Second Prague Conference on Information

Theory, Prague, pp. 49-60.
R. M. GRAY AND J. C. KIEFFER (1980), Asymptotically mean stationary measures, Ann. Probab., to

appear.
E. PFAFFELHUBER (1971), Channels with asymptoiically decreasing memory and anticipation, IEEE

Trans. Inform. Theory, 17, pp. 379-385.
C. E. SHANNON (1948), A mathematical theory of communication, Bell System Tech. J., 27, pp. 379-423,

623-656.
J. ZIv (1978), Coding theorems for individual sequences, IEEE Trans. Inform. Theory, 24, pp. 405-412.



SIAM J. MATH. ANAL.
Vol. 12, No. 3, May 1981

1981 Society for Industrial and Applied Mathematics

0036-1410/81/1203-0002 $01.00/0

HOW TO HOMOGENIZE A NONLINEAR DIFFUSION EQUATION:
STEFAN’S PROBLEM*

ALAIN DAMLAMIANS"

Abstract. We study the homogenization of a Stefan problem (i.e., heat conduction with change of phase)
when the structure is e-periodic, and we prove that the constitutive laws of the limit medium do not depend
upon the boundary conditions and are those of an anisotropically heat conducting medium which undergoes a
change of phase at each temperature of change of phase of the original substances.

1. Introduction. For many physical studies of composite materials, one is more
interested in the global or "macroscopic" behavior of a composite medium rather than
in a detailed "microscopic" one. To put it in a different way, and for reasons that can
also come from numerical analysis when discretization is considered, one is interested in
finding the relevant properties (i.e., the constitutive laws or physical parameters) for an
idealized homogeneous medium which would have the limit behavior of the composite
material when the size of the periodic mesh goes to zero.

Finding the relevant parameters of this idealized limit (when it exists) is the origin
and one of the main contributions of homogenization theory. Since this is not intended
to be an introduction, let alone a survey, of homogenization theory, the reader is
referred to Bensoussan-Lions-Papanicolaou [1] for a complete set of references.

The model problem we are looking at here is the problem of homogenization of a
nonlinear heat equation for a composite material consisting of a periodic mixture of
media which can undergo changes of phase, (Stefan’s problem). One can also apply the
present results to electromagnetic composite materials (see Bossavit-Damlamian [1]).

The plan is as follows:
2. The model e-problem; weak formulation.
3. Estimates for the e-problem.
4. A short review of elliptic homogenization.
5. The limit problem and its constitutive laws.

2. The model e-problem. In short, the problem,we are looking at is the following:
Let f be a given bounded domain in N (usually N 3) with smooth boundary F.

We restrict ourselves to two media M1 and M2. Their distribution in f is given
according to a periodic structure of mesh size e proportional to a basic period Y of size
1. The basic period Y is partitioned into two smooth subsets Y1 and Y. corresponding
to each medium M1 and M2, so that correspondingly f is partitioned into f, and
The boundary between Y and Y2 is denoted by Y_,, and its image in D, is Y--e, which
supposed to be rigid and perfectly heat conducting. As for 0D, F, it is split into FI, ant

F2,, corresponding to each medium.
It is assumed, as customary, that the variations in volume are negligible for a Stefan

problem.
Time will be restricted to an interval [0, T] and it will be shown that the result is

independent of T.
In Q ]0, T[ f, each change of phase for each medium will, in the strong

formulation, generate a free boundary separating the phases. With our convention that

* Received by the editors July 22, 1980. This work was supported by the U.S. Army under contracts
DAAG29-75-C-0024 and DAAG29-80-C-0041.

-t Analyse Num6rique et Fonctionnelle, C.N.R.S. et Universit6 Paris-Sud, Bat. 425, 91405 Orsay Cedex
and Centre de Mathematiques, Ecole Polytechnique 91128 Palaiseau Cedex, France.
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there is at most one change of phase for each medium, two boundaries Si,(i-" 1, 2)
(each not necessarily connected) are generated.

Before writing the strong formulation, we introduce some notation. For each
medium i(= 1, 2), let ai(v), Oi, bi, ki denote the specific heat (a function of the tempera-
ture v), the temperature of change of phase, the latent heat and the heat conductivity
(which is assumed to be strictly positive independent of the temperature v, a limitation
for our final result but one which we have not been able to lift so far).

We can now write the strong formulation of the problem. One looks for v (t, x)
(temperature) and the two surfaces Si, satisfying the following conditions.

In (0, T) x ’i,e \Si,
(2.1)

Oi(Ue eOV__ div (kiVv =f,

where f is an internal heating term.

On (0, T) , continuity of v ,
(2.2) continuity of heat flux, namely:

kVv ff keVv ft.

On &,, v 0i,

cos (r, ;) =0,
OX] Si,

where rl is the unit normal to Si, in space/time and [. ]s,. indicates the jump across Si,
along ri. This is the classical Stefan condition on the free boundary.

(2.4)
Initial condition" v (0) given in fl together with the initial
boundaries Si,(0); they are assumed to be compatible (v(0)= Oi
on Si, (0)).

As for the lateral boundary conditions, it is known in linear homogenization theory that,
provided they are of variational form, they do not interfere with the limiting process. To
be complete, we shall take them as linear inhomogeneous of mixed type. We assume a
smooth partition of F in F+ and F- (F- with nonempty interior) and require the
following:

(2.5) v (t, x)= g-(t, x) on F-,

(2.6) ki
Ov g+ F++Pv (t, x) on Y’i,,
0n

here, P is a nonnegative smooth function measuring the permeability of the boundary
F/ to heat flow, and g- and g/ are given smooth functions. It is also assumed that the
boundary data g-, g/ agree with the initial data v at 0. It turns out that conditions
(2.2) and (2.3) are Rankine-Hugoniot type conditions for the energy balance equation
taken in the distribution sense on O. In order to write this equation, (which givesa weak
formulation) we need some notation:

For each i, let yi denote the maximal monotone graph defined (up to a constant) by

(2.7) Vi()) Oli(S ds + biH(v
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where H is the Heaviside function. This represents the enthalpy as a function of the
temperature.

We also put:

(2.8) y(y, v)-- i(/)) for y in Y,

(2.9) k(y) ki for y in Yi.

Then (2.1), (2.2), (2.3) reduce to

(x )(2.11) u(t, x) -, v(t, x)

The initial conditions (2.4) can be expressed in terms of u alone as an initial
condition

(2.12) u(0) u0,

which we can assume independent of e.

For the lateral boundary conditions we introduce an auxiliary problem, where the
time is a mere parameter:

Let g (t, x) be the solution of

-div(k()Vg(t)) =0 in lq,

(2.13) g(t) g-(t) on F-,

k() Og(t) g+ F+.On +Pg (t) (t) on

Clearly, g is bounded in Ha(f) uniformly in e. Now (2.1)-(2.6) has the weak
formulation

T

(2.14) IO --q’Ue d-Io ae(1) e--ge, qP)-- IOfqP d-lfqP(O)Uo,
for all q in C (Q), q (T) 0 and 0 on (0, T) F-,

(2.15) v g 0 on (0, T) F-.

In (2.14) a is the bilinear Dirichlet form given by

(2.16) a(w, q)= Ik()(Vw Vq)+ fr+PW q.

The smoothness assumptions made for F-, F+ allow for (2.14) to take in a larger
class, namely, q Wa’2(0, T; V), where V is the variational space {4’ Ha(O), O/F-
0} (see Damlamian [1] for a detailed study).

DEFINITION 2.17. (U , V) is a weak solution for problem (2.1)-(2.6) if and only if
they satisfy (2.11), (2.14) and (2.15).

THEOREM 2.18 (see Damlamian [1], [2]). Under the hypothesis that the ai’s are
bounded above and below away from zero, there exists a unique solution (u , v) for
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problems (2.11), (2.14) and (2.15) which satisfies
u Wl"z(O, T; V*)f’IL(O, T; L2(f)),

v -g WI’2(O, T; L(f))OL(O, T; V).

Instead of giving a detailed proof, we will give in the following section the idea ot
how to obtain uniform estimates.

3. Uniform estimates.
PROPOSITION 3.1. The solutions (u , v), e > O, satisfy the following"

u is bounded in W’z(O, T; V*)L(O, T; LZ(Ft)) uniformly in e >0,

v-g is bounded in W’2(O, T; Lz(f))f’IL(O, T; V) uniformly in e >0.

Proof. To obtain these estimates, it is enough to show them in the case of smooth 3/.
Then u and v are smooth enough to replace (2.14) by

(3.2) Io- q’u + Ior
for all q in W1’2(0, T; V). Then taking q [A]-au (A being the operator associated
with a on V) one gets

(3.3) 1 IotIl) 1 f( fOt2llu(t)ll z v u u g / Ilu
O, t)xl)

where I1" II,v* is the dual norm of (a (, )1/2 on V, the latter being uniformly equivalent
to the standard norm on V.

Also taking [A]- du/dt one gets

(3.4) cl[v (t)12 Io <-- C2 (a constant which dependsL2m) / dt .v upon f, v0, g+, g- ’).

From (3.3) and (3.4) one gets (because vu can be assumed nonnegative) that v
is bounded in L(0, T; L2(1)), u in W1’2(0, T; V*).

Then one takes q (d(v -g)/dt to get

ft dv
dt + a (v-g, v- g)<- C4(3.5) c3

0 c(a) (auponCOnstant[,g +,whiChg-,Vo, ").
depends

From (3.5) one infers that v stays bounded in W’2(0, T; L2(D,)) and

v-g stays bounded in L(0, T; V).

A detailed proof of the above can be found in Damlamian [1], [2], and in much
simpler cases in Brezis [4] and Lions [1].

It is worth noticing that given the estimates of (3.1) (even when not uniform in e),
(2.14) can be replaced by (3.2) or even by

(3.6) a (v q (uo-u (t))

for all q in V (independent of t). This remark (cf. Damlamian [1]) shows that (u , v) is
the solution of a simpler variational inequality (of the type studied by G. Duvaut [1]).
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Another way of looking at (3.6) is the following, since the operator does not
depend upon time"

a (V (t), q) [ (F(t)+ Uo- u (t))q,

(3.7)
V (t) 0 on F-,

for all (0, T), all q in V, where

V (t, x) (v (s, x)- g (s, x)) ds,

F(t, x)- | f(s, x) ds.
o

4. A short review of elliptic homogenization. The purpose of this section is to
show how elliptic homogenization works and how it can be applied in the present
problem. See Bensoussan-Lions-Papanicolaou [I] (also L. Tartar [I]). With the same
notation as above, we consider the operator A -div (k(x/e)V) on f. Let w be the
variational solution of

(4.1)

that is

Aw f inf,,

w =g onF-,

+Pw =g onF
On

(4.2) a(w q) In fq + It/ g+
for all in V, w g- on F-.

We assume that f converges to f0 weakly in L(I).
Poeosn’o 4.3. As e goes to zero, w converges weakly in H() to the solution

0w of the problem

(4.4) a(w Ia Iv +,)= foe+ /g q,

for all q in V, w= g- on F-, where a is the bilinear form given by

In Ow Oq ira(w, q)= Y’, qi,l+ Pwq,
i,l OX OXl

with constant coefficients qi, given by

(4.5) 1 fr" k(Y)’V(XtrYt)’(Xi- yi)qi,
mes Y--

where X is the solution (defined uniquely up to a constant) of

(4.6) -div (k(y)Txi) -div (k(y)ei), X periodic in Y;

e is the jth unit vector in u, Yi being the coordinate on ei.

Proof. It is clear that w is bounded in Ha(O) (by coerciveness of a with the
Dirichlet boundary condition), so we can assume (via uniqueness of the solution for the
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limit problem-to-be) that w w. Then by a result of Tartar [1] one can see that
k(x/e) Ow/Ox converges weakly in L2oc (12) (hence, in L2(12)) to Y,. qil(OW/OXi) (qil given
by (4.5), (4.6)), so that (4.2) goes to the limit in (4.4), which is the weak formulation of

Aw=f inl2,

(4.7) w= g- in F-,

Ow
F+.--pw g+ on

OyA

Here, O/O’ya is the conormal derivative for A, which one should notice is not
diagonal, but still symmetric, and with constant coefficients

Ao
qit.

i,t OX OXt
Here we have also used the compactness of the trace operator from Ha(O) into L2(1-’).

$. The limit problem and its constitutive laws. Making use of the results of 4, one
sees that g (t) converges weakly in H(f) to the solution g(t) of

Ag(t)=O,
(5.1) g(t) =g-(t) on r-,

Og(t) o( + F+.+Pg t) g on
0"yA

Also, by the estimates of (3.1) one can extract a sequence of values of e going to
zero such that

0 Wu --u in ’2(0, T; V*)f’)L(O, T; L2(f)),
0 0 Wv g v g in ’2(0, T; L2(Iq)) (3 L(0, T; V).

Hence, u converges strongly in C([0, T]; V*) and, for all [0, T], u (t) converges
weakly to u(t) in LZ(fD.

Consequently, we can apply the result of (4.3) to (3.7) so that V(t), which
obviously converges to V(t)= (v(s)-g(s)) ds, satisfies

a (V(t), q)= (F(t)+Uo u(t))q,
(5.2)

V(t) 0 on F-.

Using the equivalence with the weak formulation of type (2.14) we get
o ov -g =0 on(0, T)F-,

(5.3) Io Io Io Ioq + a (v gO, p) fq + Uo(0),

for all q in W1’2(0, T; V), q(T) =q Io. Tr- 0.

We now turn to (2.11), that is,

u(t,x)ey ,v(t,x

The limit problem having a unique solution, it will be clear by the end of the proof that the whole
sequence converges.
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If e is chosen so that g converges to gO weakly in HI(Iq), then v converges to v
weakly in W1’2(0, T; LZ(f)f) L(0, T; H(Iq)), so that the convergence is uniform in
c([0, T], L2(I))), for example.

Let c be a real number, different from Oi, and put w(x)= y(x/e, c). Clearly, w
converges weakly in L2 to a constant:

(5.4) 3(c)
mes (Y)

y(y, c) dy.

Using the monotonicity of y(x/e,. we have

tz(t,x)=(u(t,x)-w(x))(v(t,x)-c)>=O a.e.

Hence, using the proper convergences, we get that/x(t, x) converges weakly in the
sense of measures on f for all to (u-C/(c))(v-c) which has to be nonnegative.
Hence, u(t, x) belongs to the unique maximal extension of the monotone graph
which we denote by 3;. Consequently, (2.11) goes to

(5.5) u(t, x)’(v(t, x)) a.e. in x for all t.

6. Conclusion. We conclude that the limit equations correspond to the weak
formulation of the following strong problem:

du Ov--A =f,
dt

u(t, x) e /(v(t, x)),

(6.1) u(O,x)=u(a),
v(t,x)=g-(t,x), xF-,

0PA
(t, x)+pv(t, x)= g+(t, x),

Acknowledgment. The author is very grateful to Professor J. M. Lasry for raising
this interesting question, and to Professors L. Tartar and F. Murat for their helpful
suggestions.

From the Stefan problem point of view, this is a nonisotropic Stefan problem.
Notice that we recover the heat diffusion operator of the linear case, that is, a

homogeneous but anisotropic heat diffusion.
One also gets an "averaging" phenomenon for the graphs yi over Y; this is the only

averaging consistent with the fact that both yi’s are defined up to an additive constant
and so is 3. Both temperatures of change of phases appear for discontinuities of , which
is in agreement with daily experience (any other averaging of y and 3’2 would have
yielded no discontinuity in the average, hence no change of phase). It is easy to see that
the specific heat and latent heat of the limit medium are averages over Y of the
corresponding terms.

Finally, on the theoretical side of things, it is of interest to realize that the isotropic
diffusion laws are not stable under homogenization of Stefan problems, but anisotropic
ones are stable.

It remains to prove that the above results can be extended to the case of
temperature-dependent heat conductivity for each medium; this problem is more
complicated but has been solved for the non-Stefan case (see Tartar [1]).
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CONJUGATE AND FOCAL POINTS OF SECOND ORDER
DIFFERENTIAL SYSTEMS*

E. C. TOMASTIKt

Abstract. Criteria are given to assure that b is not a conjugate or focal point to a for the second order
nonlinear system y"+ g(t, y, y’) O, where [g(t, y, z)l <- k(t)lyl. The results include the important linear case
y" + p(t)y O, where the matrix p(t) is not assumed to be symmetric nor are the elements of p(t) assumed to be
of one sign. Nonoscillation and comparison theorems are also given. Most of the results seem to be new even
in the scalar linear case.

1. Introduction. In this paper certain boundary value problems that are associated
with conjugate and focal points of general systems of linear and nonlinear second order
ordinary differential equations will be considered. The differential equation will be of
the form

(E) y"+ g(t, y, y’) O,

where g and y are n-vectors. The boundary value problems considered are

(1) y(a) 0 y(b),

(2) y(a) 0 y’(b),

(3) y’(a) 0 y(b).

For 1, 2, 3, the equation (E) together with the boundary values (i) will be designated
by (Ei).

Existence and uniqueness for the standard initial value problem is assumed for (E).
It is also assumed that g(t, y, z) is continuous on the set {(t, y, z): a <= -< b},

(4)

(5)

g(t, 0, 0) 0 for all [a, b],

Ig(t, y, z)[ <= k(t)[yl for all s [a, b]

and all y, z where k(t) is a continuous nonnegative scalar function, strictly positive at at
least one point.

Certainly the most important special case will be the linear case

(6) y" +p(t)y =0,

where p(t) is a continuous n n matrix. The matrix p(t) will not be assumed to be
symmetric, nor will the elements of p(t) be assumed to be of one sign.

Conditions will be given on k(t) and p(t) to insure that (Ei) has no nontrivial
solution. Nonoscillation and comparison theorems will also be given. Many of the
results seem to be new even in the linear scalar case.

* Received by the editors December 3, 1979.
t Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268.
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2. Conjugate and focal points. To begin, consider the following integral equations"
b

(b a)-1 [ (t- a) Jt (b s)g(s, y(s), y’(s)) ds(7) y(t)

f+ (b t)
j

(s a)g(s, y(s), y’(s)) ds

b

(8) y(t) J (s a)g(s, y(s), y’(s)) ds + (t- a) Jt g(s, y(s), y’(s)) ds,

b

(9) y(t) (b- t)J g(s, y(s), y’(s)) ds + Jt (b-s)g(s, y(s), y’(s)) ds.

The next lemma connects the differential equations (Ei) with the integral equations
(7), (8), and (9).

LZMMA 1. A [unction y(t) continuous on [a, b] satisfies (El), (E2), (E3) ifand only if
y(t) satisfies (7), (8), (9), respectively.

To establish the lemma, suppose that y(t) satisfies (E). Then two integrations of
(Et), from a to yield

y(t) (t- a)y’(a)- J (t- s)g(s, y(s), y’(s)) as.

Using the fact that y(b) 0 and solving for y’(a) yields
b

y(t) (b a)-(t a) J (b s)g(s, y(s), y’(s)) ds J (t- s)g(s, y(s), y’(s)) ds.

Now writing the first integral as J’a’ + and recombining yields (7). The proofs for (E)
and (E3) are similar and the converse is very easy.

Before continuing, it is necessary to make the following definitions. The scalar
function q(t) will be termed an E admissible function on [a, b] if (t) satisfies the
following conditions"

(a) (t) is continuous on [a, b].
(b) o(t)>0 on (a, b).
(c) If q(a) 0, then near t= a, q(t)= (t-a)qa(t) where q, (t) is continuous at and

near a and o (a) 0.
(d) If q(b) 0, then near b, q(t) (b t)qb(t) where qb (t) is continuous at and

near b and q(b) 0. The scalar function q(t) will be termed an E2(E3) admissible
function on [a, b] if q(t) is an E1 admissible function with q(b) >0 (q(a) > 0).

LV.MMA 2. Let 1, 2, or 3, and let the scalar function q(t) be an Ei admissible
function on [a, b]. If y(t) satisfies (Ei), then

sup {[y(t)[/q(t): (a, b)}

is finite.
Only the case 1 and q(a)=0 q(b) will be considered here, the other cases

being easier.
To establish Lemma 2, notice that if y satisfies (Ex), then by well-known results

y(t) can be written as y(t)=(t-a)y(t) near t= a and y(t)=(b--t)yb(t) near t= b,
where ya(t) is continuous at and near a and yb(t) is continuous at and near b.
Thus, y(t)/q(t) is continuous and, most importantly, bounded on (a,b). Thus,
sup {ly(t)l/q(t): (a, b)} is a finite well-defined nonnegative number.
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For any nonnegative continuous scalar function r/(t) on [a, b ], define the three maps
T,, i= 1, 2, 3 by"

b

b

k(s)n(s)ds,

b

(T3krl)(t)=(b-t) L k(s)rl(s) ds+It (b-s)k(s)rl(s) ds.

Now notice that if is an Ei admissible function on [a, b] for 1, 2 or 3, then
-1o (t)(Tq)(t) can be made continuous on [a, b]. This follows since it is easy to see that

-1 -1limbo (t)(To)(t) and limbo (t)(Tko)(t)
t=a t=b

exist and are finite. Thus the term ]To ], defined by

-1Tkol, sup o (t)(T,o)(t)
(a, b)

is finite.
A basic theorem can now be established.
THEOREM 1. Let 1, 2 or 3. If q is an Ei admissible function on [a, b and

<1Tkq l,
then (Ei) has no nontrivial solution.

To prove the theorem, let 1, 2 or 3, and let y be a solution of (Ei). Let
d=sup{ly(t)]/(t): t(a,b)}, a finite nonnegative number by Lemma 2. Then it
follows readily from (7), (8), or (9) and (5) that

Tg[,d.

Since lTgl, < 1, this last inequality implies that d 0, which in turn implies that
y(t) 0 on [a, b]. Thus (Ei) has no nontrivial solution.

We continue with the following more specific theorems.
THEOREM 2. If I k(s)(b s)(s a) ds < b a or if i (s a)2(b s)k(s) ds <

(t-a)2 for all (a, b], then (E) has no nontrivial solution.
To prove the first part of Theorem 2, take (t) t- a and let f(t) -(t)(T)(t)

for (a, b) and f(a) limt=af(t) and f(b) limt=b f(t). Then it is easy to see that f(t) is
continuous on [a, b]. Of course, f(t) 0 on [a, b]. It is easy to see that

f’(t) -(t- a)-2 J k(s)(s a)2 ds,

which is less than zero if > a, and therefore

max(t)=(a)=(b-a)- (b-s)(s-a)k(s) ds,

which is less than one by hypothesis. Thus, ]T < 1, and the first part of Theorem 2
follows from Theorem 1.
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To prove the second part of Theorem 2, take (t)= (t-a)(b- t) and let ]’(t)=
-1

q (t)(Tk)(t). If ]’(a) and ]’(b) are defined as in the first part of the proof,/(t) will be
continuous and nonnegative on [a, b]. A computation yields

Notice that

I’ )f’(t)=(t-a)-2(b-t)-2 (t-a)2 (s-a)(b-s k(s) ds

-(b- t)2 Ia (s-a)2(b-s)k(s)ds].
b

lim f’(t) (b a)-2 | (s a)(b s)2k(s) ds > O,
t=a .
lim "(t) -(b a)-2 (s a (b s)k(s) ds < 0.
t=b

If "(to)= O, then a computation yields

Ia (s-a)2(b-s)k(s) ds,f(t0) (to a)-2

which is less than one. Thus, T, ],o <=f(to) < 1 and the second part of Theorem 2 follows
from Theorem 1.

The first part of Theorem 2 is due to Hartman [3, Chapt. XI, Thm. 5.1], in the linear
scalar case (see also Reid [5], [6] for the linear self-adjoint case for systems).

It is interesting to compare the two parts of Theorem 2 in the trivial case k (t) 1.
The first part readily yields b 2 < 6, but the second part yields b 2 < 9 which is a significant

-1improvement. Later, it will be seen that calculating (t)(Tk)(t) 2directly when
(t)=(t-a)(b-t) and k(t)= 1 yields b2<9.6, which is very close to ,r

THEOREM 3. I[ b k(s)(s-a) ds<l orift, k(s)(s-a)2(2b-a-s)ds<(t-a)2[or
all (a, b], then (E2) has no nontrivial solution.

Proof. To prove the first part of Theorem 3 take (t)= t-a, and let /(t)=
-1(t)(T)(t), and f(a lim f(t) and f(b) lim f(t) as in the previous theorem. Then a
computation yields

Thus,

f’(t) -(t- a)- I k(s)(s a) ds.

b

[T, Io max/’(t) =]’(a) f k(s)(s-a) ds < 1,

and the first part of Theorem 3 follows from Theorem 1.
To prove the second part of Theorem 3 take (t) (t- a)(2b a t), and again let

f(t), f(a), and f(b) be defined as in the first part. Then

]"(t) (t- a)-E(2b a t)-2 -2(b t) (s a)E(2b a s)k(s) ds

b

+(t-a)2 ft k(s)(s-a)(2b-a-s) ds],
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and it follows readily that limt=a f’(t) > 0. If ]"(to) 0, then

Ia k(s)(s a)2(2b a s) ds < 1.]’(to) (to a)-2

Thus, T,q], < 1 and the second part of Theorem 3 follows from Theorem 1.
THEOREM 4. If Jb k(s)(b-s) ds < 1 or if t k(s)(b-s)(s-2a + b) ds < 2(t- a) ]’or

all (a, b ], then (E3) has no nontrivial solution.
The proof of Theorem 4 is similar to that of Theorem 3; take ((t) b for the

first part and o(t) (b t)(t- 2a + b) for the second part.
THEOREM 5. If k(t) < (r/(b a))2 on [a, b], then (E) has no nontrivial solution.
To prove this theorem, let the E1 admissible function be q(t)=

sin 7r(b a)-(t a) and let M be such that k(t) <=M < (r/(b a))2 on [a, b]. Then
-1 )2q-(t)(Tko)(t)<--q (t)(T)(t)=Mq-(t)(Tlo)(t)=M((b-a)/Tr <1.

This implies that ITql < 1 and thus from Theorem 1 that (E) has no nontrivial
solution.

THEOREM 6. If k(t)< (zr/2(b-a))2 on [a, b], then neither (E2) nor (E3) has a
nontrivial solution.

The proof is similar to that of Theorem 5. Take the E2 and E3 admissible functions
to be sin rr(t-a)/2(b-a) and cos rr(t-a)/2(b-a) respectively.

It will be seen later that Theorems 5 and 6 also follow as a corollary to a comparison
theorem, Theorem 9.

3. Nonosciilation conditions on [a, oo). For 1, 2 or 3, (E) is said to be
Ei-nonoscillatory on [a, oe) if, given any b > a >-, (Ei) has no nontrivial solution.

THEOREM 7. I" 1 or 2 and i]’ sk(s) ds < oo, then there exists a >= a, such that
(E) is Ei-nonoscillatory on [a,

To prove the first part of the theorem, take the E1 admissible function to be
q(t) 1 and let f(t)=(Tkq)(t). Then of course f(t)>-O, f(a)=O=]’(b). If f’(t0)= 0, a

computation shows that

and

b

I to
(b s)k(s) ds (s a)k(s) ds,

o

]’(to) (s a)k(s) ds,

which for sufficiently large a will be less than one. Thus TLq, I < 1, and Theorem 7
follows from Theorem 1.

To prove the second part of the theorem, notice that q(t)= 1 is also an E2
admissible function and that

b

(r 1)’(t)= I k(s)>=O"

Then
b

sup (T, 1)(t) (T, 1)(b) Ia (s-a)k(s) ds,
(a, b)

which for sufficiently large a will be less than one for any b > a. Thus IT 11 < 1 and the
second part of Theorem 7 follows from Theorem 1.
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THEOREM 8. If there exists ce >- a such that t (t- s)k(s) ds < 1 for all t > , then (E)
is E-nonoscillatory on [, o).

To prove the theorem take the E admissible function to be o(t)= 1. Then

(T 1)’(t)= -I k(s) ds <=0.

Then
b

IT3 I]=(T3 I)(a)= I, (b-s)k(s) ds < l,

and Theorem 8 follows from Theorem 1.

4. A comparison theorem.
THEOREM 9. Suppose thatP(t) is a continuous nonnegative scalarfunction on [a, b].

Let i= 1, 2, or 3. If (t) is a (scalar) solution of the scalar equation (Eg) with
g(t, y, y’) e(t)y such that q(t) > 0 on (a, b), and if [T,I <1 T,lg then (Eg) has no
nontrivial solution.

To prove the theorem, notice that since is a solution to (Eg) with g(t, y, y’)=
P(t)y, Tpq)(t) q(t). Thus

TPI =lql

and the theorem follows from Theorem 1.
COROLLARY. Let P(t) be .a nonnegative continuous scalar function on [a, hi. Let

1, 2 or 3 and suppose that p(t) is a scalar solution to (Ei) with g(t, y, y’) P(t)y, such
that q(t)>0 on (a, b). If k(t)<=P(t) on [a,b] and there exists one point at which this
inequality is a strict inequality, then (Ei) has no nontrivial solution.

To prove the corollary for 1, first notice that

(10) q (t)(Tp)(t)<q (t)(TIp)(t)

on (a, b). This inequality will now be established at both a and b. Since the proofs
at both these points are similar, only the proof for a is given here. Toward this end
recall that near a, q(t) (t- a)a(t) where Ca(t) is continuous and (a) # 0. It then
readily follows that in the limit as goes to a, the inequality (10) reduces to verifying that

b b

I (b- s)k(s)(s) ds < l (b- s)P(s)p(s) ds.

This is indeed true, and (10) holds on [a, b]. Thus IT,I < [TIpg,[ and the corollary
follows from Theorem 9. If 2 or 3, the proof is similar.

A stronger form of this corollary is given by Ahmad and Lazer [1] in the linear case
where certain coefficients of the matrix p(t) are of one sign, and 1.

5. A certain linear scalar case. This section will be concerned with the scalar
equation

(11) y"+p(t)y =0, y(0) 0 y(b),

where 0 _-< p(t)<-t". The results seem to be new.
THEOREM 10. If 0 <--_ p(t) <= on [0, b ], then (11) has no nontrivial solution for n 1

if
b 3 <93(305 + 224)-10 17.859,
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[orn =2 i[

b4<30/[ sup (1/2(l+x+x2+x3)-X4)]-28.002,
O_--<x=<l

and for n >-_ 3 if

<2(n + 2)(n + 3)(2n + 5)(3n +7)-1= (n + 2)(n + 3)_+a lO/n
+7/n

To prove the theorem for the case n 1 or 2, take the E1 admissible function to be
o(t) t(b- t). After a tedious but straightforward computation, one obtains

q (t)(Tpqg)(t)<-(n+3) (n+4)-1 bn+2-iti_t.+2
n+2

(12)

-(n+3)(n+4)-
b"+ [ 2

_
s ,+1.,+(+s+ +...+s )-s

if bs.
For n 2, this implies the result stated in the theorem after using Theorem 1.
For n 1, let the right side of (12) be f(t). Then it is easy to see that f(r) assumes its

maximum at to ((2+)/9)b and [Tp[/(to) zo (6a0= +44#)9-3 Again
the result follows from Theorem 1.

Now take the admissible function (t) to be (t)= t(b"+- t"+z). A tedious but
easy computation yields

[(2n + 4)(2n + 5)-(n + 2)(n + 3)]b"+Z-(n + 2)(n + 3)t"+z-1(t)(T)(t) <
(n + 2)(n + 3)(2n + 4)(2n + 5)

and thus

(13) _< (2n + 4)(2n + 5)-(n + 2)(n + 3)Ir01 (n + 2)(n + 3)(2n +4)(2n + 5)

which yields the result stated in the theorem in the case n => 3, after applying Theorem 1
again.

For n 1, (13) yields b3<-8-= 16.8 compared to approximately b3< 17.8 using
(12). For n=2, (13) yields b4<31-627.7 compared to approximately b4<28
using (12). However, for n 3, (13) yields b < 41.25, whereas (12) yields only about
b < 40.0. It appears that (12) yields b "/2 < (n + 3)(n +4) asymptotically, whereas it is
obvious that (13) yields bn+2< (n + 2)(n + 3). This result is an improvement over the
result of Hartman [3], which yields in this case bn+2< (n + 2)(n + 3).
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INTEGRATION OF INTERVAL FUNCTIONS*

OLE CAPRANI’, KAJ MADSEN AND L. B. RALL

Abstract. An interval function Y assigns an interval Y(x)= (y(x), 37(x)] in the extended real number
system to each x in its interval X [a, b] of definition. The integral of Y over [a, b is taken to be the interval

a Y(x)dx [a y(.x)dx, b (X) dx], where b y(x)dx is the lower Darboux integral of the lower endpoint
function _y, and 7(x)dx is the upper Darboux integral of the upper endpoint function 7. Since these
Darboux integrals always exist in the extended real number system, it follows that all interval functions are
integrable, no matter hokv nasty the endpoint functions y, are. The interval integral defined in this way
includes the interval integral of R. E. Moore as the special case that y, are continuous, and hence Riemann
integrable.

In addition to a construction of the interval integral in a form suitable for numerical approximation, some
of its basic properties and other implications and applications of its definition are presented. The theory of
interval integration given here supplies a previously lacking mathematical foundation for the numerical
solution of integral equations by interval methods.

1. Intervals in the extended real number system. In ordinary interval analysis
[5], [6], the term interval refers to closed intervals of real numbers,

(1.1) X [a, b]= {xla <-x <-b},

with finite endpoints a, b. The width

(1.2) w(X)= w([a, b])= b -a,

of an interval with real endpoints is consequently finite. To develop the theory of
integration of interval functions given below, it is convenient to use the extended real
number system, which includes the values +/-oo [3]. Thus, in addition to finite intervals of
the form (1.1) with a, b finite, there will be infinite intervals in the system of one of the
following types:

(i) semi-infinite intervals

(1.3) Sa [a, +c], Sb [-, b], a, b finite;

(ii) the real line

(1.4) R [-, +c];

and

(iii) the indegenerate intervals

(1.5) S [-oo, -oo], S+o [+oo, +oo].

(In what follows, "+oo" will often be written simply.as "oo".)
All the infinite intervals will be defined to be of infinite width, that is,

(1.6) w(S) w(Sb) w(R)= w(S
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in the extended real number system. This definition is consistent with the type of
limiting process used to define "improper" integrals, that is,

(1.7) Sa lim [a, hi= [a, oo], Soo lim [a, oo] [oo,

and hence,

(1.8) w(&o) lim W(Sa)= lira (oo)= m,
a-oo

so that it is reasonable in this sense to assign infinite widths to the indegenerate intervals
S-* and Soo.

In what follows, a closed interval in the extended real number system will be called
simply an interval.

2. Interval arithmetic. Interval arithmetic [5], [6] as defined for finite intervals
may also be performed in the system of intervals in the extended real number system
defined in 1 if suitable rules are adopted for computing with the values +oo. In essence,
these "rules" are a shorthand notation for the results of the types of limiting processes
to be encountered in the theory of integration presented below. McShane [3, p. 21]
gives the following rules:

(i)
(ii)

(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)

-oo < a < oo for every real number a;
oo. a =a oo=oo if O<a_-<oo;
oo. a =a oo=-oo if-oo<a= <0;
(-oo). a a. (-oo)=-oo if O< a _<_oo;
(-oo) a a (-oo) oo if -oo _<_ a < O;
a/oo a/(-oo)= 0 if a is real;
oo+a =a +oo oo if a >-oo;
-oo + a a + (-oo) -oo if a <
oo. 0=0. o (-). 0=0. (-o) 0.

Thus, rule (2.1ix) takes care of the "indeterminant" form "0 oo" which can arise if
one of the factors in a multiplication is an infinite interval. The product of two intervals
will be defined to be

(2.2) [a, b]. [c, d] [min {ac, ad, bc, bd}, max {ac, ad, bc, bd}]

in the extended real number system. In ordinary interval arithmetic [5, p. 9], (2.2) is a
consequence of the definition [a, b]. [c, d] {z[z x y, x e [a, b], y [c, d]} of multi-
plication of intervals. In the extended real number system, however, one has
{zlz x. y, x [-1, 1], y s [oo, oo]} {-oo, 0, oo} by (2.1ii, iii, ix), and the result is not an
interval. Use of the rule (2.2) gives [-1, 1]. leo, oo] [-oo, oo], which circumvents this
problem.

As in ordinary interval arithmetic, division by intervals containing 0 will not be
defined. The reciprocal of an interval,

(2.3) [c, d]- [, cl-], Og[c, d],

is defined for all zero-free intervals, with rule (2. lvi) used if [c, d] is an infinite interval.
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One has

a>0;

b<0;

sL [oo, oo]-’ [o, o];

(s-=)-’ [-oo, -oo]-’ [o, o].

The indeterminant form "z/z" will thus not occur in the interval arithmetic under
discussion, since division is defined by

(2.5)
[a,b___] [a, b]. [c, d]-l,, 0g [c, d],
[c, d]

and [c, d]-1, if it exists, will have only finite endpoints by (2.3) and (2.4).
The indeterminant form "c-" can appear in addition or subtraction according

to the usual rules [5, pp. 8-9],

[a, b + [c, d] [a + c, b + d],
(2.6)

[a, b [c, d] [a d, b c ],

but only if at least one of the terms is an indegenerate interval. Thus, an additional rule
to augment the list (2.1) is needed, which is

[a, c] +[-,-]= [a, ]-[, ]= [-o, c],
(2.7) (x)

[-c, b] + [, ] E-, b]- [-, -] [-o, ],

where a, b may be finite or infinite. Thus, rule (2.7x) assigns the value+ to- as an
upper endpoint of an interval, and - as a lower endpoint.

Thus, the total collection of rules for interval arithmetic in the system of intervals
defined over the extended real numbers consists of (2.1i-ix), (2.7x), (2.2), (2.3), (2.5)
and (2.6). The interval arithmetic constructed in this way contains ordinary interval
arithmetic on finite intervals [5], [6] in the sense that it gives the same results for finite
intervals. The operations on infinite intervals are defined in such a way as to be
convenient in the sequel for the construction of a theory of integration of interval
functions. Other extensions of interval arithmetic to infinite intervals are possible, but
will not be considered here.

3. Interval functions. Y is said to be an intervalfunction of x on [a, b if it assigns a
nonempty interval

(3.1) Y(x) [y (x), 37(x)] {yly(x) -<_ y =< 7(x)},

to each x [a, b ]. The (extended) real-valued functions y, are called the endpoints or
boundary functions of Y, and the notation

(3.2) Y [y, 37]

will be used, as well as the alternative notation

(3.3) Y(x) [y,)7](x),

for the interval (3.1).
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The interval function Y can also be identified with its graph, which is the set of
points

(3.4) Y=[a,b] Y(x)={(x, y)lx[a,b], y Y(x)}

in the x, y-plane. Geometrically, the graph (3.4) extends from the "lines" x a on the
left to x b on the right, and from the "curves" defined by y y(x) below to y 37(x)
above (recall that extended real values are permitted).

In the context of interval functions, a real-valued (or extended real-valued)
function f is considered to be the degenerate interval function

(3.5)

In the extended real number system, numbers c =< d exist such that the graph (3.4)
of Y is contained in the rectangle R =[a, b] x [c, d] {(x, y)lx [a, b], y [c, d]} in the
x, y-plane; that is,

(3.6) y c [a, b x [c, d] R.

The set of all rectangles R for which (3.6) holds will be denoted by R (Y) or by Ra.b3(Y)
if it is desired to specify the interval of definition [a, b of Y.

If [a, b is a finite interval, then Y is said to be finitely defined. If (3.6) holds with c, d
finite, then Y is called a bounded interval function. A bounded and finitely defined
interval function is said to be finite; the graph of a finite interval function is obviously
contained in a finite rectangle R with area w([a, b]). w([c, d])= (b-a). (d-c).

DEFINITION 3.1. For

(3.7) c= inf {y(x)}, d= sup {37(x)},
x[a,b] x[a,b]

the interval

(3.8) V Y[a,b] [C, d]

is called the vertical extent of the interval function Y on [a, b]. If the interval of
definition of Y is understood, then V Ya,b may be abbreviated as V Y. The rectangle

(3.9) R (V Y) R [,,b] (V Y) [a, b] x V Y[,b]

is the "smallest" containing the graph of Y. One has

(3.10) R(VY)= f) R;
RR(Y)

that is, R (V Y) is the intersection of all rectangles (3.6) which contain the graph of Y.
Vertical extent of an interval function, as defined above, has the important

property of being inclusion monotone with respect to the interval of definition of the
interval function and inclusion of interval functions; Y c Z means that the graph of Z
contains the graph of Y considered to be point sets in the x, y-plane. More precisely,
(3.7) and the definition (3.8) of vertical extent lead directly to the following result:

LEMMA 3.1. If I, J are intervals on the x-axis with I J, then

(3.11) V Yt = VY
if Y, Z are interval functions on X [a, b such that Y Z, then

(3.12) V YEa,b] VZ[a,b].
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4. Vertical measure and Darboux sums.
DEFINITION 4.1. The interval

(4.1) W,b (Y) w ([a, b ]). V Y,b

is called the vertical measure of the interval function Y on [a, b ]. Note that this quantity
is interval-valued, and specifies the interval of definition of the interval function Y on
which its vertical extent V Y is obtained.

(The goal in this paper is to construct a theory of Riemann-type integrals of interval
functions. The horizontal measure

(4.2) Ht,,,b(Y)=[a, b] w(VY,,,b3)

of Y on [a, b] may be useful in a Lebesgue-type integration theory, but this will notbe
pursued further here.)

Remark 4.1. Vertical measure is inclusion monotone with respect to inclusion of
interval functions: If Y Z, then W, b] (Y) W[a,b] (Z).

The assertion of Remark 4.1 follows immediately from Lemma. 3.1.
As usual, a set of points {x0, Xl,. , x,} such that

(4.3) a Xo<=Xl <-_.. <-Xn-1 <----Xn b

defines a partition,

(4.4)

of the interval X [a, b ], where

a. (x, x,..., x,),

(4.5) X [x-a, x],

Obviously,

i=l,2,...,n.

(4.6) X= Xi, w(X)= ,
w(Xi).

i=1 i=1

DEFINITION 4.2. The interval

(4.7) Ea.Y w(Xi)" VYi-- W,,,_,,a(Y)
i=1 i=1

is called the Darboux sum of the interval function Y corresponding to the partition A
of X [a, b ], where V Y V Yx, V Y,_., has been written for brevity. For

(4.8)

one has

(4.9)

and

(4.10)

V Yi [ci, di],

ci inf {y (x)}, d, sup {37 (x)}
xXi xX

Xa. Y= ci" w(X), Y. d,. w(X)

the endpoints of Y-,A,Y are thus, respectively, the lower Riemann sum of the function y
and the upperRiemann sum of the function 37 corresponding to the partition A, ofX [7].
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The upper and lower limits of the interval (4.10) may also be interpreted as
(elementary) integrals of step-functions [3], p. 54,

(4.11) i=, ci w(Xi)= I (x) dx _s(x) dx

and

(4.12)
’b

i=1

In (4.11), the step function _s(x) will have the values

(4.13) _s(x) ci inf {y(x)}, xi-1 < x < xi,
Xi

in all nondegenerate intervals X of the partition A,. At each of the partition points x
listed in (4.3), there will be a finite number of intervals X_i,,
Xi-h+l, ",Xi, Xi+l, ",Xi/ which contain xi. Define

(Xi) min {ci[xi X.}, O, 1,... n.(4.14)

Similarly,

(4.15) g(x) di sup {)7(x)}, Xi-1 < X < Xi
xXi

in nondegenerate intervals X of the partition A, and

(4.16) (x) max {di]x Xi}, O, 1,..., n,

at the partition points Xo, x, ., x. It follows that

(4.17) s_(x)<- y(x)<-(x)<-(x),

The properties of integrals of step-functions are well-documented [3, pp. 54-57];
for example, if s and s. are step-functions on an interval X, and k is a finite constant,
then

(a) fk sl(x) dx k fSl(X) dx;

(4.18) (b) f(Sl(X)+S2(x))dx=ISl(X)dx+Is2(x)dx;
(c) if sl (x) <- s2(x) for all x X, then

f sl(X) dx <= I s2(x) dx"

Furthermore, if S(x) is a step-function on X, then for each partition A, of X

(4.19) ,El’= s(x) dx s(x) dx.

The integral of a step function is also invariant under translation [3, p. 57].
The above results may be used to prove corresponding assertions about the

Darboux sums (4.7), taking into account the differences between real and interval
arithmetic.
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THEOREM 4.1. If Y, Z are interval functions on X [a, b] and k is a constant, then

(a) Y_.A.k. Y k Ea.Y;
(4.20) (b) Ya, (g + Z) ,Y,a, Y + Za,Z;

(c) if Y Z on X, then Z,Y Za,Z (inclusion monotonicity).

Proof. For finite k, (4.20a) follows directly from (4.18a); rule (2.7x) allows one to
drop the restriction of k to finite values. For Y [y, 97], Z [_z, ], the inequalities

(a) inf {y + _z } _-> inf {y } + inf {_z },
x x x

(4.21)

(b) sup {37 + } -< sup {37} + sup {}
x X x

on the intervals X, 1, 2,..., n, [3, p. 25] give

(4.22) V(Y + Z)x, = V Yx, + VZx,
from which

(4.23) Wx,(Y+Z)= Wx,(Y)+ Wx(Z),

1, 2, , n, and (4.20b) follows. Finally, the inclusion monotonocity of the vertical
measure W (see Remark 4.1) with respect to inclusion of interval functions gives
(4.20c). Q.E.D.

An analogue of (4.19) is also available immediately. For m 2, suppose that
a <_- p -<_ b, and that

(4.24) A(1)
nl (Xll, X12, Xln1)

is a partition of X1 [a, p]; similarly,

(4.25) A(2)
n:z (X21, X22," ’, X2n2)

is a partition of X2 [p, b]. For n n + rt2, it follows that

(4.26)

will be a partition of X [a, b ], and

(4.27)

This may be extended by induction to any positive integer m > 2.
A type of mean value (or mean interval-value) theorem holds for the Darboux

sums (4.7).
THEOREM 4.2. If X [a, b] is a finite, nondegenerate interval, then an interval

y(A,) V Yx exists for each partition A, ofX such that

(4.28) Y-,A.Y w(X). y(A,).

Proof. By (4.7) and (4.20a),

(4.29)
1 (w(Xi))

w(X----- Ea Y 7 Y, Jr, s],
i=1

say, where for Og w(Xi)/w(X), 1, 2,’’’, n,

(4.30) r E olici, s-- aidi, Ol.i 1.
i=1 i=1 i=1
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Thus,

(4.31)

c min {ci} <- r <- max {c},
(i) (i)

min {dg} -<_ s <-max {d} d,
(i) (i)

and hence Jr, s] c V Yx. Thus, by (4.29), (4.28) holds with y(A,) [r, s]. Q.E.D.

$. Step-functions and Riemann sums. For each positive integer n, let S, denote
the set of all step-functions s, on X having n + 1 partition points x0, x l, ’, disposed
according to (4.3). Furthermore, let

S.(Y) {_&[_s. e S., &(x)<-_ y(x), a _-<x <= b},
(5.)

S".(Y) {g, lg, S,, g,(x) >-_ (x), a -<_x =< b}.

The sets _S, (Y), S, (Y) are nonempty, as =s, =-co belongs to _S, (Y), and , =-+co to
The sets _Sn(Y), Sn(Y) are nonempty, as S, =-co belongs to _S,,(Y) and ,--+oo to

(5.2) f _s(x) dx _-< (x) dx,

and consequently
’b ’b

DEFINITION 5.1. For each positive integer n, let @, denote the set of partitions
(4.4). The interval

(5.4) ,Y t") Ea.Y [, _d,,],

is called the Riemann sum of order n of the interval function Y over [a, b ].
LEMMA 5.1. The interval ,Y is nonempty furthermore, if m > n, then

(5.5)

Proof. The assertion of the nonemptiness of the interval (5.4) is simply a restate-
ment of (5.3). Denoting the set of Darboux sums (4.7) by ,, if m > n, then

(S.6)

as if . c ,; then one may take the partition A defined by

(5.7) a XoX" x, x,+ x= b,

for which .Y .Y, and thus .Ye for m > n. The inclusion (5.5) then follows
from (5.6) by the definition (5.4). Q.E.D.

The properties of Darboux sums listed in Theorem 4.1 survive the intersection
(5.4) and thus become properties of Riemann sums, giving immediately the following
result.

THOaEM 5.1. g Y, Z are interval functions on X [a, b] and k is a constant, then

(a) E,k Y k ,Y;

(s.8) (b) E. (y x Z) .Y+.g;

(c) g y c Z on X, then ,Y c ,Z (inclusion monotonicity).
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The additivity of Riemann sums with respect to the intervals over which they are
defined will now be investigated. In order to be definite, the notation

(5.9) X. Y[a,b] Xn Yx,
will be used to indicate the interval ofsummationX [a, b ]. Suppose that a -< p <_- b and
X1 [a, p ], XE [p, b ]. The following results apply to the expression of the sum of an
interval function Y over X in terms of its sums over X1 and XE.

LEMMA 5.2. /fX [a, b is finite and nondegenerate, then

(5.10) W[,,p (Y) + Wtp.b (Y) c Wt,,b3 (Y),

that is,

(5.11) w([a, p]). V Y,,2 + w([p, b]). VY,b w([a, b]). VY,b2.

Proof. Let VY,p=[cl, dl], VYp,b=[CE, d2], VY[a,b2=[c,d]. Then, by the
definition of vertical extent,

(5.12) c min {Cl, C2}, d max {dl,

For a w ([a, p])/w ([a, b ]), one has 1 _-> a _-> 0 and w ([ p, b ])/w ([a, b ]) 1 a _-> 0.
Thus,

(5.13)

and, as

(5.14)

w([a, p]). VY,,.pa + w([p, b]). VYtt,,b

w([a, b]). [OCl + (1-a)c2, ted1 + (1- a)d2]

C <--OCl +(1 0)C2 <=adl +(1 -a)d2 -< d,

by (5.12), (5.11) follows. Q.E.D.
THEOREM 5.2. If X [a, b] is finite and nondegenerate, then for each positive

integer n -> 2

(5.15) nY,,b c f") {XnYt,,,,a+XnYb,,b}CXn_lY[,,ba.
nl+n2=rt

Proof. The set 6en of Darboux sums (4.7) may be decomposed into two disjoint
subsets for each positive integer n _-> 2" the set 6e of sums corresponding to partitions
A which have p as a partition point, the set of which will be denoted by , and the
complement of 6e relative to 6en, 6e’= n\oW, that is, the set of all Darboux sums
corresponding to partitions An for which p is not a partition point. As Y Y,, one has

(5.16) XnYt,,baC f"l nYt,.ba.

By (4.27), for agY e 6e one can write

(5.17)

where n + n2 n. Consequently, as

(5.18)
APnn nl+n2=n

the first inclusion of (5.15) follows.
Now, consider a partition An_l of X =[a, b] for n->2, and let AP,, denote the

partition of X obtained by adding the point p to the set {x0, xl, ’, xn-1}. Either p xi
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for some i, 0 <- <= n 1, in which case

(5.19)

nl + nz n, or a nondegenerate interval Xi [xi_l, xi]c A,_ exists such that x_ <p <
x. As

(5.20) w([xg_,p]). V

by Lemma 5.2 one has

(5.21) ’Y-, APn Y[a.b CT. ,-, A._I Y[a.b

in this case. Thus, as {X,a.o Yt.3} Y*,,

(5.22)
e An--ln--1

by (5.20) and (5.21), and the second inclusion in (5.15) now follows from
(5.18). O.E.D.

A mean interval-value theorem also holds for Riemann sums.
THEOREM 5.3. If X [a, b] is finite and nondegenerate then, for each positive

integer n, an interval Y. V Yx exists such that

(5.23) ,r w(X). Y,.

Proof. As before, let @, denote the set of all partitions A, for each positive integer
n. Then, by (4.28),

(5.24) ZAnY= w(X) f"l Y(A,),

so that (5.23) holds with

(5.25)

as each Y(A.) c V Yx.
6. Interval integrals.

Y.= fq Y(a.)=VYx,

Q.E.D.

DEFINITION 6.1. (The interval integral). If Y is an interval function defined on
X [a, b], then the interval integral of Y over [a, b] is defined to be the interval

(6.1) Y(x) dx Y(x) dx
n=l

As usual, Y is said to be integrable over X if its interval integral (6.1) is defined.
Remark 6.1. By Lemma 5.1, the interval integral (6.1) is a nonempty closed

interval, since it is the intersection of a (countable) collection of nested closed intervals.
Remark 6.2. An equivalent definition of the interval integral (6.1) is

(6.2, Y(x)dx=[fxY_(x)dx,(x)dx],
where, for the sets of step-functions

(6.3) _S= U
n=l n=l
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the lower Darboux integral of y over X [a, b is defined to be [3, p. 57]

(6.4) fxY(X) dx=sup{fxS_(X) dx},;

and similarly, the upper Darboux integral of ] over X [a, b is

(6.5) fxg(X)dx=inflfxe(X)dx}.
The set _S defined in (6.3) is the set of all step-functions bounded above by y;

similarly, S is the set of all step-functions which are greater than or equal to )7 at each
point of X. As these sets are nonempty (recall the step-functions s -co and
the Darboux integrals (6.4) and (6.5) always exist, no matter how nasty the functions
y, are from the standpoint of ordinary integration theory. This observation furnishes
the following result.

THEOREM 6.1. (Theory of interval integration). If Y is an interval function
defined on X [a, b], then its interval integral (6.1) over [a, b] exists.

In other words, all interval functions are integrable (in the sense of interval
integration). The simplicity of this theory is due to the fact that intervals are accepted as
values of integrals, including the case that the integrand is degenerate (i.e., a single real
function). The requirement that the integral of a real function be a real number rather
than a possibly nondegenerate interval leads to numerous difficulties and correspond-
ingly rich theories of integration (as elucidated in [3], for example), which constitute
some of the most important chapters of real analysis. By the introduction of interval
values for integrals, these difficulties are resolved, and the operation of integration is
extended to all functions, interval or real. This is analogous to the way that the
introduction of complex numbers extends the operation of root extraction to all
numbers, complex or real. However, just as complex analysis does not supersede real
analysis, it is to be expected that interval analysis will develop as a complementary,
rather than a competitive, discipline to real analysis.

Some implications of the definitions of the interval integral given above, and some
basic properties of interval integrals will now be investigated.

Remark 6.3. If y, 37 are Riemann integrable on [a, b], then
b b b

(6.6) f, Y(x)dx =[(R)f, y_(x)dx, (R)fa f(x)dx],
in terms of the Riemann integrals of the lower and upper endpoint functions.

This follows from (6.2) and the definition of a Riemann integrable function
[3, p. 57] as one with equal upper and lower Darboux integrals; its Riemann integral is
taken to be this common value, so that if y .is a Riemann integrable function on
X [a, b ], then its Riemann integral is

b

(6.7, (R) Ia y(x)dx=fxY(X)dX=fxY(X)dx.
Remark 6.4. In case y, y are continuous on [a, b l, then the construction of the

interval integral of Y may be simplified by taking only the equidistant partitions An
defined by the points

k
(6.8) xk a +-. (b-a), k =0, 1,..., n,

n
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for each positive integer n, so that w(Xk)= 1/n, and hence, by (4.20a),

(6.9) .E.Y _1. y. V Yi.
n i=1

Here, the formation of the Riemann sums Y_., Y can be skipped, and the interval integral
is given by

(6.10) f, Y(x) dx f’) E.Y (R) y_(x) dx, (R) (x) dx
aa n=l

[3, pp. 58-59], as continuous functions are Riemann integrable.
The interval integral (6.10) is the one proposed by R. E. Moore for continuous

interval functions [5, Chapt. 8], [6, pp. 50-56], as the endpoint functions of a continuous
interval function are necessarily continuous [5, p. 18], [6, p. 33]. Of course, even in the
case y, 37 are continuous, one may be able to find a partition A, of [a, b] other than A,
such that Ea.Y. is properly contained in the Darboux sum (6.9), and hence provides a
"more accurate" approximation to the interval integral than given by use of the
equidistant partition. Some additional remarks about the numerical approximation of
interval integrals will be made later.

Some basic properties of interval integrals come directly from the properties of the
corresponding Riemann sums (5.4) which hold under the intersections in (6.1). Thus,
from Theorem 5.1, one has the following result.

THEOREM 6.2. If Y, Z are intervalfunctions on X [a, b and k is a constant, then
b b

(a) Ia k Y(x) dx k la Y(x) dx

b b b(6.11)
(b) fa(Y(x)+Z(x))dXfaY(X)dX+IaZ(X)dx;
(c) if Y = Z on X, then

b b

Ia Y(X) dX C Ia Z(X) dx (inclusion monotonicity).

By taking intersections over all positive integers n of the expressions in (5.15), one
gets immediately"

THEOREM 6.3. If Yis an intervalfunction defined on a finite, nondegenerate interval
X [a, b ], and p is such that a <- p <= b, then

(6.12) Y(x) dx + Y(x) dx Y(x) dx.

Similarly, Theorem 5.3 furnishes the following mean interval-value theorem for
interval integrals.

TNF.ORM 6.4. ff Yis defined on a finite, nondegenerate intervalX [a, b], then an
interval Y Yx exists such that

(6.13) Y(x) dx w([a, b]). Y.

Proof. Taking intersections of both sides of (5.23) over all positive integers n gives
(6.13) with

(6.14) " f’l Y, V Yx. Q.E.D.
n=l
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Theorem 6.4 is useful in connection with properties of indefinite integrals.
DEFINITION 6.2. The interval function

(6.15) laY(x) Y(t)dt,

is called the indefinite integral of the interval function Y over [a, x] for x >- a. (IbY(x) is
similarly defined over Ix, b for x =< b.)

THEOREM 6.5. If Y is a bounded interval function on [a, hi, then laY(x) is a
continuous interval function at any p [a, b ].

Proof. Suppose that 7 Y,3 [c, d] and take, as usual,

(6.16) [VY[a,b][-" max {]c], [d[},

which is finite by hypothesis. For a < p < b, a <-_ x <- p, Yo,,p Ya.b exists such that

(6.17) Y(x) dx Y(t) dt + w([x, p])" Y[x,p],

by Theorems 6.3 and 6.4; likewise, an interval Yp. Y,b exists such that

(6.18) Y(t) dt Y(x) dx + w([x, p]). Yp,,

for p < x -<_ b. Given any e > 0, for 8 e/IV Ya,? I, the endpoints of Ia Y(p) thus differ
from the endpo.ints of Ia Y(x) by less than e for Ix -pl < . Continuity of Ia Y(x) from the
right at x a and from the left at x b is obtained from (6.18) and (6.17), respectively,
as Ia Y(a)= 0 by Theorem 6.4. O.E.D.

Indefinite integrals also exhibit a type of ditterentiability if the limits

1
(6.19) I" Y(x) lim IpY(x) lim

and

(6.20) I’+ Y(x) lim
1

IY(x) lim f’ex,q
w([x, q]) x

exist and are equal, where f"[p,x] and f/[x,q] are the intervals defined in Theorem 6.4
and x lies interior to the interval of definition [a, b of Y. (One-sided derivatives at x a
and x b are defined by (6.20) and (6.19), respectively.)

DEFINITION 6.3. If the limits I’_ Y(x) and I’+ Y(x) exist and are equal, then

(6.21) I’Y I’_ Y(x) I’+ Y(x)

is called the derivative of the indefinite integral of Y at x.
The following theorem gives a condition under which the derivative of an indefinite

interval integral is equal to its integrand.
THEOREM 6.6. If Y is a continuous interval function on [a, b l, then its indefinite

integral is differentiable, and

I’,Y= Y(x), a <x <b,
(6.22) I"I’+Y(a)= Y(a) Y(b)= Y(b).
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Proof. Let, for example, YE,,x=[z.(p),2(p)] for p<x. If the upper endpoint
function 37 of Y is considered as an interval function, it follows from (4.31), (5.25), and
(6.14),that $ V)TCp.x. As 7 is continuous if Y is a continuous interval function,

(6.23) lim V37tp, 7(x) lim (p).
p’t

Similarly, limp,x _z(p) y(x), so that I’_ Y(x) exists, and

(6.24) I" Y(x) Y(x), a < x <= b.

In the same way, one has

(6.25) I’+ Y(x) Y(x), a <- x < b,

which establishes (6.22). Q.E.D.

7. Relationships between interval, Riemann, and Lebesgue integrals of real
functions. Ordinarily, no distinction will be made between a real function y and the
corresponding degenerate interval function [y] ly, y] having equal upper and lower
endpoint functions. It is convenient, however, to distinguish between possible integrals
of y over an interval X [a, b]. The notation

b f obf_ dx,.

will be used to denote respectively the interval integral of y as a degenerate interval
function (which integral always exists), the Lebesgue integral of y if y is Lebesgue
integrable over [a, b ], and finally, the Riemann integral of y if it exists.

Remark 7.1. The integral of a degenerate interval function y is a degenerate
interval, that is,

b

[ y (x) dx Jr, r],(7.2)

if and only if the real function y is Riemann integrable over [a, b], so that
b

(7.3) r (R) Ia y(x) dx.

This follows directly from Remark 6.3 and the definition (6.7) of the Riemann
integral.

Thus, one ordinarily expects an interval integration, even of a single function, to
result in a nondegenerate interval. For example, if Xo is the characteristic function of the
rationals, that is,

(7.4)
’o(x) 1 for x rational,

Xo(x) 0 for x irrational,

then

(7.5) Io Xo (x dx [0, 1],

as is well known. On the other hand, some nondegenerate interval functions have
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degenerate interval integrals. Consider the function Y defined by

(7.6) Y(x)

o, o_-<x<1/2,

[o, ], x =,

1, 1/2<x<32-,
2[1,2], x =,

22, <x-<l;

i.e., Y is an interval step-function, which includes the "risers" as well as the "treads".
For this function

(7.7) Io Y(x) dx [1, 1],

as the lower and upper boundary functions of Y have equal (Riemann) integrals.
Any interval function Y may be interpreted, of course, as a set of functions, that is,

(7.8) Y={yly(x)<= y(x)<-(x), a <=x <=b}.

If Y is degenerate, then the set (7.8) consists of only the single function y =y 37.
Otherwise, Y will contain a number of functions, among which there may be subsets
with certain distinguishing properties (continuity, differentiability, monotonicity, etc.).
For the discussion of integration, the following subsets of functions will be singled out
for special mention.

DEFINITION 7.1. If Y is an interval function on [a, b], then the set of Lebesgue
(Riemann) integrable functions y Y will be called the Lebesgue (Riemann) core of Y,
and will be denoted by CL(Y) (CR(Y)).

One has CR(Y)c CL(Y) always, but these sets may, of course, be empty. For
example, ifM is a subset of [0, 1] which is not measurable in the sense of Lebesgue, then
its characteristic function Xt is a degenerate interval function with an empty Lebesgue
(and hence Riemann) core. The characteristic function Xp of the rationals considered
earlier (see (7.4)) provides an example of a degenerate interval function with an empty
Riemann core, but a nonempty Lebesgue core (the function Xo itself).

DEFINITION 7.2. The value V(CL(Y)) (V(CR(Y)))of the Lebesgue (Riemann)core
of Y on [a, b] is defined by

b

(7.9) b

respectively, provided that the indicated cores of Y are nonempty.
Each set V(CL(Y)) and V(CR(Y)), when nonempty, is convex, that is, if one

contains values rl, rE, wth rl-_< rE, then it contains the entire interval [r, tEl. This is
because if yx has integral rx and y2 has integral rE, then the functions y0 yx + 0(yE-
are all integrable for 0 -< 0 <_- 1, and have integrals equal to ro rx / O(r2- r), 0 <= 0 <- 1,
which is just another expression for the interval [rx, rE]. As a matter of fact, the theory of
Lebesgue integration [3] leads to the conclusion that

(7.10) IL(Y)= v(CL(Y)),

if it exists, is a closed interval, which will be called the Lebesgue subinterval of the
interval integral (6.1) of Y over [a, b]. The set V(CR(Y)), on the other hand, is not
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necessarily closed. This is considered to be a defect of Riemann integration, and led to
the construction of the theory of Lebesgue integration, ttowever, as V(CR(Y)) is
convex, then its closure,

(7.11) I(Y)= v(C(Y)),

is a closed interval which, if it exists, will be called the Riemann subinterval of the
interval integral of Y over [a, b].

The purpose of the introduction of the intervals (7.10) and (7.11) is to provide
some quantiative information about the Lebesgue and Riemann cores of an interval
function Y which measures its "integrability" in a certain fashion. In the metric
topology for intervals [5], [6], the distance between intervals [a, b and [c, d] is defined
to be

(7.12) d([a, b ], [c, d])= max {la- c I, Ib- dl}.
(In the extended real number system, rule (2.7x) is used to resolve any indeterminant
forms entering into (7.12).)

DEFIrITION 7.3. For
b

(7.13) I(Y) I, Y(x) dx,

if the Riemann core CR(Y) of Y is nonempty, then

(7.14) p(Y) a(IR(Y), I(Y))

is called the Riemann gap of the interval function Y on [a, b l; similarly, if CL(Y) is
nonempty, then

(7.15) A (Y)= d(IL(Y), I(Y))

is called the Lebesgue gap of Y on [a, b].
Remark 7.2. One has

(7.16) A(Y)<-p(Y),

in case both numbers are defined.
This follows from the inclusion CR(Y) c CL(Y). If only one of the numbers A (Y),

p(Y) is defined, it will be A (Y) by the same token. For the example (7.4) of the
degenerate interval function Xo, one has A (Xo)= 1, and P(Xo) is not defined.

THEOREM 7.1. ff the endpoint functions y, are Riemann integrable over [a, b],
then A (Y)= 0; if A(Y)= 0, then y, are Lebesgue integrable, and

b b b

(7.17) f, Y(X)dx [(L)Ia _y(x)dx, (L)Ia 7(x)dx].
Proof. By Remark 6.3, the Riemann integrability of y, 37 means that p(Y)= 0;

hence, A (Y) 0 by (7.16). Conversely, if A (Y) 0, then the]ntegral I(Y) is finite, and
bounded sequences {_y, }, {)Tn } c Y of Lebesgue integrable functions may be found which
converge to _y and )7, respectively. It follows [3, p. 81] that y and are Lebesgue
integrable on [a, b] and, as

(7.18)
b
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one has that

(7.19)
b

and similarly for 37, whence (7.17). Q.E.D.
Remark 7.3. If y and 7 are Lebesgue integrable on [a, b], then

b b

(7.20) A(Y)=max {(L)fa y_(X)dx- fxY_(X)dx, fx (x)dx-(L)[a (x)dx}.
This is true because y is the "smallest" Lebesgue integrable function contained in

the interval function Y, and 37 the "largest" in the sense that for each function
y CL(Y), one has y (x) =< y (x) <- 7 (x), a =< x -< b. Thus,

(7.21)
b b

from which (7.20) follows by (7.12).

8. Improper integrals. In ordinary integration theory, an integral
b

(8.1) r I,, y(x) dx

is said to be improper if the interval of integration [a, b] is infinite, or if its integrand is
unbounded on X [a, b] in the sense that given any M >0, there exists a nonde-
generate subinterval XM of X such that ly(x)l =>M for x XM. Supposing that y is
unbounded on X =[a, b] in the sense that given any M>0 there exists a nonde-
Riemann) on [a, b], one defines the improper Riemann integral of y over [a, b to be

b b

(8.2) (IR) fa y(x) dx =lim (R) I, y(x) dx,
c,a

provided this limit exists (in the extended real number system; infinite values will be
accepted here for improper integrals). Similarly, if y is Riemann integrable over [a, b]
for b > a finite, then

b

(8.3) (IR) | y(x)dx lim (R)| y(x)dx
aa b--x3 aa

by definition, again if the indicated limit exists.
The definition of interval integrals given in 6 yields values of certain improper

Riemann integrals if the integrand y is interpreted to be the degenerate interval
function [y, y l, for example,

(a) Io x-1/3 dx [,

(8.4)
(b) Io x-a dx

(c) (-e x) dx [-co, -1].

In the above, the value of the improper Riemann integral appears as the finite endpoint
in each of the intervals (8.4a) and (8.4c). The indegenerate interval (8.4b) indicates
correctly that the corresponding improper Riemann integral is divergent.
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DEFINITION 8.1. An interval integral (6.1) is said to be infinite if its value is one of
the indegenerate intervals [-o,-] or [, ], indeterminant if it is equal to R
[-c, oo], or improper if its value is a semi-infinite interval [a, oo] or [-c, b ]; otherwise,
it is said to be finite.

The relationship between improper interval and Riemann integrals will now be
considered for the cases (8.2) and (8.3), as illustrated by (8.4a) and (8.4c), respectively.

Suppose that y (x) is unbounded above at x a. Thus, every Darboux sum (4.7) will
contain a term of the form (after elimination of nondistinct partition points, if
necessary)

(8.5) wtX. Vya [w(X). c, ],

where X1 [a, xl] and

(8.6) Cl inf (y(x)}.
xX1

The interval integral of y will hence be either improper or infinite. The following
theorem is illustrated by (8.4a).

THEOREM 8.1. Suppose that y is Riemann integrable over [c, b ]’or a < a < b, and
the indefinite interval integral/y(ce) satisfies

(8.7) lim lay(a) lim y(x) dx [0, c];
a a

then the improper Riemann integral (8.2) of y over [a, b] exists, and

(8.8)

Proof. One has

(8.9)

b b

b bIa y(x) dX Ia y(x) dx + I y(x) dx

by Theorem 6.3 and, by Remark 6.3,

(8.10) y(x) dx (R) y(x) dx, (R) y(x) dx (R) y(x) dx

as degenerate intervals may be identified with the corresponding real numbers. Taking
the limit as aa of both sides of (8.9) gives (8.8) Q.E.D.

In the case of integration over an infinite interval, say [a, ], suppose, for example,
that y is negative but that y(x)’0 as x o, as in (8.4c). Then, each Darboux sum (4.7)
will correspond to a partition A with x_l finite, x +, and as

(8.11) Vy, [c, 0],

where c =infxx. {y(x)}<0, w(Xn) w([x,_a, c])=c, then each will contain a term
equal to

(8.12) w(X,), vy, [-oo, o],

by rules (2.1iii) and (2.1ix). The situation illustrated by the example (8.4c) is a case of
the following result.
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THEOREM 8.2. Suppose that y is Riernann integrable over the finite interval [a, b ]for
each b > a, and the indefinite interval integral IVy(b) satisfies
(8.13) lim Iy(b) [-c, 0];

b:

then, the improper Riemann integral (8.3) of y over [a, c] exists, and

Pro@ This follows exactly in the same way as Theorem 8.1 by writing

and noting that
b b

as a degenerate interval. Q.E.D.
Other cases of improper interval and Riemann integrals may be treated in a similar

fashion..

9. Computational implications of the theory. One purpose of the theory of
integration of interval functions .developed above is to provide a theoretical framework
for the investigation of the numerical solution of linear and nonlinear integral equations
such as

b

(9.1) u(x) (R) Ja g(x, t, u(x), u(t)) dt,

by interval methods. One approach along these lines is to reformulate (9.1) as an
interval equation,

(9.2) U= T(U),

for an interval function U which contains the desired solution u of the integral (9.1).
Under certain conditions, the operator T will be a contraction mapping 1 ], [2], and the
iteration process

(9.3) Un/l T(Un), n =0, 1, 2,...

will converge to give a solution of (9.2). To implement this for the integral equation
(9.1), one forms the interval functions G, [g,, g, ], n 0, 1, 2, , where

(9.4)

and then (9.3) becomes

(9.5)

g.(x, t) =inf {g(x, t, Un(x), U.(t))},

.(x, t)= sup {g(x, t, U.(x), U.(t))},

b

Un+I(X) Ia Gn(x, t Un(x), U(t)) dt,

in terms of interval integration. Of course, if g, (x, t) and , (x, t) are Riemann integrable
in t, then the endpoint functions _u,/l, tTn/l of U/I are obtained by Riemann integra-
tion. From a numerical standpoint, in this case approximations u*,/l =< _u,/, u/** >
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tTn/l may be obtained to prescribed accuracy by any one of a number of methods,
including the use of Darboux sums as defined in 4 [7], with higher order accuracy
being obtainable from integration of Taylor polynomial approximations to the endpoint
functions, or by other rules of numerical integration [4], [5], [6], [9], provided, of
course, that the endpoint functions are smooth enough.

A particularly simple case occurs if g is monotone in the sense that

(9.6)
gn(x, t)= g(x, t, u_.(x), u_,(t)),

,(x, t)= g(x, t, ,(x),

that is, the endpoint functions of U, transform into the endpoint functions of Gn, and
if g further transforms Riemann integrable functions into Riemann integrable
functions. Here, the iteration (9.5) can be carried out using only the endpoint functions
if one starts with an interval Uo [_Uo, iT0] which has Riemann integrable endpoint
functions. An example of this approach to the solution of a nonlinear integral equation
was given by Rall [7], in which step-functions were used as endpoint functions (and T
was approximated by a numerical operator S such that TcS). In many cases,
continuous solutions u are sought for integral equations (9.1), which gives rise to the
following concept.

DEFINITION 9.1. The continuous core Cc(U) of an interval function U on [a, b is
defined to be the set of continuous functions y contained in U, that is

(9.7) Cc(U) {y[y U (q C[a, b]}.

Evidently, Cc(U)c CR(U), the Riemann core of U defined earlier.
If g is a continuous function of its arguments, and the interval operator T is such

that the continuous function v defined by
b

(9.8) v(x) (R) | g(x, t, u(x), u(t)) dt

belongs to T(U) for u Cc(U), then it follows that each continuous solution u of (9.1)
will belong to Cc(T(U)) if it belongs to U and hence to Cc(U). Thus, it is tempting to
try to compute the sequence (9.3) using only Cc(U,), where U0 is taken to have
continuous endpoint functions. However, in general, the functions gl(x, t) and gl(X, t)
obtained from (9.4) will be only semi-continuous if U0 is replaced by Cc(Uo), and these
so-called L- and U-functions may not even be Riemann integrable [3]. The theory of
interval integration developed in this paper resolves this difficulty by allowing compu-
tation with the interval functions U, directly, regardless of the character of their
endpoint functions.

Remark 9.1. If u Cc(U0) is a solution of (9.1), then for the sequence (9.3)
constructed by the operations (9.4) and the interval integration (9.5), it follows from the
condition (9.8) for continuous g that

(9.9)

furthermore, for

uCc(U,), n =0, 1,2,.

(9.10) U= f3 U,,
n=l

one has u Cc(U).
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Remark 9.2. In the favorable case that Un+l (Z Un, n 0, 1, 2," ., and

(9.11) lim sup {w(U,(x))}=O,
noO [a,b]

one has that U [u, u] u defined by (9.10) satisfies the integral equation (9.1), since a
degenerate interval integral of a degenerate interval function is necessarily a Riemann
integral; furthermore, one has error bounds of the form

(9.12) u_,(x)<-u(x)<-fi,(x), a<-x<-b,

for n -0, 1, 2,....
Further applications of interval integration to the solution of integral equations will

be investigated in subsequent papers.
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APPROXIMATION THEORY METHODS FOR LINEAR
AND NONLINEAR DIFFERENTIAL EQUATIONS

WITH DEVIATING ARGUMENTS*
M. S. HENRY’ AND K. WIGGINS:I:

Abstract. The authors develop a theory that unifies two existing theories devoted to finding approximate
solutions to differential equations with deviating arguments. An algorithm emerges from this new theory, and
it is compared computationally to the previously developed algorithms.

1. Introduction. In two recent papers, Allinger and Henry 1 ], Henry and Wiggins
[8] have applied approximation theory techniques to construct approximate solutions
to initial value problems with deviating arguments. The concepts discussed in these two
papers are related to ideas discussed in a number of recent papers [2], [5], [6], [7], [9],
10], [11 ], 13], 16]. The methods of most of these latter references result in nonlinear
best approximation problems; the methods of [1], [5], [7], [8], [16] lead to linear best
approximation problems and thus are computationally feasible. Of the references
identified thus far, only [1], [8] consider deviating arguments. The interested reader is
referred to the bibliography of [1] for additional references involving differential
equations with deviating arguments. In the present paper the authors compare the
basically different approximation theory techniques in [1] and [8], and present a
unifying theory.

2. The initial value problem. Consider the scalar value problem

x(")(t)-f(t, x(t), x("-)(t), x(h(t)), x(-l)(h(t)))= O,
(1)

x(i)(0) Ci, 0,. , n 1, J [-% -],

where ), and - are nonnegative and 3’ + " > 0. Initial value problem (1) is considered in
both [1] and [8]. Reference [1] basically requires that (1) be a linear differential
equation and that the deviating argument h in (1) satisfy h (J)

_
J. In the latter reference

(1) is not required to be linear and h(J) need not be contained in J. However, the
techniques of [8] do not exploit any linear part that may occur in (1), and the results of
[8] are local in nature.

A function x is a solution in (1) on J if the x(i)(t), i- 0,..., n are defined and
continuous for s J U h(J) and if x satisfies (1) for s J. In (1) it is assumed that
f" J R2, - R is continuous, and that k C(J). Other hypotheses will be imposed
later.

The initial value problem (1) may be rewritten as

n-1 n-1
(2) x()(t)+ a(t)x()(t)+ , b(t)x()(h(t))

i=o i=o

f(t, x(t),’’’, X(n-1)(t), x(h(t)),’", x

x(i)(0) ci, O, 1," , n 1,

("-l)(h (t))) 0,

tJ,

where aj, bj C(J), and f:J R2n-,R is continuous. Thus the linear part of (1) is
separated from the nonlinear part. For ease in notation the following designations are

* Received by the editors June 4, 1980.
f Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan 48859.
Department of Mathematics, Walla Walla College, College Place, Washington 99324.
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employed:

(3)

(4)

and

n-1

A[x](t) x(n)(t)+ , ai(t)x(J)(t),
i=0

n-1

B[Xo hi(t)= Z bi(t)x(i>(h(t))
/’=0

(5)

where

Then (2) becomes

(6)

NIX, h ](t) f(t, X(t), X(h(t))),

X(t) (x(t), (t), x("-l)(t)) r.

A[x](t) + B[X h ](t) N[X, hi(t),

x(i(O)=ci, i=O,...,n-1, tJ.

The standard transformation

(x(t), x(t)) (x(t), x(t), x-(t)) x(t)

converts (6) into

Pi(t)-(t)X(t)-;(t)X(h(t)) F(t, X(t), X(h(t))),

X(0) A, J, where A= (Co," ’, c-1),
F(t, X(t), X(h(t))) [0,..., 0, f(t, X(t), X(h(t)))],

B(t)

A(t)

(7)

and where

0 1 0 0

0 0 1 0

0 0 0 0

-ao(t) -a(t) -a2(t)

0

-a_(t)

0 0 0 0

0 0 0 0

0 0 0 0

-bo(t) -bl(t) -b.-2(t) -b.-l(t)

We note that [1, (2.2)] is a special case of (7), and that (7) clearly identifies the
linear and nonlinear components of (6). In contrast, the companion matrix in [8, (1A)] is
a constant matrix and the linear components are not identified.

The conditions on f in (2) imply that F’J R2, R, may be assumed to be
continuous. If U (u, u2,’’’, u,)r is an element of R, define

IIUII-- max

if U is a continuous mapping from J to Rn, then

IIuIl max IIu(t)ll.
J
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Now let Z(t), J, be the fundamental matrix solution to the companion linear
system to (7); that is, to

(8) X(t) A(t)X(t), X(O) I,

where I is the n n identity matrix. If Z(t)= (zii(t)), then

max max Y Iz,;(t)l.
J l<=i<=n]=

Let J be a closed subinterval of J, and suppose that 0 J. Define 127 to be the set of
all continuously differentiable functions U’Y - Rn that satisfy IIU(t)-2(t)AIl<=oltl
for some nonnegative constant 0 and for all J. Then a standard argument establishes
that the pair (fi, p) is a complete metric space, where

p(U, V) inf {0" I[U(t)- V(t)ll<=Oltl,

We conclude the present section with a theorem that will be utilized throughout the
remainder of the paper. The proof follows from [1, Thm. 1] and is omitted.

THEOREM 1. Let and be the matrices in (7), and let , be the fundamental
solution to (8). Suppose that h C(J), h " ], and that maxlh(t)l m. Assume max

(l121b, 112- 11 ) and that t3. If ce2flmi < 1, then for fixed h the operator Lh
defined by

Lh[U](t) (t)A + Io (t)-l(s)B(s)U(h(s)) ds, ](9)

is a contraction operator on I).

3. Theory of approximation. Let Ilk denote the set of all scalar polynomials of
degree k. Define

n-1(10) k={pelIk’p(t) aO+alt+. +a,-1 +,t + +ktk,
teJ, whereai=ci/i!,i=O, 1,... ,n-l, andflieR, i=n,n+l,. ,k}.

Thus k is the set of all scalar polynomials of degree at most k that satisfy the initial
conditions in (6). Now let lIk denote the set of functions P" J R such that each
component of P is an element of I-Ik. Corresponding to (10), define

(11) k ={P e k" P= [P,/5,’",P(’-I]r,p e }.

Hence for each P #k, P(0) A.
We are now in a position to pose the best approximation problem to be considered

in the remainder of this paper. Let J
__
J be as described below (8), and suppose that

g’ ] ] is continuous. For x C"-I(J) and for the F in (7), define

(12) P[X, g](t) F(t, X(t), X(g(t))).

Now let P be an appropriate element of Ok (to be specified later), and choose Vb k
satisfying

inf [l’-,V-B[Vo g]-/[P, gill]
(13) v
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We note that Vb satisfies (13) if and only if the first component Vb of Vb satisfies

inf sup [A[v](t)+B[Vo g](t)-N[P, g](t)[
(14) vk Y

=sup [A[v](t)+B[V g](t)-N[P, g](t)[.
y

Although the best approximations Vb and Db exist, uniqueness is not guaranteed.
Let

{&i(t)}/k=o {A[,i](t) +B[i g](t)}/=o,
where

and where

i(t) i, 0," k,

kti--[ji,], tln--1) T.
Then the scalar minimization problem (14) can be expressed as

inf sup [A[v](t)+B[Vo g]-N[P, g](t)[

(15) inf Oii(t NIP, g](t)
J i=n i=0

{Bi}eRk-n+l J i=n

n-1
where N*[P, g] NIP, g]-Y.i=0 aii. If {i}=, satisfies the Haar condition [3, p. 74],
then the best approximation problem (15) and consequently the minimization problems
(13) and (14) result in unique best approximations.

A comparison of (14) with [1, (1.3) and (4.1)] reveals that (14) results in the best
approximate solution (BAS)of degree k to [1, (4.1)] if J J and if NIX, g](t)--r(t), that
is, if N is independent of X and g. We also note that the best approximation problem
(13) closely resembles the substitute approximation solution (SAS) minimization prob-
lem defined in [1, (5.3)]. The analysis in [1] requires that/ in (12) involve only X(g(t))
and that the ai(t)--O, 0,..., n 1, see [1, Thm. 5]. Finally (13) resembles [8, (14)];
however [8] requires that be a constant matrix and no identification or utilization of
the linear part of (6) or (7) occurs in [8]. Utilization of the linear part can be particularly
important in the computations (see 4). We will return to the above comparisons
after further examination of (13) and (14). The remainder of the present section is
devoted to establishing theoretical properties of the best approximations in (13) and
(14) and to relating these best approximation problems to the initial value problem with
deviating argument.

To this end we assume that h in (1) satisfies h (0)= 0. This requirement and the
condition that h C(J) are standard assumptions in the theory of initial value problems
with deviating arguments 12].

For any J __c_ J define (J) to be the length of J. Now construct a sequence of closed
intervals {Js}= as follows. Let OJ, J+lC_.JsC_.J, h(J+)C_Js, and require that
lim_, (Js) O. We know that h (0) 0 and h s C(J) insure that such a construction is
possible. Define g* "J-+ R by g** (t)= h(t), Js+l, g* (Js)C_Js, and g* C(J).
Without loss of generality we can assume that

(16) sup Igs* (t)[ ms satisfies a2ms t.t,s < 1
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for all s, where a and B are defined in Theorem 1. Now construct a function gs C(J)
satisfying gs(t)= g* (t), tJs, gs(J)_J, and IIglb IIg,* I1,

If rn sup {ms}, then the construction of g*, s 1, 2,. ., and (16) insure that

(17) a2/3m < 1.

Let

(18) pA(t)=ao+alt+" +an-lt"-,
and define

(19) PA [PA, Pa," ’, PA(n-)]r.
Clearly Pa(0) A and hence Pa k. Let g be any element of C(J) that satisfies

(20) g(J)_J and []gll,--<m.

We note that each gs, s 1, 2,. is such a g.
Let K [[PAllor + 1. Since/ in (12) is a continuous function from J x R2, into R,

there exist M(K) such that liP(t, x, Y)I[<-_M(K) whenever [IX[[<_-K and I[Y[I<-K. For
any g satisfying (20) and P k, let

(21) A(t)--(t)PA(t)--:(t)[PA g](t)-ffz[P, g](t)- r/(PA, P)(t).

For IIPII--< K, (2) implies that

(22) IIn (PA, P)II, --<
where

(23) , IIPII + (1111, + IIll,)llPlb + M.
Now for any g satisfying (20) Theorem 1 implies that the operator Lg defined in (9) has
a unique fixed point Y fj. Thus

(24)
Y(t) 2(t)A + fo 2(t)2-(s)O(s) Y(g(s)) ds.

Equality (21) implies that

VA(t) Lg[PA](t)+ Io 2(t)2-X(s)P[P’ g](s) ds

(25)

+ Io 2(t)2-X(s)rl(Pa’ P)(s) ds.

This equality implies that PA e IIj. Consequently

(26) P(PA, Y) ----< P(PA, Lg[PA])+ p(Lg[PA], Lg[ Y]).

Since Lg is a contraction operator on D., (26) implies that

1
(27) O(PA, Y) <-- O(PA, Lg[PA]), where 0 < tz < 1.

1-/x

But (22) and (25) imply that IIP(t)- Lg[PA](t)ll <---- a2(M + ).
Therefore by (27) we have that

2
a (M+)

P(PA, Y)<-
l-ix
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and hence

(28)
IlPa(t)- Y(t)[[<a(M+Cl)ltl= teJ.

We now select Jr to insure that

(29) 2aZ(M+)
l-r/

We note that this is possible because lim_,/(J)= 0. Hereafter

(30) g=g and ]=J;
with this designation for g we observe that g(]) ,1 and that g(J) _J. Also g h on Y+.

Now define

(31) S P e" ]P(t)- Pa(t) <
2a(M + ) ItS, e ]}.

Clearly S is convex and compact. Let P e S. Then from (31) and (29) we have that

IIPII1 [IPAIIs + 1 K. Thus, for e ] and P e Sk, I[[P, g](t)ll m. Assume the set
{(t)}=,, eZ described below (14) satisfies the Haar condition. For any P e Sk define
TkP as follows" if Vb is the (now unique) solution to (13), then

(32) TP V.
THEOREM 2. Let g and J be as in (30), and assume (29) is valid for J. If Tk is

defined by (32), then Tk maps Sk into Sk.
Proof. Let P Sk. Then

(33)
IIQ-V-BEV g]-[P, g]llY

II-P-[P g]-[P, g]ll ,
where is defined by (22). Inequality (33) implies that

(34) I1 (w, P)[I --< 6.
Now (21) with Vb in place of PA holds if and only if

Vb(t)-(t)A= Io(t)-l(s)l[P, g](s) ds

(35) + Jo 2(t)2-’(s)n(V, P)(s) ds

+ Jo 2(t)2-(s)B(s)[V g](s) as, ].

Thus

(36) IIv (t)- Lg[V](t)l[ <-- a2(M + l)[tl.
We note that (35) and (9) imply that V and Lg[V] are elements of fy. Therefore (36)
implies that

2(37) p Vb, Lg Vb <= tx M + I
Due to the construction of g, Lg is a contraction operator on both l)y and 12j, and Y in
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(24) is a fixed point of Lg in fly and lqj. Consequently utilizing (37) and considering
Y 12], we obtain

p( Vb, Y) -< p V, Lg[ Vb ]) + p (Lg[ Vb ], Lg[ Y])

<= a 2 M + Cl + txp V, Y),

where/x is defined in (27). Thus p Vb, Y) =< a 2(M + )/(1 -/x ). This inequality implies
that

(38) V(t)- Y(t)ll<-2:(M+)ltl,
1-/_t

Thus, using (28) and (38), we have that

2a2(M+)IIv(t)-e(t)ll <- Itl,
1-tz

Consequently V e Sk, and T "$
THEOREM 3. Assume the hypotheses of Theorem 2 are valid. Then the mapping

defined in (32) is a continuous mapping.
Proof. Let {&i(t)}i=, be as defined below (14). By assumption {i}/=, satisfies the

Haar condition. Suppose that/ e $ and that /5 is any other element of S; denote
T[/3] ( and T[/5] (. Suppose that

4(t)=aO+alt+. +an_ltn-l+ntn+. +kt
and

q(t)=ao+alt+" +an_tn-+t+. +ktk

are the first elements of ( and (, respectively. Then, by (14) and (15),

inf sup [A[v](t)+B[Vo g](t)-N[fi, g](t)[

=sup IA[4](t)+B[Oo g](t)-N[, g](t)l

k

su_p /i(t)-N*[/, g](t)
J i=n

A similar chain of inequalities holds for . Now the classical Freud theorem [3, p. 82]
implies that there exists a constant Aa such that

i=n ]

This inequality and an argument paralleling that given to prove [8, Thm. 1] now
establish that Tk is continuous.

COROLLARY 1. Suppose that the hypotheses of Theorem 2 are satisfied. Then the
mapping Tk defined in (32) has a fixed point Pk in Sk.

Proof. Since Sk is a compact, convex subset of k, the result follows from the
Schauder fixed point theorem [18, p. 25].

We summarize the result of the corollary. There exists a P k such that if we seek
the best approximation Vb to/[P, g in the sense of (13), then this best approximation is
rb- P. In the scalar equivalent form (14) this best approximation is /)b "-P, the first

component of P. We note that the fixed point P of Tk guaranteed by Corollary 1 would
not necessarily be the fixed point in [8, Cor. 1]. No fixed point analysis is given in [1].
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The proofs of Theorems 2 and 3 do not depend on k, and consequently there exists
a sequence of fixed points,

(39) {Pk(t)}k=n, ,
guaranteed by the corollary.

We now establish that any cluster point of (39) is a solution to (7) with g(t) in place
of h(t), J. Since g(t) h(t), J+l, this will establish that any cluster point of (39) is a
solution to (7) on J/l. A similar result is established in [8, Thm. 2]; however, since
bi, n,.. , k, is not.necessarily a polynomial, a different approach is needed in the
present paper.

THEOREM 4. Assume the hypotheses of Theorem 2 are valid. Then the sequence (39)
has a cluster point.

Proof. Let Pk be a fixed point of the operator Tk, k n, n / 1,. .. Then Pk Sk.
Thus {llPkl[7}k, is a bounded sequence. Since Pk is a fixed point of Tk, inequality (33)
now implies that is a bounded sequence. Therefore (39)is a uniformly
bounded, equicontinuous family, and consequently (39) has a cluster point W’J
R,.
THEOREM 5. Assume the hypotheses ofTheorem 2 are satisfied. Let Wbe a clusterpoint

of (39). Then Wsatisfies (7) with g in place of h, J; furthermore, Wis a solution to (7)
with deviating argument h on Je+l.

Proof. Consider the initial value problem with deviating argument g,

(t)-(t)X(t)-(t)X(g(t))=F(t, W(t), W(g(t))),
(40)

X(0) A, J.

Let G(t, X) F(t, W(t), W(g(t))) +B (t)X. Then G satisfies a Lipschitz condition in the
second variable with Lipschitz constant . Now 1, Thm. 1] and (17) imply that (40) has
a unique solution on J, say W(t). The Weierstrass theorem guarantees that there exists a
sequence {O}, , such that O and O uniformly on Since P is a
fixed point of T,

IIP()-e()-Ee() g]--[ek(),

where Pk) W as ] +. This inequality now implies that

lim IIP()-P()-[f(i) g]-[f(i), g]lly O,

and consequently

(41) lim k()=fi,W+[W g] +/[W, g].
]-oo

Thus the sequence (/k()(t)}x is uniformly convergent on Z Integrating (41) results in

lim (Pk()(t)- Pk()(0)) | (A(S) W(s)+/(s)[W g](s)+/[W, g](s)} ds.
Jo

This equality now implies that

l/(t)=fi,(t)W(t)+(t)[Wo g](t)+[W, g](t), W(0)= A,

completing the proof. []
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Hereafter we designate a kth degree fixed point of Tk as a modified SAS of degree
k, abbreviated MSAS. We note that if {bj(t)}=, satisfies the Haar condition and if
e Je/l, then the BAS of degree k considered in [1] is a special case of MSAS.

The more difficult theory developed for the MSAS does parallel that given in [8] for
the SAS; however, the SAS development does not allow for the identification and
subsequent exploitation of the linear component of (7). The next section demonstrates
that the identification and utilization of the linear part of (7) frequently accelerates the
calculations. Both the MSAS and SAS theories are local in the sense that the resulting
cluster points satsify (7) on possibly smaller intervals contained in the original interval J.

4. Computations. The algorithm used to calculate the SAS approximate below is
described in [8, 4]. The MSAS algorithm now described is based on the theory of 3.
For k sufficiently large, initially choose Pko(t)- PA(t). At the + 1 step solve via the
second algorithm of Remes the best approximation problem

inf II-V-[Vo g]--l[Pk,,
(42)

inf
J i=n i=0

where the bi, 0, , k are described below (14). Let the solution to this minimiza-
tion problem be Pk.t+l and continue. This procedure results in a sequence (uniquely
determined if bi, n,. ., k satisfies the Haar condition)

(43) {Pk,l} =0,

with corresponding first elements

(44) {Pk,l}l-_O

Any cluster point of these sequences then represents the MSAS of degree k to (7) and
(2), respectively, on J.

All calculations for the tables below are computed in the scalar setting. Further-
more, the calculations are carried out on an interval J __. J for which h (J)

___
J. If no such

interval J exists, the construction of an appropriate g would be necessary for both the
SAS and MSAS algorithms.

As in [8, pp. 438-439], a cluster point of (43) need not be a fixed point of Tk. An
additional condition guaranteeing this is similar to that given in [8, p. 438].

Let Pk be the MSAS or SAS of degree k. The notation below is employed in the
tables that follow:

ek marx ]A[pk](t)+ B[P h](t)-N[Pk, h](t)l,

Ak max Ipk(t)-x(t)[,
J

where x(t) is the solution of (2), J. The column designated by CYC (number of cycles)
indicates the number of iterations required in the MSAS or SAS algorithms to achieve a
prescribed tolerance. All calculations were effected on the IBM 370, in double
precision arithmetic, at the College of Charleston. In each example the approximating
class is 6.

EXAMPLE 1.
k’(t)+4x(t)=e ,
#(0) O, (0) I, t[-1, 1].
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For this example h(t)- t. In the MSAS minimization problem (42),

A[x](t) (t)+4x(t), B[X hi(t)--0, N[X, hi(t)= e t.
Thus bi(t) i(i 1)ti-2 + 4tg, 2, 3,.. , 6, d0(t) 4, dx(t) 4t, and the minimization
problem (42) is at the first iteration

inf sup [i(i-1)t-+4t]+4t-e
{/i}R5 j i=

Since N is actually independent of x for this example, the MSAS algorithm converges
after just one iteration. This behavior is characteristic of the MSAS algorithm in those
cases when (2) is linear, and thus the MSAS algorithm is preferable to the SAS
algorithm in the strictly linear case. For Example 1, Table 1 demonstrates the
preferability of the MSAS algorithm. Column 2 (CPU) of Table I and subsequent tables
indicate the amount of time in seconds used by the central processor unit to compute
the SAS and MSAS approximations of degree k. The column entitled EX represents the
limiting extremal set of the SAS or MSAS algorithms (see [8, p. 438]).

TABLE

SAS

MSAS

CYC

12

CPU

4.50

2.91

Ek

2.0699 (10-2)

2.0699 (10-2)

A

2.6895 10-3)

2.6895 (10-3)

EX

-1., -.7973, -.2764,
.3366, .8200,

-1., -.7951, -.2772,
.3374, .8200,

For Example 1, the actual solution is x(t)-.4 sin 2t-.2 cos 2t+.2e t, and the SAS
approximation of degree six is

P6(t) + .498277t2- .48294 It3- 120676t4 + .084388t5 + .014242t6.
The coefficients of the MSAS approximation of degree six agree with those of the SAS
approximation to six decimal places.

Example 2.

(t)+4x(t)+Yc +tx - :-(sint+cost),
x(O) O, k(O) 2, [-.6, .6].

SAS

MSAS

TABLE 2

CYC CPU

4.76

3.49

8k

4.727 10-3)

4.727 10-3)

A

3.0796 (10-4)

3.0797 (1074)

The actual solution to Example 2 is x(t)= sin 2t.
Remark. The MSAS part of Example 2 appears in [1, Ex. 1] for degrees five and

seven.
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Example 3.

(t)+ 4x (t)+ 2x2()= cos 2t+ 1,

x(O)=i, (0)=0, re[-1, 1].

The solution to Example 3 is x(t) cos 2t. The 5, 0,. ., 6 are described in Example
1, and the minimization problem (42) at the/th iteration is

inf sup I ,[i(i-1)ti-2+4t]+e-N[P6,t h](t) I,{/3}eRs j =2

where

N[Xoh](t)=-2x2() +cos 2t+ 1.

The MSAS algorithm is initiated by selecting P6,o(t) - 1. Thus the first iteration is
effected with/r[e6,o hi(t)= cos 2t-1.

SAS

MSAS

TABLE 3

CYC

13

CPU

4.95

4.06

Ek

8.98 10-3)

8.98 10-3)

3.264 (10-4)

3.264 (10--4

Example 3 is interesting in that, even though the approximating functions in
the MSAS algorithm are more complicated than the powers of that always occur
in the SAS algorithm, and in spite of the fact that (2) is nonlinear, the MSAS algorithm is
slightly faster than the SAS algorithm.

Example 4.

k’(t) +1/2 sin (2t)(t) + x2(h(t))= 1 -sin3 t-cos2 (h(t)),

x(0) 0, (0) 1, e [-1, 1],

where

(t)I(t3 + ) sin , t O,
h

1,0, t=0

The solution is x(t)= sin t.

TABLE 4

SAS

MSAS

CYC

12 8.02

8.42

8k

5.010(10-4

5.ol0(10-4)

9.965(10-4

9.963(10-4)

EX

-1., -.802, -.340,
-.290, .828,

-1.,-.800, -.343,
.289, .829,
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For Example 4, the SAS approximation is

P6(t) +.310237(lO-4)t2-.166268t3-.624052(lO-4)t4

+ .783080(10-2)t5 +.235912(10-4)t6.

The MSAS approximation is

P6.(t) + .310617(lO-4)t2-.166268t3-.624461(lO-4)t4

+ .783080(10-a)t5 + .236053(10-4)t6.

5. Conclusions. This paper utilizes approximation theory techniques to obtain
uniform approximate solutions to variants of initial value problem (2). An algorithm
based on the theory of this paper is then constructed. This algorithm (MSAS) is
compared to an algorithm (SAS) previously developed by the authors [8] to obtain
approximate solutions to differential equations with deviating arguments. The MSAS
algorithm is computationally superior to the SAS algorithm in those cases where (2) is
linear. This superiority is not unexpected in that the MSAS fully utilizes the linear part
of ().

For nonlinear differential equations with deviating arguments, neither algorithm is
consistently superior. In the nonlinear case the additional complexity of the MSAS
algorithm might then suggest the preferability of the SAS algorithm.

The present paper does represent a unification of the theories presented in [1], [8]
in the sense that if the differential equation with deviating argument is strictly nonlinear
(ai(t)=-O and bj(t)=-O, j=0,..., n-l, in (2)), then the MSAS and SAS theories
produce the same results. The MSAS theory of the present paper does fully include the
linear theory developed in [1].
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FAMILIES OF BIORTHOGONAL RATIONAL FUNCTIONS IN A
DISCRETE VARIABLE*

MIZAN RAHMAN

Abstract. By using Toscano’s [Boll. Un. Mat. Ital. (3), 4 (1949), pp. 398-409] finite difference
representation for generalized hypergeometric functions, two families of biorthogonal rational functions in an
integer-valued variable, are obtained, one a 3F2 series and the other a balanced 4F3 series.

1. Introduction. There has been a growing interest in recent years in functions of
discrete variables, especially the classical orthogonal polynomials which include Hahn,
Krawtchouk, Meixner, Gottlieb, and Charlier polynomials (for a brief account of these
polynomials see [11, pp. 221-227], [19, pp. 33-37]). Karlin and McGregor [15], [16]
found applications of the Hahn polynomials in genetics; Delsarte [5], [6] and Sloane
[19] used the dual Hahn and Krawtchouk polynomials in coding theory; Eagleson [10]
exploited the properties of Krawtchouk polynomials to obtain some results in statistics;
Cooper, Hoare and Rahman [4] found a probabilistic model in which all the poly-
nomials mentioned above acquire a clear stochastic significance. Discrete polynomials
also figure prominently in the group-theoretic works of Dunkl and Ramirez [7]-[9].

In trying to find a product formula and an addition theorem for the Hahn
polynomials, the author [17] recently bumped into a very novel kind of discrete
functionsua family of biorthogonal rational functions--which are expressible as
balanced 4F3 hypergeometric functions with unit argument. It is not unreasonable to
expect that these rational functions will find applications in other areas and may enable
us to solve problems that were hitherto considered difficult, if not intractable. The
purpose of the present paper is to introduce such families of biorthogonal rational
functions in a systematic manner and find some of their interesting properties.

Classical orthogonal systems can be defined in a number of equivalent ways, as
solutions of certain differential or difference equations, as solutions of some recurrence
relations, in terms of generating functions, or in terms of Rodrigues’ formulas. For the
purpose of generalizations, however, the definitions through Rodrigues’ formulas seem
to be very convenient. To illustrate the point, let us consider the Hahn polynomials
On(x) which are represented as hypergeometric series [11], [13],

On(x)=-On(x;a,,N)
(1.1)

=3F2[-n,n+a ++ 1,-x]a+l,-N

where x, n 0, 1,..., N and a,/3 are arbitrary real or complex parameters, except
when they have such values as to render the above series meaningless. The above
hypergeometric representation was first given by Erd61yi and Weber 11 ], 15] who also
gave their Rodrigues’ formula [22] (see also [3]),
(1.2)

(n +t)n A:[(x +a)(N-x++n)]p(x;a, fl, N)Qn(x;a, fl, N)=
N N+a+fl+l a+n fl+n

* Received by the editors May 18, 1978, and in revised form September 8, 1980. This work was
supported by the National Research Council of Canada under grant A6197.

+ Department of Mathematics, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
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where

1)(fl + 1)N-x(1.3) p(x" a, , N)=
(a +fl +2)N

is the weight function associated with the Hahn polynomials [13], [15], and

Aft(x) f(x + 1) f(x), n=1,2,....

The factorial functions appearing in (1.3) are written in Pochhammer notation,

(1.4) (a)x=
r(a+x)
r(a)

x a positive integer,

arbitrary x,

with (a)o 1. These functions will henceforth be referred to as Pochhammer functions
or products. In this notation, Rodrigues’ formula (1.2) reads

p(x; a, fl, N)Q,,(x; a, fl, N)

F(a +/3 +2) (N-n)!
F(a + 1)F(fl + 1)F(a +/3 + 2 + N) (a + 1).

x A[(x- n + 1)+n(N-x + 1)t+n].
The form of the right-hand side now suggests some generalizations. For example,

one may try to compute the nth difference of the product of three or more Pochhammer
functions. For the sake of generality, it is preferable to consider a Rodrigues’ operator
of the type

(1.6) Ln,k(X)= Axn[(al + X)b,(a2--X)b2"" (a2k-1 + X)b2k_,(a2k X)bk],

where k is a fixed positive integer and the a’s and b’s are arbitrary complex parameters
which may not be independent of n. The expression above can be computed in terms of
a hypergeometric function by using the elementary formulas of finite difference calculus
and some well-known transformation and summation theorems of the hypergeometric
series [2], [18]. However, the hard work was done by Toscano [21, p. 403] when he
obtained the finite difference representation for generalized hypergeometric functions:

(1.7)

X q-l, X q-r.C.p, t]p+lFq+l
X, X +/1, X -t-/q

(-a)"
r(x)r(x + 1) r(x q-_7_dxflq) A:t[ F(x + aa)" r(x + ap) tx]j.r(x q- (;1(1) r(x + (:p)t r(,)r(x :: +

It follows immediately that

L,,,k(X)=(--1)’(al+X)b,(a2--X)b (a2k-l+X)b2,_l(a2k--X)b2k

(1.8)

-n, a q- bl + x, a3 + b3 + x, a2k-1 q- b2k-1 + X,

X2k+lF2k
1 +x--a2, 1 +x--a4," ", 1 +x--a2k

al + x, a3 + x, a2k-1 + X, 1 + X a2-- b2,

1 + x a4- b4, , 1 + x a2 b2g
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By reversing the series on the right and simplifying, we have an alternative form

L,,,k(x)=(al+x +n)bl(a3+x +n)b3" (a2k-l+X +n)b:._

(a2 x n)bz(a4 x n)b,.. (a2k x n)b2k
(1.9)

a2 + b2 x n, a4 + b4 x n, a2k + b2 x n,

I 1-al-x-n," ",l-az-l-x- IX2k+lF2k 1-al-bl-X-n, 1-a3-b3-x-n,"

t_ 1 a2-1 b-i x n, a2 x n, , a2k x

Our aim is to establish orthogonality or biorthogonality of certain hypergeometric
functions by using these representations. It is clear that one cannot hope to accomplish
much except in the simple cases k 1, k 2. The case of k 1 when L,, (x) reduces to a

3F2 series will be considered in 2 and 3. When k 2 the hypergeometric function in
(1.8) or (1.9) is a 5F4 series which, in general, is not easy to manipulate. This F4 series
becomes a 4F3 when one of the b parameters vanishes. Even a general 4F3 does not have
a known transformation formula unless it is balanced or nearly well-poised. In 4 and
5, we shall deal with the case when k 2 and the resulting hypergeometric series is a
balanced (or, more commonly, Saalschutzian) 4F3.

In carrying out the calculations in the following sections, the most fundamental
identity we shall need is Whipple’s transformation formula [2, p. 56]

(1.10)
u, v, w J -(-i-(-i- u, 1-v+z-k, 1-w+z-k

provided the 4F3 series is balanced, that is,

(1.11) u +v+w --x / y +z-k + l.

Special cases of (1.10) are the Pfaff-Saalschutz theorem 1, p. 62] for a balanced 3F2
series and the well-known transformation formulas for a general terminating 3F2"

(1.12)
c,d (d)k 3F2 c,l+b-d-k

[2, pp. 17-20], [14] and

(1.13)

[2, p. 983.
C, d ii 3F2

c, c -[- d .a b J

2. Rodrigues’ formulas for 3F2’So If we set k 1 in (1.9) we get a 3F2 series on the
right-hand side that involves the parameters al, a2, bl and b2. However, it can be seen
that one would get a 3F2 from the general Ln, by setting all but two of the b-parameters
equal to zero. For instance, in Ln,2 we may set b2 and b4 equal to zero and get a 3F2 with
the parameters a 1, a3, bl, b3. It is easily seen that this 3F2 is basically equivalent to the
one for k 1. We may then, without any loss of generality, consider the general
4-parameter Rodrigues’ formula

Ln,l(X)=Ln(x; al, a3; bl, b3)

A[(al + X)bl(a3 + X)b3]

[ -n,l-al-x-n,l-a3-x-n ]=(al+x+n)t’1(a3+x+n)b33F2
1-al-bl-x-n, l-a3-b3-x-n
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Using (1.12) and (1.13) and simplifying, we get

/,(x)
(-1)n(al + X)bl(a3 + x)b3(-bl-

+ x)n 3F2[-n, -bl, al- a3-
b3, al + x

(--1)n(alnt-X)bl(a3+X)b3(--bl--b3)n(al + x)n 3Fa[-n,-b3,b3, a3 + x

On the other hand, if one applies (1.12) twice in a row and then simplifies, one
obtains

Ln, l(X)
(al -+- X )bl (a3 + X )b3(--b3)n (a3 a bl)n

(a+x),(a3+x),,

(2.2) x 3F2[-n’ bl+b3-n+l,l-a3-n-x]b3+l-n, 1-a3+al+bl-n

Note that (2.2) reduces to the Rodrigues formula for Hahn polynomials if we
choose a3 1 n, b3 ce + n, bl =/3 + n, al -/3 -N- n. Symmetry implies that Ln,l(X)
gives the same Hahn polynomials if a l, bl are interchanged with a3, b3, respectively.

In order that we may obtain something that is essentially different from Hahn
polynomials, we will assume that al and a3 are different from 1- n.

Using (2.1), we are now able to write down two separate formulas"

w(1)(x)R(nl) (x)(- 1) (-ba b3-1)n (a3 + X)
(2.3) A[(ax + X + 1)bl(a3 + X)b3+l]

(a3 + X)n

and

(2.4) A[(aa + X)bl+(a3 + X + 1)b3]
W(1)(x)S(nl) (x)(-1) (-bl b3- 1) (aa + x)

(al + X)n

where

(2.5) W(1)(X) (al + X + 1)bl(a3 + x t- 1)b3,

[ -n,-b,al-a3-b3](2.6) R (x) (x) 3F2
-bl- b3-1, al + x + 1

(2.7) S(1) (X) 3F2
-bl- b3-1, a3 + x + 1

We shall show in the following section that, under appropriate conditions, {R (2) (x)}
and {S (1)n (x)} for n 0, 1, form a biorthogonal system on a certain discrete set. Note
that R1 (x) and S(1 (x) coincide when al a3.

3. Biorthogonality of g1). (x) and S(1)n (x). We assume that

(3.1)

(i)

(ii)

(iii)

(iv)

(v)

aa, a3 O, +1, +2,..

a -[- bl, a3 + b3 O, + 1, +2,

bx, b3, a + bl a3, a3 + b3 a are neither 0 nor positive integers;

bl+ b3 + 1 <0;

x=0,+l,+2,....
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Then

(3.2)

F(al + bl + 1 + x)F(a3 + b3 + 1 + x)
F(al + 1 + x)F(a3 + 1 + x)

,n-2F(-bl- b3- 1)
sin r(al + bl + 1) sin -tr’(a3 + b3 + 1)F(-bl)F(-b3)F(a3- al- bl)F(al- a3- b3)

(1)
=/x say,

by virtue of Dougall’s formula for the sum of a bilateral serids [18, p. 180]. Because of
the assumptions (3.1) the sum is a finite number.

Now let us consider the sum

w(x)R . (x)$,. (x).

Using the representations (2.6) and (2.7) and expanding the hypergeometric
functions we obtain

(3.4) Pm, i (--n)k(--bl)k(al--a3--b3)k (--m)l(--b3)l(a3--al--bl)lQk,
k=O k !(-bl b3-1) /=0 l!(-bl- b3-1)/

where

(3.5)
sin 7r(al + bl + 1) sin ’tr’(a3 + b3 + 1)F(-bl + k)F(-b3 + l)

1
F(a3- al- bl + l)F(al- a3- b3 + k)

(-bl-b3-1)k+l
(-bl)k(-b3)l(a3- al- bl)l(al- a3- b3)k’

by virtue of the formula used to derive (3.2). Hence,

k=O k! /=0 i(--l’S -’__--
(-n), (-k)

=oa" k! (-bl- b3-1),

(n.-m)!(-[,b3-a),. ,,=o k!

0

ifn > m,

ifn <m.
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From the binomial theorem, it now follows that

(3.6) p,,, { x(1) n! }(-bl- b3-1).

The biorthogonality of Rl)(x) and S()(x) also follow from the Rodrigues
formulas (2.3) and (2.4). Suppose n > m -> 0. Then, by (3.5),

(-1!"_ ( +x).sP"" (-ba b- 1), x=-E a3 +x
) (x) A:[(al + x + 1)a(a3 + x)+]

[ a+x_(-1)"(-bl-b 1),_a w(1)(x)R(a (X)(a+x),_l =_:-g:- a. .-1 s(2(x
0.7)

(-1)"
(-ba- b- 1),

However,

A-l[(al + x + 2)b1(a3 + X + 1)b3+1] Ax (a3 + x)

a(x)R)n-1 (x)(a3 + x)S (x) (al 4- x 4- 1)b1(a3 4- x 4- 1)b3(a3 + x)S (x)
(a3 4- X)n-1 (a3 4- X)n-1

=O(xbl+b+-("-l)) as Ix[ ee.

Hence, by (iv) of assumptions (3.1) the first term on the r.h.s, of (3.7) vanishes for
n _-> 1. Summing by parts n times, we thus obtain

(3.8)

1 ., (al+x+n+l)bl(a3+x+n)b3+l(-bl- b3- 1), x=-

a3 + x -bl b3-1, a3 + x +

Since m < n, the expression within the curly brackets is a polynomial of degree n 1
in x, and hence gives zero when it is acted on by the operator A. Thus, Pm,,, 0 for
m < n. Similarly, for 0-<_ n < m we use (2.4) and arrive at the same conclusion.

As we mentioned earlier, the biorthogonal rational functions R( (x) and $a)(x)
coincide when al a3. If, in addition, bl b3, then we obtain a system of orthogonal
rational functions with the positive measure

(3.9) w(1)(x) {(a + x + 1)b

and total weight

(3.10) Y w(l)(x) F(-2b- 1)
zr csc zr(a + b + 1) 2

x_-_oo r(-b)
subject to the restrictions

(i) a,a+b#O, +l, +2,...
(3.11)

(ii) b <-.
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The orthogonal functions in the integer-valued variable x, -<x <, have
hypergeometric representation

(3.12) R(1 (x) F
-2b 1, a + x + 1

with the orthogonality relation

F(a + b + 1 + x) [
2 -m, -b, -b

3F2
-n, -b, -b

x=-o F(a+l+-i 3F2
-2b-l,a+x+l -2b-l,a+x+l

(3.13)
| - csc r(a + b + 1)F(-2b 1)/2 F(n + 1)
/ ra(-b) J r(-2b- 1 +n)

Like most orthogonal and biorthogonal systems in discrete variables, the systems
defined in (2.6) and (2.7) also have continuous analogues. In fact, there exist two
different continuous analogues in this particular instance, one where the parameters
are purely real and the other where the parameters necessarily are complex.

First, let us consider the real case. Let a,/3, y, 8 be four real parameters such that

(i) a+/3>0, /3+7>0, /+6>0, 6+a>0;
(3.14)

(ii) cr+/3+,+8>1.

Introduce the weight function

(3.15) v(x) [F(a + x)F(/3 + 1 x)F(y + x)F(8 + 1 X)]

with total mass

(3.16) u=f_
[12, p. 300].

It can be shown by application of the same integration formula that the rational
functions

Rn(X) aF2[ -n, a +, a + 6 ]x++y+6-1, a+x
(3.17)

Sn(X) aF2[ -n, , +, , + 3 ]a++y+6-1, y+x

are biorthogonal with respect to the weight v(x). In particular,

(3.18)

One must realize, however, that even though the integral in (3.18) is well defined in
view of the conditions (3.14), the functions R,(x) and S,(x) themselves have isolated
singularities.

Now we shall consider the case of complex parameters. We assume that

(i) Im (, , , ) 0,

(ii) a+,+y, y+6,6+aO,-1,-2,’’’,
(3.19)

(iii) Im (-). Im (-6) < 0,

(iv) Re (a +/3 +,+6)>1.
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The weight function to be considered in this case is

r(x -/)r(x- )(3.20) w(x)
F(c + x)F(, + x)’

which appears closer to w(1)(x) in (2.5) than v(x) does. The total weight corresponding
to w(x) is

I_ +2rEiF(a +/3 + y + 6 1)(3.21) /z= w(x) dx=sin[Tr(B_6l]r(a+B)F(+ylr(T+6)r(g+a ),
+, according as Im/3 X Im [12, p. 300; note a misprint in the conditions following
formula (19)].

It can be shown in an analogous manner that the rational functions R, (x), 5’, (x),
defined in (3.17) but now with complex parameters satisfying the restrictions (3.19),
have the biorthogonality relation

(3.22) w(x)R(x)$,(x) dx
(a + + y + 1)n

8m,

In the special case y c7, 8 , $(x) becomes the complex conjugate of R(x)
with w(x)= Ir(x -)/r(x +)1 and

2rF(2 Re
(3.23) x sinh (2- Im )

+ )r( +

4. The ease o[ a balanced 4Fa. In this section, we shall assume that k 2 and

(4.1) b4 0, bl + bE + b3 + 1 ft.

The resulting 4F3 series in (1.9) becomes balanced under this assumption. Then,
by Whipple’s transformation formula (1.10), we get

[-n, l-al-x-n, l-a3-x-n, a2+b2-x-n]4F3 1-aa-bl-X-n, 1-a3-b3-x-n, az-x-n

[1-a3-x-n, a2+b2-x-n, l-al-x-n, -n]=4F3
1-a3-b3-x-n, l-al-bl-X-n, az-x-n

(-b1),,(a1+a2-1),
(4.2)

(a +ba +x),(1-az+x),

4F3[-n’2-az-a3+bl-n, 1-al-x-n, bl+b2+l-n]bl+l-n, 2-al-a2-n, 2+bl+b2-a3-x-2n
If we replace al, bl, b2 by a n, bl + n and bz + n, respectively, we obtain

L,,(x) =-L,,(x al- n, az, a3; bl + n, b:z + n, -bl- b2- l-n)

A,[(’al- n /X)bl+n(a2--X)b:+n(a3/X)-bx-bE-l-n]
(4.3) w(E)(x)(-1)n(bl / 1)n(2-al-aE)n(aa+x)

(a3+x),

,F3[-n’n+bl+bz+l’l-al-x’2+bl-a:z-a3]bl+l,2-aa-a2,2+b+b2-a3-x
where

(4.4) w(Z>(x) (al + x)bl(a2-x)b2(a3 + x + 1)-b,-b2-2.
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Replacing a3 by a3 + 1 in (4.3) and observing that

4F3[-n’n+ b1+b2+l,l-a1-x,l+ bl-ae-a3]bl + 1, 2- a a2, 1 + bl + b2- a3 X

(b:z+ l),(a3+x + l),
(bl + 1)n(1 + bl + b2-a3-x),,

4F3[-n,n +bl+b2+ l, l-az+x, l +a3-al-bl]be+ 1, 2- al- a2, a3+x + 1

we obtain a second formula,

L’,,(x)=L,(x; al-n, a2, a3+ 1; bl + n, b2+ n, -bl-b2- l-n)

A’[(al-n +X)bl+n(a2--X)b2+n(a3-I-x .-t- l)-bx-b2-1-n]
(4.5) ={(al+x)bx(ae-x)b2(a3+x + 1)-b-b2-2}(--1)"+l(b2 + 1)n(2-- al- a2)

(i+bl+b2-a3-x) 4F3[-n,n+bl+b2+l,l-a2+x,l+a3-al-bl](1 + bl + b2-a3-x), b2+ 1, 2-al-a2, a3+x + 1

We have thus found the Rodrigues formula for two distinct families of rational
functions R (2) (x), .,.(2) (x) defined by

R (2) (x)= 4F3[-n’n + bl + b2 + 1, 1- al-x, 2 + bl- a2- a3](4.6)
[ b1+l,2-a1-a2,2+bl+b2-a3-x J’

(4.7)
((x)=4F3[

-n,n+bl+be+l, l-ae+x, l+a3-al-bl]b’2+ 1, 2-al-ae, a3+x + 1

n 0, 1, 2,. . Formulas (4.2) and (4.3) then read

(4.8)

(4.9)

A’[(al-n +x),+.(az-x)t,+,,(a3+x)-t,-,-l-,,]
w(Z)(x)(-1)"(bl + 1).(2-aa-az),,R(.2)(x)(a3+x)

(a3 +x),,

A’[(al-n +x)t,+n(az-x)t,+,,(a3+x +

c(e)(x)(1 + b +be- a3 X)w(2)(x)(-1)n+l(b2+ 1).(2 al-- 2)nOn

(l+bl+b2-a3-X)n

5. Biorthogonality of R (x) and S.z) (x). In order to establish the conditions
under which the rational functions R (2). (x) and ..-(2) (x) are biorthogonal with respect to
the weight function w(Z)(x), we first observe that for large Ixl the difference function

(5.1) Axn-k-l[(al-- n +x +k)ll+n(a2-x-k)b2+n(a3+x "f-k)--bl--bl--l--,l]

is of the order Ix [k, k 0, 1,. , n 1, and hence cannot vanish, in general, as
This implies that for arbitrary finite values of the parameters aa, a2, a3, ba and b2 the
range of x in the summation Zw(2)(x)R(.2 (x)$(2.] (x) cannot be from -o0 to eo. In order
for this sum to lead to a constant multiple of 6.,,n one must be able to do the summation
by parts through the use of Rodrigues’ formulas (4.8) and (4.9), and at each successive
summation one would require the vanishing of a difference function of the form (5.1) at
both the lower and upper limits (to be more precise, if the upper limit is a finite number
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N the vanishing is required at x N + 1). The only way this vanishing at either end can
be achieved is to assume that at least two of the parameters a l, a2, a3 are integers.

Let us assume that M and N are nonnegative integers, and

(5.2) al-l=M and a-l=N.

Let us consider the sum

x=N

P,,., w2)(x)R,,2 (x)S(2,,) (x).

By (4.4), (4.5) and (4.6) we have

where

p,,,,,= (-n)k(n+bx+b:z+l)k(l+bx-a3-N)k
k=0 k!(bl+l)k(-M-N)k

(-m)l(m+b+b2+l)i (a3-b-M)t
/=o l! (b2 + 1)l (-M N)l

(5.4)

N_, (M + 1 + x)t,(N-x + 1)b2

(-M-x),(x -N)l
(a3 + x + 1)-b-b:-2 (2 + bl + b2- a3--X)k(a3 + x t- 1)/"

Note that the sum on the r.h.s, of (5.4) vanishes unless M + x _-> k and N-x >-I.
Transforming the summation variable x to y by setting x +M =y +k and then
simplifying the Pochhammer products, we obtain

(5.5)

F(bl + 1)F(M +N + b2 + 1)F(a3- bx- b:z-l-M)
F(M +N + 1)F(a3-M + 1)

(b + 1)k (-M- N)k+l
(-M-N-bz)k(a3-m+ 1)k+/

3F2[k+I-M-N, bx+l+k, a3-b-b2-1-M]k-M-N-bz, a3-M+l+k+l

The 3Fz function on the right is a terminating balanced series with argument 1 and
hence can be summed by Pfaff-Saalschutz theorem. Thus

(5.6)

+ 1-M-N, b + 1 + k, a3-bl-b2- l-M]
k-M-N-bl, a3-M+l+k+l

(-M-N-bl-b2- 1)M+N-k-l(bl -k- 1 + k--N--a3)M.+N-k-I
(k b2 M-N)M+N-k-I(--N a3)M+N-k-l

(ba + b2 nt- 2)M+N(a3- ba -M)M+N
(a3 + 1 --M)M+N(b2 .t_ 1)M+N

(a3+ 1-M)+l(b2 + 1)t(-M-N-b2)
(b + b2 + 2)k+l(a3-- ba-M)l(bl + 1 a3--N)k"
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Using this in (5.5) we get

F(bl+l)F(b2+l) F(bl+b2+2+M+N)F(a3-bl+N)F(a3-bl-b2-1-M)
F(bl + b2 + 2) F(M +N + 1)F(a3 bl- M)F(a3 + 1 + N)

(bl + 1)k(b2 + 1)l(-M-N)k+t
(bl + b2 + 2)k+l(a3--bl-M)l(b + 1- a3--N)k"

Hence, we obtain

(5.8) Pm,, , () (-n) (n + ba + b2 + 1)
k=O k!(b+b2+2)k

where

3F2[-m, m +b + be + 1, k -M-N]1. b+b+2+k,-M-N

(5.9)

(e_ F(b + 1)F(be+ 1)
/x F(bl + be+2)

F(b + be + 2 +M +N)F(a3- b +N)F(a3- bl be- 1 M)
F(M +N + 1)F(a3 + 1 + N)F(a3 bx-M)

N

W
(2)

Observing that the 3F2 series on the right of (5.8) is balanced, we apply (5.6) once
again, and obtain

(2) (bx+b2+2+M+N)m (-n)k(n+bl+be+l)k(-k)m

The series on the right obviously vanishes if n < m. Hence, for n -> m we have

(5.10)

(2) (bl + b2+ 2 +M +N)"(-n)"(n + bl + be+ 1)" (- 1)"
(-M-N)" (bl + b2 + 2)2,,

(m-n),(n+m+ba+b2+l),
=o k !(2 + bl + b2 + 2m)k

(2) (bl + b2
(-M-N)"(bl + b2 + 2)2"

(1-n+m),,_m
(2+b1+b2+2m),.,_"’

by the Chu-Vandermonde theorem. But this vanishes unless n m. Hence,

2 (b + b2 + 2 +M+ N),,(n + bl + b2 + 1). (-n). (- 1)"
(5.11) P".. t* (-M-N),(bl+b2+2)2,.

3",n,

which proves the biorthogonality of R (2n (x) and -,.(2 (x). The conditions on b, b2, a3
must be such that/z (2} remains finite. In particular, if bx >-1, b2 > 1, then/z (2 is finite
and positive if a3 > b -[- b2 + 1 + M.

As in the case of R (n (x) and S(,1 (x) it is instructive to see how the biorthogonality
of R (2) (x) and ,--n(2 (x) follows from their Rodrigues’ formulas. Assuming that n > m > 0
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and using (4.4), (4.6), (4.8), we obtain

(-1)" v (a3+x).
P"" (b, + 1),(-M N),

y .(z) (x)
x=-M a3 + x

+M-n + 1)bl+,(N--x + 1)b2+,,(a3+X)_bl_b._l_,]

1 ., (X +M+ 1)bl+,,(N--x--n + 1)b2+,(5.12)
(bl+I),,(-M-N),,x=-M

(a3 + x + n )-bl-b2-

A{(a_3.+_X_)n4f3[-m, m+bl+b2+ 1, x-N, a3-bl-M]}a3 + x b2+ 1,-M-N, a3 + x + l

The difference operator A is operating on a polynomial of degree n 1, and hence
we get a zero on the r.h.s. Similarly, for rn > n -> 0 we use (4.5), and (4.9) and find that
P,,. =0. Thus, the Rodrigues’ formulas (4.7) and (4.8) directly lead to the bior-
thogonality relation

N., w(:Z>(x)R( (x)S(2,, (x) O, m n.

Unlike R (1> (x) and .,-(1> (x), the functions R (x), S (2>. (x) do not coincide for any finite
choice of the parameters. However, if we let a3- +c then both R 2) (x) and S2). (x)
reduce to polynomials which can be shown to be linearly dependent. For, with M 0,
we get

lira R(Z> (x) 3Fz[-n’ n + bl + bz + l’ -x] o,,(x b, bz, N)),
la3[ b + 1, -N

(5.14)

lim .,.(2> (x) 3F2[ -n’ n+bl+b2+l,x-N]b2 + 1, -N

(--1)n (bl + 1). [-n,n + bl + b2 / 1,-x](bz + ]i 3F2
bl + 1,-N

(-1)n(bl+l)n
(b2+ 1),

Q, (x; b 1, b2, N).

Thus, in the limit [a3[ o0, the biorthogonal rational functions R (2>. and S (2>. reduce
to the Hahn polynomials. These were the functions that we applied in [17] to obtain an
addition theorem for Hahn polynomials.

Addendum. At the time of writing this paper it was brought to the author’s
attention that James Wilson [23] found a general system of biorthogonal rational
functions of which R> (x), S(2> (x) are special cases. He also worked out the continuous
analogues of these functions.
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ON INVERTIBILITY OF LINEAR ORDINARY DIFFERENTIAL
BOUNDARY VALUE PROBLEMS*

JAMES S. MULDOWNEYt

Abstract. A criterion is given which is necessary and sufficient that certain homogeneous linear
boundary value problems have only the trivial solution. The condition includes results of P61ya [Trans. Amer.
Math. Soc. 24 (1922), pp. 312-324] on disconjugacy and Muldowney [Proc. Amer. Math. Soc., 74 (1979), pp.
49-55] on disfocality. A mean value theorem and a positivity result are also obtained. Analogues of the Sturm
comparison principle are established including a generalization of a theorem of Hartman lAmer. J. Math., 91
(1969), pp. 306-362; 93 (1971), pp. 439-451] and Levin [Soviet Math. Dokl. 4 (1963), pp. 121-124] which
gives a necessary and sufficient condition for invertibility in terms of the existence of solutions to a family of
differential inequalities.

1. Introduction. The n th order linear differential operator L defined by

Ly y(")+ a(t)y("-l)+ + an(t)y,

in which the coefficients ai are continuous functions, is said to be disconfugate on
an interval I if the only solution of Ly 0 having n zeros or more in /, counting
multiplicities, is the zero solution. Further, L is right disfocal on I if it satisfies the more
restrictive condition that the zero solution is the only one which satisfies yi-1)(ti)= 0,
i= 1,..., n, for any set of points ti E I, tl <- t2<---- <- tn. L is left disfocal on I if
tx _-> t2----> ----> t, in the preceding statement and is disfocal on I if no particular order
needs to be imposed on the points ti.

It was shown by P61ya [16] that a necessary and sufficient condition for the
disconjugacy of L on a compact interval I is the existence of a family of solutions
L/l,’ ", Un-I of Ly 0 satisfying

(1.1) W(ul, , Uk) > O, k 1, , n-l,
(j-)on/, where W is the Wronskian determinant det [u ] i, j 1, ., k. It was shown in

[6] that the existence of u,. , u,-1 satisfying Ly 0 and

(1.2) W(u(-), U(k]-l)) > O, j=l, ...,n-k+l, k=l, n-1

is necessary and sufficient for right disfocality of L on L
The present paper considers conditions which are more restrictive than (1.1) and

either more or less restrictive than (1.2). Necessary and sufficient conditions are
obtained that y 0 be the only solution of Ly 0 which, counting multiplicities, has m
zeros in I followed by m2 zeros of y’, m3 zeros of y" and so forth, for certain sequences of
nonnegative integers mi. For example, it is proved that y 0 is the only solution of
Ly 0 which has n 1 zeros in I followed by a single zero of y’ if and only if there are
solutions u 1, , u_ satisfying (1.1) and u > 0 on/. The conditions (1.1) and u > 0,
W(U’l, u) > 0 are necessary and sufficient that y 0 is the only solution which has n 2
zeros on I followed by two zeros of y’. Operators with these properties are shown to
have a positivity analogous to taplygin’s inequality, and from this a generalization of
the P61ya mean value theorem is deduced. The nature of solutions to these boundary
value problems on minimal intervals of noninvertibility is also investigated. Finally,
several comparison criteria for invertibility are obtained.

* Received by the editors July 19, 1979, and in revised form September 22, 1980..This research was
supported by the Natural Sciences and Engifieering Research Council of Canada under grant A 7197.

" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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2. Notation and definitions. Zeros. Let z (tl, , tn); a function y has n zeros at
z if y(t/)-" 0, i: 1,""", n, when the points ti are all distinct, and y(t/)--y’(t/)
y("-l)(ti) 0 if a point ti occurs m times in z.

Partitions. Let tl,’’’, tn be real numbers. A partition (’1; zz;"" Zl) of the
ordered n-tuple (tl,’", t) is generated by inserting I-1 semicolons instead of
commas in this expression. The insertion of two or more adjacent (i.e., not separated by
entries ti) semicolons is not ruled out. The ordered set of entries (t., , tk) between the
(i 1)th and ith semicolons is denoted zi, and ]/I k - / 1 is the number of entries in zi.

If the (i-1)th and ith semicolons are adjacent, then "/’i---(, ]’/’i 0, For example,
(zl; zz; z3; z4) (tl, t2; t3; t4, ts, t6) where ’1 (fl, tz), ’2 (t3), ’3 b, ’4 (t4, ts, t6).

An entry in T has multiplicity m in "/’i if there are m entries equal to in zi.

Finally, (’1; Zl) is an increasing partition if tl -<_ tz <_- <- tn and zi, s z
and < j implies either < s or s and + m -</’, where m is the multiplicity of in zi.

For example, the partition (1, 2, 2; 2, 3) is not increasing, while (1, 2; 2, 2, 3) and
(1, 2, 2;;2, 3) are increasing. The partition is decreasing if the partition obtained by
replacing each entry by its negative is increasing.

Invertibility. Let m1,’", ml>:O be integers such that m +’" + ml n. The
operator L is right-(m1,..., ml)-invertible on an interval I if, for each increasing
partition (’1; zl) of n points in I, the only solution of Ly 0 such that y(i-1) has m.
zeros at zj, ]= 1,..., 1, is the zero solution. The operator is left-(m 1,..., ml)-
invertible if "increasing" may be replaced by "decreasing" in the preceding statement.
It is (ml,’’’, ml)-invertible if the qualification "increasing" or "decreasing" may be
omitted.

Thus, for example, L is (n )- invertible means that it is disconjugate, and L is
right-(l,..., 1)-invertible means that it is right disfocal.

The functions fl, Dj. Let Ul, /-’/n be real-valued functions containing the points
tl,’", t in their domains and let (Zl;’" Zl) be a partition of (tl,’", t,). The
function fl(Ul, , un)(Zl; Zl) is defined to be the determinant of the n n matrix
A described as follows. The rows of A numbered I11 +"" + IZi-l[ +1 through [’11 +

-[" ["/’i--1[ -[- [zil form a block of dimension r n,r= Izil, the ]th column of which is

(i--1)col (i--1)(S1) (i-1) ($2) /,/] (Sr)]LUi i

if T (Sl, $2, Sr) and Si are all distinct. If an element s of ’/’i has multiplicilty m, then
(i--1) (S),(i-1)(s) u(i-1)(s) are replaced by u.the corresponding m entries u.

(i)(s) (i+m-2)(S).IXI UI
For example, the Wronskian determinant W(ul, u,)(t)=det [u(i-a) i,

]= 1,. , n, may be denoted D.(ua,. ., u,)(t,. ., t) or (ul," ", u,)(t;. t). Asa
further example, g)(u, u2, u3)(tl, t2; t3) denotes

L/1 (tl) u2(tl) u3(tl)
U l(t2) uz(t2) u3(t2) l,
u (t3) u(t3) u(t3)]

u(tl) u2(tl) u3(tl)
ui(tl) u[(tl) u;(t2)
u(t3) u;(t3) u;(t3)

when tl tz, tl t2, respectively.
The operator L is right(left)-(ml,... ,ml)-invertible on I if and only if

fl(ux,. , u,)(Zl; Zl) 0 for every increasing (decreasing) partition (za,. .; ’1) of
n points in I with [zi] mi where u 1, , un is a fundamental solution set of Ly 0 and
is invertible if the qualifications "right" "left", "increasing", "decreasing" are omitted.
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The functions lq. are defined by

O(u, , u)(r: t)= a(u, , u,)(-, t,..., t),

where I(r, t,’’’, t)l n, and

where "/’1=7, Ti--’, 1<i<] and ’j=(t,...,t), I[:n-I[, if /’>1. Thus
fj(u, , u,)(z t) is the determinant of the matrix for which the kth column is

(’+-2) (t)]col [U(k’-a) (t), U

CO1 [Uk(tl), U(ff-’) (t),"’, U(ki+"-3’ (t)]

col lug(t1), U’(h), U-) (t), U]+n-4) (t)]

col [u(tl), u(ta), U]-1) (t),’’’, ui+"-4) (t)]

and so forth.

if

if z (tl),

if z (tl, tl),

if z (tl, t2), tl # t2,

Descartes systems. A system of functions (u, , u) is Descartes on an interval if
the Wronskians W(uil,’", uik) are positive on the interval for each increasing
subsequence {ij} of {1,..., n}.

Properties I and I’. Let {n.} be integers such that

(2.1) n r/1 n2 rtr > nr+l > > nl > nl+l O, >- r >- 1.

A system of functions (Ul, Un) has Strict Property I on an interval if

(2.2) W(u]-) (k-),’’’,U )>0, k=l,...,ni, ]=1,...,I.

The system has Property I if (2.2) holds on the interval except in the cases k
ni/l + 1, , nj, ] r + 1, ., when the Wronskians may be nonnegative. The system
has (Strict) Property I’ if (Un, --U-I," ’, (--1)-U) has (Strict) Property I; that is, for
the values of k and ] above, the Wronskians W(u(-) (]-1)

,-/1, ’, u, are positive or
nonnegative as before.

For example, if n=nl=4, n=3, n3=l (r=l, /=3), then the system
(Ul, u, u3, u4) has Property I if

Ul>O,

Ul >0,

ui’>__O,

W(u,u:)>O,

W(u,u)>-_O,

W(Ul, U2, U3)>O,

W(u, u, u’3)>-o,

W(Ul, U2, U3, U4)>O,

and it has Strict Property I if all inequalities are strict.

3. Invertibility conditions, positivity results and extremal intervals. As an alter-
native proof of his mean value theorem, Pdlya states and sketches a proof of a result
[16, Thm. V] which is equivalent to Lemma 1. The details of P61ya’s proof are in [6, pp.
376-378].

LEMMA 1. Let z (h, , t,) be a nondecreasing sequence ofpoints in an interval I
and u, ., u, be functions having n 1 derivatives existing on I. If W(u, , Uk) > O,
k 1,. , n 1, W(u," , u,) >- 0 on I and W(Ul," u)(s) 0 for some s [h, t,],
then 12(ul, u)(’) > 0.
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LEMMA 2. Let z (tl," tq) and z’= (tl," tq-1) if q > 1, z’ & if q 1. Then

i(Ux,""", Uk)(7"’ t)i-l(UX,"’", Uk-X)(7"’ t)

IIi-l(ux,"’, uk)(r’" t)lIi(u,"’, uk-x)(z’ t)

-[-f]-x(Ul,""", Uk)(T" t)fi(U,’’’, Uk-1)(’r’’" t)

for any functions ux, , uk for which these expressions exist.
In the case z (tx), this identity is [14, Lemma 2] with ] replaced by/’- 1.
The proof of Lemma 2 is based on the identities (3.1), (3.2). If A x, Bx, A, B, C, D

are any real numbers, then

A B1 A(3.1)
C D

which is equivalent to the identity

A1
A
C

A B
C D AI+ A1 Bx

A B

Ax B1
A B
C D

If a rl"’rmSl’"sm denotes the minor of the k x k matrix [a] determined by the rows
and the columns Sl, s,, and if b 12...p.p/ thena 12 ..p,p+i

x2... (a x2...p k-p-1 12...-p(3.2) a12 x2 p) =b12 -, p=l,...,k-1.

This is Sylvester’s identity; cf. [3, p. 32].
12...k 12’"kk-2Choosing a 12...k IIi(ux , Uk)(Z" t) and a 12.. 1,-2 fL(u Uk-2)(Z" t) with

p k- 2, we obtain from (3.2) that

(3.3) -/’(Ul,’’’ Uk)(’r" t)ai(Ul,’’" Uk-2)(7"" t)= [A B[C D
where

A IIi(Ul," ", Uk-1)(T" t),

C i(ux,’" ", uk-1)(7": t),

Bx ’/’(Ul,""", Uk-2, Uk)(7"" t),

D l)i(ux,’’’, uk-2, uk)O"" t).

Now, if

A ’i-l(Ul, "’, Uk-1)(T’: t),

then, from (3.2),

(3.4)

B "/’-1(Ul,’"", Uk-2, Uk)(T" t),

"/’-1(Ul,""" Uk)(7"’" t)I2i(Ux,’’’, Uk-2)(Z" t)=
A B[

(3.5) "/-1(Ul, Uk)(T" t)ai(ul, "’" uk-.)(z" t)= IIA1 B1
A B

Lemma 2 follows from (3.1), (3.3), (3.4), (3.5) when "/’(Ul,""", Uk-2)(T’: t)# 0.In the
case that this determinant equals zero the result is obtained as the limiting behavior of
slight perturbations of u,. , uk for which the determinant is nonzero.
LEMMA 3. A necessary and sufficient condition that the set of]unctions (u x, , uk) be

a Descartes system on an interval I is that all Wronskians of consecutive functions
W(up, up/a, , uq), 1 <- p <= q <= n, be positive on L

This is [2, Proposition 4, p. 88].
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PROPOSITION 1. Suppose (u 1, ", u,) has Property I (Property I’) on an interval
[a, b] and (rl;" ’l) is an increasingpartition ofn points (tl, ", tn) in [a, b]such that

I ;I =< ni, i= 1,.’’, I. Then

f(u,..., u)(r; r)>0.

Proof. For 1, Proposition 1 is true for all n, from Lemma 1. The proof is by
induction on I. It may be assumed without loss of generality that I,1 p, 0 < p < n the
induction hypothesis is that the proposition holds for all systems with Property I and
increasing partitions (rl; -,,)(m <_- 1). If sl max {s "rl}, it is asserted that the
functions (vl,’’’, v,_p) defined by

vi(t) ’I(Ul, ", Up, Up+i)(7"I" t), 1," ’’, n -p

are such that Wronskians W(vi-1), V(ki-1)) are all positive on (sl, b] for k
1,... ,.Ni=min{n,n-p}, ]=2,... ,l except in the cases k =N+1+1,... ,Ni, ]=
s+l,..., (where s=max{/" ni>-n-p}) when the Wronskians are nonnegative.
Furthermore these Wronskians satisfy the same inequalities on [s l, b] for ]=
ml + 1,. , where ml is the multiplicity of sl in rl. Thus the system (v’,. ., v,_p)

(m)has Property I on (sl, b] with respect to the sequence N2, , NI and (vm), , v,_p
has Property I on [sl, b] with respect to the sequence N,,/I,’" ,NI. From the
induction hypothesis it now follows that f(v’1, ", v ’,,-p)(r2; r) > 0, if (r2 "/’l)
is any partition of n -p points in [sl, b] such that (rl; r2;" ’l) is increasing. But

"(Ul, b/n)(7"l 7’/)[[’(b/1, Up)(,l.1)]n-p-l__ ,(V!,’", v-,)(r2,’" r)>0,

from Sylvester’s identity (3.2), and therefore

"(Ul,""’, Un)(’/’l; "/’/)>0,

since l)(ul, , uo)(rl)> 0 by Lemma 1, proving Proposition 1.
The assertion about the sign of the Wronskians W(Vli-1), ..., v -1)) in the

preceding proof is based on the identity (from (3.2))

W(/)/-1), V(k/’-1)) ’/(/,/1,’’", Up+k)("/’l" /)[(b/1,""", Up)(’/’l)]k-1.
Since f(ul,’", u)(rl)>0, by Lemma 1, the Wronskian has the same sign as
fZi(u 1," , u+)(’l: t). The assertion now follows from Lemma 2 by induction on/’, k, if
we recall that

II(ul, ", Uk)(r" t)= f(Ul, ", Uk)(r)>O if k

-l(b/1, ", b/k)(’/’" t) ’(b/1, ’, b/k)(7", t," ’, t) > 0,

both from Lemma 1, and

lIi(ul,’.., ug)(-’ t)= W(u]i-1), u(i-1))(t) if r b.
Let n.,/’ 1,..., be natural numbers satisfying (2.1) and let mi, ] 1,..., be

nonnegative integers such that

(3.6) m. n Y’. mi -< n, 2,. ., I.
/=1 /=1

Remark. It is useful to observe that, if r 1 in (2.1), then an operator L is
right-(m1, , mt)-invertible on an interval, for all {m.} satisfying (3.6), if and only if L
is right-(p1,..., pt)-invertible, where pi=ni-ni+l, ]= 1,..., l. This follows from
Rolle’s theorem.
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THEOREM 1. (a) A sufficient condition that L be right-(mx, mt)-invertible on
[a, b] is that there exist solutions (ux, ", u,) ofLy 0 having Property I (or Property I’)
on [a, b with respect to the sequence {nj}, j 1,..., l,/f {mj} satisfies (3.6).

(b) If r= 1 in (2.1) and L is right-(m1,..., ml)-invertible on [a, b] for each
sequence {mi} satisfying (3.6), then there exist solutions (ux, ", u,) ofLy 0 such that
each of the systems

(U(/-1) (i-)
,-,,+x,’",u, ), ]=1,"’,1

is Descartes on [a, b ].
In the case r= 1, this is P61ya’s criterion [16] for disconjugacy (i.e., (n)-

invertibility). If ni n -] + 1, ] 1,. ., n, this is essentially the criterion given in [14]
for right disfocality (i.e., right-(l,..., 1)-invertibility) where the condition of (a) was
given in terms of Strict Property I; this was also shown to be necessary.

It is of interest to consider operators L in which the coefficients ai, 1,. ., n are
real constants in the context of Theorem 1. Let p(A) e-XtL(e t) be the characteristic
polynomial with A x, , ,, the roots of p(A) 0. A necessary and sufficient condition
for the disconjugacy of L on every interval is that be all real. The necessity is obvious
since, if there is a complex root, then there is an oscillatory solution. The sufficiency
follows from considering the system (ux,’’’, u,), where ui(t)- e x’t, if h < < h,
and, if hi is a multiple root of multiplicity m, ui+i(t) tie x’t, ] 0, m 1, for which
W(Ul,. ., u)>0, k 1,. , n on every interval. For k 1,. , n- 1,Lisright-(n-
k, 1, , 1)-invertible on every interval if and only if all of the roots are real and there
are at least k nonnegative roots. Thus, from Remark 3.1, if p(h)=0 has at least k
positive roots, then L is right-(m1,..., m+x)-invertible for any sequence {mi} satis-
fying

k+l k+l

mj=n, m<-k+2-i, i=2,...,k+l.
/=1 i=i

In particular, L is right disfocal on every interval if and only if there are at least n 1
nonnegative roots. Finally, all n roots positive is necessary and sufficient for L to be
right-(rex,..., m/)-invertible on every interval for every sequence of nonnegative
integers {m} satisfying Y=x m. n. To illustrate, consider the operators

L=(D+I)(D+2), M=(D+I)(D-1), N=(D-1)(D-2).

All three are disconjugate on every interval, M and N are disfocal on every interval,
while N has the property that u 0 is the only solution u of Ny 0 for which

u(i-1)(ti)=O, U(i-1)(ti)=O, ti<ti, i<--j
or

u(i-x(ti) u(i-(ti) O, # j.

To see the sufficiency assertions about constant coefficient operators observe that
the functions (ux, , u) satisfy the appropriate Property I’ in Theorem 1 (a) for every
interval. The necessity assertions follow by considering the determinants
’(Ul, Un)(T1 7"2) with 7"1 {tl,""", h}, T2 {t2,"’", t2}, 17"1[ n k, I =1 k, tl < t2.
From Rolle’s theorem and W(Ul," ’’, u,)> 0, if t2 is sufficiently close to h, then

(3.7) "(Ul," Un)(T1; T2) > 0,

and, if t2 - cX3, then

(3.8) [’(Ul,"’", Un)(T1; 7"2)’-- W(Ul,’’’, Un-k)(tl)W(Un-k+,, U’)(t2)[1 +0(1)].
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Also W(Ul Un-k)(tl) > 0 and W(u’n-k+l, U’,,)(t2) < 0 if t2 is SUfficiently large
and An-k/1 < 0--<A,-k+2, SO that f/(Ul, ’, u,)(rl; r2)<0 if t2 is large, from (3.8), and
therefore f(Ua, , u,)(rl; r2)= 0 for some t2 > h, from (3.7). Therefore L is right-
(n k + 1, 1, , 1)-invertible but not right-(n k, 1,. . 1)-invertible on sufficiently
long intervals.

Proof of Theorem 1. To prove part (a), observe that if (rl; rl) is an increasing
partition of n points in [a, b and m., ] 1, , t, then it follows from Proposition

(i-1)l(a) that ll(ul, , u,)(rl; r) > 0. Thus the only solution of Ly 0 such that y
has m, zeros at r,, ] 1,..., 1, is the zero solution.

To prove part (b), suppose that/_, is right-(m1,. ., m)-invertible on [a, b] if {tn,}
satisfies (3.6). Notice that this implies L is right-(m1, , m)-invertible also on [, d],
for some c <a, d> b, since fl(ua,..., u,)(ra; r/) 0 for some (rl; rl)[c, d]
for each c < a, d > b implies, by continuity, that this also holds for some (rl; rl) c
[a, b], contradicting the invertibility assumption on [a, b]. Let (Ul, , u,) be such that
Lui --0,

(i--1)(C)>0, i= 1 n,(k-a (c) O, k l -1 ui(3.9) ui

(3.10) ulk-1) (d) 0, k=j,...,n-i+j-1, i=n-nj+l,...,n-ni+a,

]=1,...,l,

where na n and nt+a O. It is asserted that, for each ] 1,..., l, all Wronskians of
consecutive functions from the set (u (-1 -a

,-+a,’’ ", u, are positive on (c, d) and
therefore, from Lemma 3, each of these is a Descartes system on [a, b], completing the
proof.

To prove the assertion of positivity of the consecutive Wronskians made in the
preceding paragraph, suppose that n-n.+l <p <q <n and that W(u-ap

(j-l) (i-1))(to)=0 for some toe (c, d) This implies that there is a nontrivialUp+l Uq
solution u of the form

l,l Cplgp "l- Cp+ Rp+ "t- + CqUq

such that u (-a) has a zero of multiplicity mr q -p + 1 at to. From (3.9), u has a zero of
multiplicity mx p 1 at c; from (3.10), u (h-l has a zero multiplicity mh n q at d, if
h is determined by n nh + 1 <--_ q <-- n nh/l. Thus, if mk O, k 1, ], h, it follows that
{mk} satisfies (3.6), contradicting the invertibility assumption on L, and therefore none
of the Wronskians can vanish on (c, d). The positivity of the Wronskians on (c, d)
follows from (3.9), which implies that, near c, for some/xi > 0

(k-a (t)= [/./’i q" o (1)](t-C)i-k,ui k=l,...,i, i=l,...,n,

so that the Wronskians are positive near c and thus throughout (c, d).
THEOREM 2. Suppose r <-2, <-_ n in (2.1) and the equation Ly 0 has a system

(Ul,’", u,) of solutions with Property I [Property I’] on (a,b). Let f be n times

differentiable on (a, b ). Then the conditions

(i) Lf_-> 0 on (a, b ),
(ii) /(i-l) has m zeros at ri, ] 1,..., 1,

where (Zl;’’’ rt) is an increasing partition of n points (tl,’’’, t,) in (a, b) and {m.}
satisfies (3.6), imply

P(t)f(t) >- O, (rl, s1),
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and, if m < np for any p 2 l, then

P(t)[(-(t) >-_ O, e (ro, s).

Moreover, the inequalities are strict at any point ti such that Lf 0 on some interval of
the form It, ti] or [ti, t]. Here e(t) II’= (t- ti), rp max {t ri, < p}, p 2,. ., l,
sp min {t , > p}, p 1, , l- 1, rl a, st b.

Note that in the case r 1, L satisfies the conditions of Theorem 2 if and only if it is
right-(m1, ., m/)-invertible, by Theorem 1 (b).

The proof of Theorem 2 closely parallels that of Proposition 1. The proof of
Proposition 1 used Lemma 1 with the stronger assumption W(Ul, ’, un) > 0. Under
the conditions of Theorem 2, the same proof may be carried out for the system
(Ul, Un+l), Un+l "-’f, using the full generality of Lemma 1. The conditions of
Theorem 2 thus imply f(Ul,’’’, u,,/)(rl;""" rp,.’’ rl)-> 0, where rp is obtained
by inserting in the ordered set rp, so that (-1; rp,. rl) is increasing. It is not
difficult to verify that

[’(Ul, L/n,/)(’r’l, "l’p, "l’l)=f(P-1)(t)f(u, Un)(7"l, ’/’l) sgn P(t),

and the theorem follows.
Theorem 2 is a generalization of (aplygin’s inequality which was first proved for

p 1 when t t2 t,. The general formulation for disconjugate operators is
an immediate consequence of the work of P61ya [16, Thm. V], i.e., Lemma 1 of this
paper.

It was also seen in 11 ], 13] that if Lf >= 0 and f has fewer than n zeros in an interval
(a, b), then inequalities can still be derived for certain differential expressions Mf. A
similar generalization can be given for Theorem 2 if the partition (r, rl) contains
less than n points.

COROLLARY 1 (Mean value theorem). SupposeL satisfies the conditions of Theorem
2 and f is an n times differentiable function on (a, b) such that f(J-) has mj zeros at
j 1,. , l, where (’1; ’t) is an increasingpartition ofn + 1 points tx," , tn+(t
t,+l) in (a, b). If

mi=n+l, , mi<=ni, i=2,...,l,
i=1 j=i

then Lf() O forsome (tl, tn+l). If/is notidentically zero in (tl, tn+l) then L/changes
sign in (tl, tn+x).

Proof. This follows from alternately omitting tl and tn+x from the partition to

obtain, by Theorem 2,

f(t) I-I (t- ti) >=0, f(t) I-I (t- ti) >=0,
i>1 i<n+l

if Lf>-O. If f is identically zero then Lf=-O; iffO these inequalities contradict each
other and a similar contradiction is obtained if Lf <= O.
COROLLARY 2 (Cauchy mean value theorem). Suppose L satisfies the conditions of

Theorem 2, and/, g are any n times differentiable functions on (a, b). If&, are chosen so
that

(i) Lb 0, L, 0,
(ii) (f- b)i-1), (g_ ,)-1) have mi zeros at ri, with ri as in Theorem 2,

then for (rl, Sl) there exists (a, b) such that

If(t) & (t)]Lg() [g(t) (t)]Lf().
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If =, mi < np for any p 2,.. , l, and e (rp, sp), there exists e (a, b) such that

If(t)-4, t)]-l)Lg() [g(t)- 6 t)](P-)Lf().
Proof. If e %, the result is true for any sc. If t %, e (rp, s,) and [g(t) 6(t)](-1) 0,

then by Corollary 1 there exists sc such that Lg()= 0 also. Finally, if e (r, s) and
[g(t)-6(t)]-) 0, then a constant c may be chosen so that

(3.11) If(t)- b (t)]p-1)- c[g(t)- 6(t)](’-1 0.

Applying Corollary 1 to the function (f-g))-(g-) shows that Lf()= cLg() for
some so, which yields the result on multiplying (3.11) by Lg().

If {ms} is any sequence satisfying (3.6) when {nj} satisfies (2.1) with r 1, then L is
right-(m1,..., ml)-invertible on a neighborhood of any point a in the domain of its
coefficients. This follows from the continuity of f and Rolle’s theorem. Let/3 (a) be the
supremum of all b such that L is right-(ml,..., m)-invertible on [a, b] for all such
sequences {ms}. Then there is a sequence {ms} for which L is not right-(m,..., ml)-
invertible on [a,/3(a)], again by the continuity of f.

Let the solutions ui(c, t), 1,..., n, of Ly 0 be defined by

(3.12) ui(J-) (c) 6q (6q 0, j, 6, 1),

and let W, (c, t)= W(u (-’) (i-a),_+,,...,u, )(c,).
LEMMA 4. (a) If c is in the domain of , then (ux(c, t),..., u,(c, t)) has Strict

Property I’ on (c,/3(c)); that is,

W (c, t) > O, e (c, (c)), k l, n, i l, l.

(b) For any a there exists a 6 > 0 such that, if c e (a 6, a + 6), then (c) > a + 6.
None of the Wronskians W(c, t) can vanish at toe (c,/3()) since this, together

with (3.12), contradicts the invertibility of L on [c, to] as in the proof of Theorem l(b).
The positivity of the Wronskians also follows as in Theorem l(b) from the asymptotic

(’-1)(c, t), c + Part (b) of the lemma follows from (a) since L isbehavior of u
invertible on a neighborhood of a so that/3 () > a + 6 if c e (a 8, a + 6) and 6 is small.

THEOREM 3. If b (a), then W (a, b) 0 and there exists a solution u ofLy 0
such that

u(i-1)(a) 0, j=l,...,n-k,

u(i-)(b) 0, j=h,... ,h+k-1

for some k, nh+ <k <=nh, and some h, 1 <-h <-l. Also u(i-a)> 0 on (a, b), j= 1,..., h.
Proof. First, not all W{ (a, b) can be positive k 1,..., n., j 1,..., because in

that case W{ (a, t)> 0 for all e (a, b], by Lemma 4. Since W{ (c, t) is continuous in
(c, t), it follows that limc_,a W (c, t)= W (a, t), uniformly with respect to e [a, b].
Thus, if 6 > 0 satisfies Lemma 4(b) and c < a is sufficiently close to a, W (c, t)> 0,
e[a +6, b] and W{(c, t)>0, e (c, a +6). Therefore (ua(c, t),..., un(c, t)) has Strict

Property I’ on [a, b contradicting the noninvertibility of L on [a, b ], by Theorem l(a).
Thus, W (a, b) 0 for some k <- nh choose k to be the smallest number for which it

occurs for a particular h. Then

0 Wh(a, b) W(" (h-l) (h-l)
"n-k+1,’’" ,u, )(a,b)

implies there is a nontrivial solution

bl Cn-k+ lXn-k + q- q" CnUn

such that u (h-) has k zeros at b and, from (3.12) u has n k zeros at a. Moreover, u is
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unique to within a constant multiple since Wkh_l (a, b) 0 implies that the system of k
equations determining the k constants ci has rank k- 1. This also implies Cn-k/ O.
The function u (h-) cannot vanish in (a,b) since wh(a,t)>O, t(a,b], i=
1,.. , k 1, and u (h-l) has k zeros at b; thus, if u(h-I(C) O, C (a, b), then, by P61ya’s
mean value theorem on the interval [c, b l,

0= W(u(h- h-
Un-k+2,

(h-l) (h-l)
--Cn-k+l W(bln-k+l, Ign )(a, ,f) c.-,+aW (a, )

for some e (a, b), contradicting Lemma 4(a). Thus the constants ci may be chosen so
that u (h- >0 on (a, b). Now u has n -k zeros at a, and k <=nh <=n -h + 1 implies
n-k >=h-l, which together with u (h- >0 on (a,b) give u(J-l>0 on (a,b), j=
1,...,h.

The only assertion of Theorem 3 which remains to be proved is that nh+l < k for
some extremal solution u of the type discussed in the preceding paragraph. If this is not
the case then t/h+l >= k and choose h maximal such that W (a, b) 0. Then the solution
u has n- k zeros at a, u (h-) has k zeros at b and n-k >=h since k--<nh+l-<n-h.
Therefore u(h- has at least 1 zero at a and k zeros at b and, from Rolle’s theorem, u (h

has a zero at ce(a,b) as well as (k-l) zeros at b. Now, wh/(a,t)>O, t(a,b],
1,. , k- 1 and P61ya’s mean value theorem implies

0--- W(u (h), g/(nh_)k (nh)+2,"" u )(a,)
(h) (h)c,_,+ W(u,-,+I, ", u,, )(a, sc) c,-t,+W+a (a, sc)

for some e (a, b), contradicting Lemma 4(a).
CoroLLARY 3. The function is increasing on its domain.

Proof. It is clear that /3 is nondecreasing. Suppose b =/3(a) and c e(a,b); then
/3 (c) >= b and it suffices to show that/3 (c) > b. If/3 (c) b, then W, (c, b) 0 for some k
and h as in Theorem 3. If h > 1, then lq(ul,..., un)(’l; ’2;""" ’h) 0, where ra
(C, C), Th (b, b), "/’i t, 1, hi,fi-- n k, Ih[-- k and let n k be maximal
such that this holds. Since (as shown in the proof of Theorem 3) the extremal solution u
is unique to within a multiple, it follows that this solution is given by

u(t) (u,..., u,)(rl, t; r;.

where -=(c,...,c), I-l=n-k-1. In particular, u(c) u
u "-k) (c) O. If

(3.13)
Y(t, s) lq(u, , un)(trl; "/’2; 7"h-l; O’h),

O’1 (t,"’", t), O"h (S,’"", S), [O’11-" F/ k, IO’h[-- k,

then

Y(c, b) f(Ul, ", u,,)(’rl; ’rh) O,

0
Y(c, b) U-k(C) # O.

Ot

By the implicit function theorem, there exists a continuous function T defined in a
neighborhood of b such that T(b) c and Y(T(s), s) 0. Therefore, from (3.13), there
is a nontrivial solution u which has n k zeros at T(s) and u h-) has k zeros at s. If s < b
is sufficiently close to b then T(s) > a, contradicting b =/3(a).
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In the case h 1, i2(u1,..., u,)(z)=0 where r=(c,...,c,b,...,b), c has
multiplicity n- k in - and b has multiplicity k. This may also be shown to lead to a
contradiction in the same way as was done in the case h > 1, completing the proof.

It is well known (cf. Coppel [2, Thm. 7, p. 102]) that, when 1/ is continuous on
its domain. An example given in [14] shows that this is not necessarily the case when
/>1.

4. Comparison criteria. For the remainder of the paper it will be assumed that r 1
in the expression (2.1). It will also be assumed that the coefficients ak in L are of class
C"-k on their domain. The adjoint L* of L is defined by

L*y=(-1)n(aoy)n)+(-1)"-l)(aly)n-l+ +(any)

where ao 1. From Theorem 3, it is of interest to consider boundary conditions of the
form, for each k 1, ., n 1,

ycJ-l(a) 0, j=l,...,n-k,
(4.1) [a,b]

yJ-1)(b) 0, j=k,... ,h+k-1,

where h is determined by nh+l < k <- nh. Here rn n k, mh k, mi 0 if/" 1, h so
that (3.6) holds. We will also consider adjoint boundary conditions of the form

/iy(a) O, /’= 1,..., k,
(4.2) [a, b]

/.y(b)=O, f= 1,..., n-h-k + 1,

where

n-h+2,... ,n,

liy 1)J-l(a0y)i-a)+(_l)i-2)(a i-2)y) + +(ai_y).

Lagrange’s identity (cf. [5, p. 67]) states that if u, v are functions in the domains of L, L*
respectively, then

(4.3) vLu uL*v [uv]’,

where [uv] ulnv + u’l,_lV + + u
satisfies (4.2) [a, b], then

(n-1)liv. Also, if y--u satisfies and y v

(4.4) [uv](b)-[uv](a)=O.

In [12, Thm. 3.1], it was shown that a boundary value problem Ly 0, Uy 0 on
an interval [a, b] has no nontrivial nonnegative solution if there exists a function on
[a, b such that L*4 -> 0, U* 0, where U* is a boundary operator adjoint to U, and
L*$ > 0 on a set of positive measure. If we choose U and U* to be the boundary
operators in (4.1) [a, b] and (4.2) [a, b] respectively, it follows from Theorem 3 and its
corollary that invertibility conditions for an operator L may be given in terms of the
existence of solutions to L* -> 0, U*4, 0. However U* depends on the operator L in
/his case, so it is somewhat difficult to construct functions with general applicability.
Lemma 5 helps us to avoid this difficulty.

LEMMA 5. If b (a), then there is a nontrivial solution v ofL*y 0 satisfying the
boundary conditions (4.2) [a, b] for some k 1,..., n- 1 and v > 0 on (a, b ). The
boundary value problems L*y 0, (4.2) Ic, d], have no nontrivial solution if [c, d] is a
proper subinterval of [a, b ].
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Proof. From Corollary 3, the problems Ly 0, (4.1) [c, d], have no nontrivial
solution if [c, d] is a proper subinterval of [a, b]. Thus, the Green’s functions G(t, s)
exist for these problems. Now G(s, t) are the Green’s functions associated with the
adjoint problems L*y 0, (4.2) [c, d], so these problems have no nontrivial solutions.
The same argument shows that L*y 0, (4.2) [a, b], have a nontrivial solution for some
k 1, , n 1. It remains to show that some such solution v is positive on (a, b). Let
the nontrivial solutions Vl," ’, vn-1 of L*y 0 be such that each Vk satisfies the n -k
boundary conditions

(4.5) /jy(b) 0, ]= 1,...,n-h-k+l,n-h+2,... ,n.

Then W(Vl, ’., Vk) 0, k 1, ’, n 1, on (a, b) and the solutions may be chosen so
that W(vl,’", vk)>0 on (a,b). Otherwise, if W(vl,’",vk)(c)=O for some c e
(a,b), one finds a nontrivial solution to L’y=0, (4.2) [c,b] (since v(J-1)(a)=0,
] 1, , k, is equivalent to ljv(a) O, ] 1, , k) and it has already been shown that
no such solution exists. For each k 1,. ., n 1, the solutions (v 1,’ , vk) form a
basis for the set of solutions satisfying (4.5); also W(vl,..’, vk)(a)= 0 for each k for
which L*y 0, (4.2) [a, b], has a nontrivial solution. Let k be the smallest number such
that W(vl," , vk)(a) 0. Since W(vl, ", vk-1)(a) O, if k > 1, there is a nontrivial
solution v=clvl+’" +CkVk (Ck 0), unique to within a constant multiple, of the
problem L*y 0, (4.2) [a, b], for this k. Moreover v does not vanish in (a, b) because
v(c)=0, ce(a,b), and v(a)=v’(a) v(k-1)(a)=0 (equivalent to llv(a)=
/2v(a) Ikv(a) 0), together with W(Vl, v/.) >0, f 1,. , k 1, on [a, b),
implies

O= W(v, v_, v)($)=cW(v, v)()

for some (a, c), by P61ya’s mean value theorem [16]. Since Ck 0, this contradicts
W(vl,’", Vk)>0 on (a,b). In the case k= 1, v =ClVl (Cl S0) and this function does
not vanish in (a, b) either. Thus the constants ci may be chosen so that v > 0 on (a, b).

LEMMA 6. Suppose there exists a function b which has an absolutely continuous
derivative of order n- 1 on [a, b], satisfies the boundary conditions (4.1) [a, b] and
L >-_ 0 on [a, b with strict inequality on a set of positive measure. Then the boundary
value problem L*y 0, (4.2) [a, b], has no solution which is positive on (a, b).

Proof. This is a special case of [12, Thm. 3.1.]. It follows from the fact that if y v is
a positive solution of L*y 0, (4.2) [a, b], then from (4.3) and (4.4)

0 [Ov](b)-[Ov](a)
b b

vLO > O,

a contradiction.
The following theorem, which may be considered a Sturm comparison criterion

for invertibility, may be deduced from Lemmas 5 and 6 and Corollary 3.
THEOREM 4. A sufficient condition thatL be right-(m1,..., ml)-invertible on [a, b

/f {mj} satisfies (3.6) (r= 1), is that on each interval [a, c], c (a, b] and for each
k 1,. ., n 1, there exists a function Ok ACn-l[a, c] such that

(i) y Ok satisfies (4.1) [a, c],
(ii) L4,k >= O, with strict inequality on a set of positive measure in [a, c].

A necessary condition is that such functions exist and satisfy

(-1)kthi-1) >0 on (a, c), ]= 1,..., h.
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The necessity of the existence of such functions follows from the existence of the
appropriate Green’s functions, so that Ly 1, (4.1) [a, c], has a solution 0k for each
k 1,..., n 1. The sign of the derivatives of Ok follows from Theorem 2.

The following corollary reduces, in the case of disconjugacy, to a comparison
principle of Levin [7] and Nehari [15].

COROLLARY 4. Suppose that Liy =Ly /qiy, 1, 2, where ql-<O<-q2, on an
interval J. fiLl and L2 are both right-(ml, , ml)-invertible on Jfor all sequences {mj}
satisfying (3.6) (r 1) then so also is L.

Proof. If k is even, let 0k be the solution of Lly 1, (4.1) [a, b]; then LOk
1 -qlOk >0, since (--1)kOk >0 and ql -<0. Similarly, if k is odd, let 4k be the solution of
Lay 1, (4.1) [a, b], so that LOk 1-q2Ok >0. This applies to any subinterval [a, b]
of J.

Note that, for a second order operator L only the case k 1 occurs, and in this case
the result reduces to" L is disconjugate (right-disfocal) if L2 is disconjugate (right-
disfocal).

When 1, Corollary 5 is a disconjugacy criterion of Hartman [4] and Levin [9]. A
proof for this case may also be found in Coppel [2].

The following notation will be used. The symbol (ui,..., tj, .., uk) denotes the
(k- i)-tuple obtained by omitting uj from (ui,"’, uk) if i<-j <=k and it denotes the
(k + 1)-tuple (u,. ., uk) if ] < or j > k. Given k {1, , n 1}, let h be deter-
mined by nh+l < k <- nh and let

’(Ul, Un+l)(/" a, b, t)= f(ul, ’, Un+l)(rl; "rh),

where

rl=(a, ,a,t),

and [r l 0, f 1, h. Also let

"rh (b,""" ,b),

f(ul,’", un)(k" a, b)= f(ul,"’, un)(rl; O’h),

where

O’1-- (a,. , a), O’h (b,..., b), IO’11-- F/ k, ICrhl-- k
and [rl 0, ] 1, h.

Remark. Proposition 1 shows that Ft(ul,...,u)(k’a,b)>O for each k=
1,. ., n 1, if (ul," ’, u,) has Strict Property I’ on [a, b].

COROLLARY 5. A necessary and sufficient condition that L be right-(ml, ., mt)-
invertible on [a, b] for all {mj} satisfying (3.6) (r= 1) is that there exist functions
u2, un C"[a, b] such that

(i) (-1)"-/Lu->_ 0, ]= 2,..., n, on [a, b),
(ii) W(u (j-l) / (/- 1) (j-l)

,-k/i, Un > O for all l, n, if k l, n -1
when] 1 and k 1,..., ni when ]= 2, I.

Proof. The condition is necessary. Indeed, as was shown in Theorem 1 for the
invertibility specified, it is necessary that there exist solutions (ui,’’’, un) of Ly 0
such that each of the systems (u ,-+1," , u, is a Descartes system on [a, b], which
is more restrictive than the necessary condition claimed here.

To prove sufficiency, let Ul e -’, Un+x e at. The constant h may be chosen large
enough to ensure that (-1)n-J+lLu > 0 on [a, b] for/’ 1, n + 1, and that each of the
systems (ul," ", ," ", u,+l), 1,. ., n +1 has Strict Property I’ on any pre-
assigned closed subinterval of [a, b). Thus, from the remark preceding the statement of
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Corollary 5, it follows that

(4.4) D(Ux,’.’, i,"’, u/)(k" a, c)>0, i= 1,..., n + 1,

if c e (a, b), k 1,. , n 1, and h is sufficiently large. Now consider .the functions
defined on (a, c) by

Ok(t)=f(Ux,’’’, u/)(k" a, c, t), k 1,..., n-1

and on [a, c] by continuity. Since Ok satisfies (4.1) [a, c] and

n+l

L0g- Y, D(Ux,".,,’",U/x)(k’a,c)(-1)-/Lu>0
i=1

if h is sufficiently large, by (4.4) and condition (i) it follows from Theorem 4 that
/3 (a) _>- b. The functions u, , u may be extended to the left of a with the conditions
of the corollary still holding, thus showing/3 (d) _-> b for some d < a. Since fl is increasing
(Corollary 3), it follows that fl(a) > b and L is invertible as asserted on [a, b].

As an example, a second order operator L is disconjugate on an interval [a, b] if
and only if there exists a function u2 such that

u2>0, Lu2<-O on [a, b),

and L is right disfocal (i.e., right-(i, 1)-invertible) on [a, b] if and only if u2 exists such
that

u2>0, u;>0, Lu<-O on[a,b).
The invertibility of boundary value problems associated with constant coefficient

operators was discussed in detail in 3 following the statement on Theorem 1. This
discussion can now be extended to nonconstant coefficient operators. Hartman [4] and
Levin [9] (cf. Coppel [2]) show that a nonconstant coefficient operator L is disconjugate
on every interval if there exist constants/x.,. ,/x such that

A(t)=</z2--<A2(t)--</z3 -< =</Zn --<h(t),

where h(t) are the roots of the characteristic equation p(t,h)=0, and p(t, h)=
e-XtL(eXt). This is accomplished by choosing ug(t) e "’t, 2, n if the constants
are all distinct and by multiplying these functions by appropriate polynomials in the case
of repeated values of /zg. A similar observation holds in the more general context
considered here. Corollary 5 shows that L is right-(n k, 1,. , 1)-invertible if at least
k of the numbers [i are nonnegative and, in particular, L is right disfocal if all n 1 of
the numbers/z2,’’’,/x are nonnegative.

Results for disconjugacy related to Corollary 5 are proved in [11], [12], where,
essentially, the condition that (-1)"-/Lu. >_- 0 is replaced by a condition that ILu[ be
small. Similar results may be proved for invertibility. In particular, the result of 11] may
be proved almost verbatim for invertibility, provided P61ya’s mean value theorem [16]
in the proof is replaced by the mean value theorem of the present paper, Corollary 1.

Perhaps the simplest sets of functions satisfying the conditions (4.1) [a, b for use in
Theorem 4 are polynomials of degree n constructed as follows. Consider the functions

O(n, k, 1; t) .s(t a )-k (b tk), k 1," ", n

and

O(n, k, m t) [ O(n l, k, m -1; s)ds, k l, n m + l, m=2,...,n.
Ja
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From

it follows that

tp(n, k, m; t)=

lk ()o (-1)’-i k )i(t a)n_(n,k, 1;t) .= j
(b-a

1 o (-1)- (/) ) -(n-m+l)!j= (n-j)(n-j-1)...(n-f-m+2) ]
(b-a (t-a)

These functions satisfy O(n) (n, k, m; t) (-1)k and, for k 1,. ., n 1 (cf. [12]),

(4.6)
[0(n, k, 1. t)[ (n 1)]-1 )"n!n ,(b-a

I(i)(n, k, 1; t)l--</"(b a)"-, j= 1, ., n-l,
(n -])!n

while, for k 1,..., n,

(4.7) 14’(i)(n, k, 1" t)l -< (b a)"-
(n-y)!

/=O,...,n-1.

Clearly, if rn > 1, (n, k, m; t) is positive on (a, b] and has its maximum at b only.
This maximum may be shown by induction on k to be

(-1)/( I )th(n,k,m;b)=(b-a) n n-

n! m-2 k+m-2

Therefore

(4.8) O <- d/(n, k, m t) <-
n[(n 1)/2]![n/2]!’

k=l,...,n-m+l,

where Ix] denotes the greatest integer not exceeding x. Since

4(i)(n, k, m t) (n ], k, m ] t), ]=0,..., m-l,

n, k, m" t) 1)(n m + 1, k, 1; t), j m,. ., n 1,

(4.7) and (4.8) imply that

IO()(m, k, m; t)l (b -a)
"-i

(n -/)[(n -j- 1)/2]![(n -/)/2]!’ ]=1,...,m-2,

[p(i)(n, k, m" t)[ < (b a)"-i

(n-j)!
]=m-1,...,n-1.

All of the preceding inequalities are strict with equality holding at most at one point.
COROLLARY 6. (a) A sufficient condition for L to be discon]ugate on [a, b is

a (n- (n--l)n-1
)nJ)lai(t)l(b a) + la,(t)i(b a <-- 1

]=1 ]!n n

for each e [a, b ].
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(b) A sufficient condition that L be right(left)-(1,..., 1, n-m + 1)-invertible on
[a,b] is

: ]!
a(t)l(b- a) +

each e [a, b ].

=,-,,+2 jE(j- 1)/2]![j/2]!
[ai(t)l(b a) <= 1

Part (a) of this corollary is due to Bessmertnyh and Levin [1]; the present proof is
also given in [12]. In the case m n, Part (b) states that L is right or left disfocal on [a, b]
if

1)/2]![j/2]!la(t)[(b-a) <- 1
iE(/’-

for each [a, b ]. This case is also known and is essentially part of the proof of a result of
Levin [8] which states that L is disconjugate on [a, b if this inequality holds with (b a)
replaced by (b-a)/2 (el. Coppel [2, p. 86]. Observe that this disconjugacy criterion
follows immediately from (b) since, by Rolle’s theorem, L is disconjugate on [a, b if it is
right disfocal on [a, (a + b)/2] and left disfoeal on [(a + b)/2, b].

Proofo[Corollary 6. Part (a) follows from Theorem 4 and the fact that the functions

O,(t) O(n, k, 1; t), k 1,. ., n 1,

satisfy (4.1) [a, b] with 1. The condition given implies, from (4.6), that (- 1)kL4k -->_ 0
with strict inequality holding almost everywhere. Furthermore, since the condition of
(a) is monotone in (b- a), a similar set of functions may be constructed on every
subinterval [a, c] of [a, hi, as required by Theorem 4.

To prove Part (b), let m, nj n -] + 1, ] 1,..., m, and consider

k(t) (n, k, m; t), k 1,..., n-m + 1,

4(t)=(n,k,n-k+l;t), k=n-m+2,. .,n-1.

The functions satisfy the conditions (4.1) [a, b] for the sequence {nj} and (-1)L4g ->0
from (4.9), and the result follows as in Part (a).

Several improvements are possible in Corollary 6, especially for lower order
operators, since the inequalities (4.9) are quite rough. Also, if one is prepared to
consider conditions which imply (-1)L4k => 0 for each individual k, then one can take
advantage of the fact that 4(J(n, k, m; t) > 0, j 0,. , m 1, so that [a,-j(t)l may be
replaced by a,_i(t)/ or a,_i(t)_ as appropriate in the corresponding inequalities. Finally
a more exhaustive study may be conducted by considering sequences {ni} other than
those treated here.
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VARIATIONAL INEQUALITIES IN SEQUENTIAL ANALYSIS*

AVNER FRIEDMAN’

Abstract. Several models i.n sequential analysis are studied by reducing them to variational inequalities.

Introduction. Given a stochastic process with some unknown parameter of its
probability distribution, several hypotheses are introduced regarding the true value of
the parameter. One then begins to observe the process (i.e., take samples of the random
variables) and after some time - make a decision as to which hypothesis to accept. The
point of view of sequential analysis [17] is that one should choose a random -,
depending on the past observations, which is "as small as possible"; account must be
taken that the risk W due to accepting an incorrect hypothesis satisfies some a priori
constraints.

There are different ways of incorporating the risk W. One way is to consider the
total cost

(0.1) J E- +EW (E expectation);

J depends on r and on a final decision 8 of accepting an hypothesis (W W(8)). The
problem is then to minimize J. Another model is"

(0.2) minimize E% given the restriction EW <-,

where A is prescribed.
If in (0.1) we first minimize on 8, then we are left with a problem of

(0.3) minimize ](-), 3(") min J.

A large class of stopping time problems with respect to diffusion Markov processes
are known to lead to variational inequalities [5], [12] and to quasi-variational inequali-
ties [1], [3], [4]. The stopping time problems of the type (0.3) are not Markovian.
However, using the theory of filters they can sometimes be reduced to Markovian
problems and then studied by methods of variational inequalities. In this paper we give
such models.

In 1 we consider a model involving two composite hypotheses. This is generalized
in 2 to three composite hypotheses. In 3 we consider a model with m simple
hypotheses, m _-> 2. Finally in 4 we give an example of type (0.2) which can be reduced
to a Stefan problem.

1. Two composite hypotheses. A one-dimensional stochastic process z(t) is to be
observed. It is known to have the probability distribution of a Brownian motion with

2 2.drift/x and variance cr cr is given but z is unknown. We do know, however, that/x has
the normal law N(/xo, r). The two composite hypotheses are

Hi" accept that/x > 0,

H2’ accept that/x < 0.

* Received by the editors May 5, 1980. This work was partially supported by the National Science

Foundation under grant MCS 791 5171.

" Mathematics Department, Northwestern University, Evanston, Illinois 60201.
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Let be a variable taking the values 6 1 if HI is accepted and 6 2 if H2 is
accepted. We define the risk function

W(,)=k[zl if=l,/x<0 or S 2, /x > 0,

0 in all other cases,

where k is a positive constant. If c > 0 is the cost of observation per unit time, then the
total cost of observation and accepting some hypothesis is

(1.1) Jo(, ) E[c + W(, (o))],

where r r(w) is the random time of observation and (to) is the final decision as to
which hypothesis to accept.

Here r is to be a stopping time with respect to the tr-fields , tr(z(s), 0 <= s <= t)
and 8(to) is to be -measurable.

The process z(t) is not a Markov process, but we can write

dz(t) y dt + tr dw(t), z(0) =0,

where y =/z or, more specifically,

y tzo + ,
and is N(0, trY) variable; here w(t) is a Brownian motion independent of the random
variable .

Using the Kalman-Bucy linear filtering theory [7], [16] we introduce the filter

(t) E[ylr,]
and the error

e(t)=y-f(t);

they satisfy the stochastic differential equations

(1.2) d(t) =p(t____) d(t), (0) txo,

where (t) is a Brownian motion with respect to t and

p(t) p(t)
(1.3) de(t) --- e(t) dt- dw(t),

p(t) is a solution of the Ricatti equation

pZ(t)
p’(t) 2 P(O) =tro.

Hence

p(t)
tlr + l lcro

We can now solve (1.3)"

e(t)

(o) :;

t/cr2 + l/r
w(t)/tr

t/r2 + l /r2o
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Set

and

(u)
e-ua/2 fu e-t2
2’

*(u)= x/---dt

(1.5) s

By direct computation we find that

(1.6)
EW(x + e(t), 2)= Eklx +

Similarly,

(1.7) EW(x+e(t),l)=k x/ -x 1-P

It follows that

W(x + e(t) 1)
min W(x + e(t) 6)=

‘3 W(x + e(t), 2)
if x->O,
if x=<O.

Set

(1.9)

Then

(u)={(u)+u(u)(u)-u(i-(u))

’I(x, s)= k,/-s 4().

if u<O,=
if u=>O,

min W(x + e(t), a)= O(x, s).

The "non-Markovian" cost J,o(r, 8) can now be reduced to the "Markovian" cost

(. Lo()=E[c+,I,((),s(r))], f(0)=o,

where s s(t) is defined by (1.5); this is done in [5] for general cost functions.
The problem of minimizing the cost function (1.11) is a standard stopping time

problem. We first consider the truncated problem

Ur (x, t) inf J (r) (0 < T <
t<=-<=r
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Then UT satisfies the variational inequality

1 s2(t) rUf +- --Ux +c >-O,

(1.12) Ur (x, t) <= F(x, s(t)),

( ls(t) r ) UrUf +---o. Ux, + c *(x, s(t))) O

and the terminal condition

(1.13)

Setting

Ur (x, T)= (x, s(T)).

T UTu (x, s)= (x, t)

and taking T az, we find that u T(X, S) /A (X, S), where u is the solution of
2

CO"

(1.14) u(x,s)<=(x,s),

Us Uxx (u q(x, s)) O,
S !

a.e. in x R a, 0 < s < 0-20, and u _-> 0. From the definition of Ur it also follows that

(1.15) u (txo, crY) inf Jgo (z).

The sets C: u< and $: u 0 are called, respectively, the continuation set (or
noncoincidence set) and the stopping set (or coincidence set). Consider these sets in the
variables (x, t), rather than the variables (x, s); then the optimal stopping time r is the
first time ()?(t), t) hits the set $. Further, the optimal 6 is given by (in view of (1.8))

6 1 if ) (r) => O, 8=2 if ) (r) =< O.

We shall now briefly study the variational problem (1.14). Since

(1.16)
x +x. x ,x/-scb(x)_ X(l_(x)) }*(x,s) k min {/-sck(--) - (-) - -- --for all x R, s > 0, we have

(1.17) ,(0+, s) < 0, x(0-, s) > 0

and

02
(1.18)

OX 2 XI C

in the distribution sense. By a regularity result for variational inequalities [6] we
conclude that

(1.19)

Observing that

u, Ux, Uxx, ut are locally in L.
--Ws 0 if x #0,
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we can write for w u-:

Also, by (1.17),

Wxlx=O+ > 0

2

Ws -Wss 2 in C.
S

(since Uxlx=o 0 by symmetry).

Since finally w(x, 0)= 0 and grad w 0 at the points of 0C where x > 0, s > 0, we can
apply the maximum principle to wx and conclude that

(1.20) Wx > 0 in C f3 {x > 0}.

Similarly,

(1.21) ws<O in C.

For the proof it is convenient to work with the "penalized problem"

(1.22)
2

CO"

where fl’(t)_-> 0,/3(t) 0 if t<0, e 0 and/3(t) eo if t>0, e 0. Notice that (1.22)
holds for x 0; since, however,

0 0
q(x, s) is continuous across x 0,

Ox Os

the equation obtained for w: after differentiating (1.22) with respect to s holds for all x.
Since Ws -<- 0 for s 0 and Ws is continuous, the maximum principle gives Ws -<- 0;
hence, ws <_- 0 a.e. and (1.21) follows.

From (1.20), (1.21) it follows that the free boundary (i.e., the boundary of C in
s >) is given by the two curves

x +st(s), r(s) monotone increasing;

st(s) is C as in the case of the Stefan problem.
Recently Knerr [14] proved that

(1.23) S-2(S) "-> 3’ if s 0 (y >0);

he also studied more general variational inequalities of the type (1.14).
Chernoff [10], [11] has formally derived the variational inequality (1.14) as a limit

of the corresponding discretized problem. He also proved an asymptotic formula

S-1/2((S),---, Ts3/2{I + als
3 + azs6 +...}

as s 0; this includes (1.23).

2. Three composite hypotheses. The assumptions on z(t), tz, r are the same as in
1, but we now make three composite hypotheses:

Hi" /x > a,

H.: -a<<a,

H3" t* < -a,
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where a is a given positive constant. The risk function is defined by

W(ix, 1)= k(a -Ix)

W(Ix, 3)= k(Ix + a)

W(Ix, 2) Ix a

W(Ix, 2) -a -Ix

W(Ix, i) 0
We compute

+(a-x)O a x

if Ix < a,

if

if Ix > a,

if Ix <-a,

in all other cases.

[s (a + x] x (a +O3(x, s) EW(x. + e(t), 3) k &\ 4 ]
+ (a + )\. 41

s [ o{x-a sb(a+x6(x, )=EW(x+e(,),2) k s(.Xsa)+(x-a) \ x/-s }+ /-s ]

-(a + x)dp( -a + x]

In order to decide, for x > O, which is the best hypothesis (it obviously should be
either H1 or H2) we consider the function

/ (X, S)"-- t2(X, S)--I/tl(X, S)
(x--a)/sk {(x-a) / e-X2/2dA+x/-se(2.1)

We compute

(2.2)

so that

--(a+x)2/2s

-(a + x) f(a+x)/s -A2/2 d, +(x-a) f(a-x)/s

k 1 _(a+x)2/2ss /2/
e

(2.3)

One can also verify that

(2.4)

so that

qs >0.

-A 2/2 d/

(2.5) bx > 0 if x => 0.

From (2.3), (2.5) we conclude that the curve

r {(x, s); x > O, (x, s) O}
is given by

(2.6) x y(s), y(s) monotone decreasing.
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This curve intersects the x-axis at x a and the s-axis at a point s* determined by
-a/4s* a/s*

2a f e-X2/2 dA + a f e-X2/2 dA =s e-a2/2(s*)2.

From (2.2), (2.4) one also deduces that

y()(0) 0 for all ];
1 _2,2/8(1+0(s))"y’(s) e

24zrs
Finally, -< y’(s*) < 0.

Denote by z the domain given by

0<x <V(s), 0<s<s*,

and by fl the complement of 2 in the quadrant x > 0, s > 0.
Set

(2.7) (x, s)= min i(x, s).
1<i3

As in 1 one can show that the optimal cost is u (tz0, rZo), where u is the solution of the
variational inequality (1.14). Furthermore, (1.19) holds; the optimal z is the hitting time
by ()(t), t) of the stopping set {u } and, if 33(z) > 0, the optimal 6 is:

accept H1 if (3(-), ) fl,

accept H2 if (3(), -) fl2.
The set

r’= r tA r (r {(s, 0), s > s*})

is called the ridge of .
LEMMA 2.1. The ridge belongs to the continuation set C.
For such a result, in another variational inequality, see [8]; the proof here is similar.
From the lemma it follows that the free boundary in x -> 0 must lie in 111L1112; i.e.,

the free boundary does not intersect the ridge.
LEMMA 2.2.

(2.8) (u-4l)x_->0 /fx >0,

(2.9) (u-O2)-<_0 ifx >0,
(2.10) (u -02)8 -_< 0 for all x.

The proof uses the inequalities (2.3), (2.5).
From Lemmas 2.1, 2.2 follows"
THEOREM 2.3 The free boundary in x >-0 is given by two curves"

x ((s) lying in

x sr2(s) lying in f2,

’(s) < ((s),

(2(s) is monotone decreasing.

One can further show that

(- 1) i-a (ri(s) a)
C1 2 (72 (171, C2 are positive).

S
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The questions whether

i(s)--a
lim 2 exists

s

and whether r(s) is monotone have not yet been considered.

3. Several simple hypotheses. In this section we consider an m-dimensional
stochastic process z(t) which is an m-dimensional Brownian motion with a drift; the
drift can be any one of given n + 1 m-vectors A0, A , ., A,. We also assume that the
drift may change in time as follows. There is a Markov process O(t) with n / 1 states
0, 1,. , n and an infinitesimal matrix Q (q) such that

Thus

if O(t)= ], then the drift is

(3.1) dz(t) dw(t) + , Io(t>=jh dt.
/’=0

The Brownian motion w(t) and the Markov process O(t) are assumed to be indepen-
dent. The hypotheses are:

(3.2) accepting/-/, at time means accepting that O(t)= ].

Following the procedure of 1-2 we introduce the sampling cost cr and the risk
W, where

W(O, t) ai if 6 but 0 (ai > 0).

The total cost is

(3.3) (, ) E[c- + w((o(), (o,))],

where the index rr (fro, 7"/’1,""", 7/’n) indicates that the initial distribution of 0 is
0(0) with probability rri.

Setting

J.(r) inf J(r, 8),

one can now proceed to study the problem of minimizing J(z) by introducing the
nonlinear filter

(3.4) 7r (t) P[O(t) flt] (0 <- f =< n),

where t cr(z (s), 0 =< s =< t). Set

I-I--{77----(’/TO,""", 7"/’n) 77"i >0, 7"/’i 1}.

It is known [1], [16] that 7r(t) (Tr0(t), ", 7rn (t)) is a Markov diffusion process in
with generator

i,/’=0 k=O 1=0 19"17"i071"

Ou()
+ qiri.

id=o O-rr
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This elliptic operator is nondegenerate in II if and only if the vectors

(3.5) A A0, A 2 A0, An A0

are linearly independent (which implies that m ->_ n). However, M is always degenerate
on all of OH.

The study of the function

u(Tr) inf J,r(r)

Can be reduced to that of the variational inequality’

Mu + c >= O, u(Tr) <- g(Tr), (Mu + c)(u g) O,

a.e. in II, where

g(Tr)= min ai(1-Tri).

THEOREM 3.1 [9]. If qid - 0, then

u "n" ( o Ti’rri) c g --C, f c O

where

2
yi

[minki ]At,- A/I]"

The ridge of g (i.e., the set where Vg is discontinuous) divides H into n + 1 domains
Rj; each R. is a convex polyhedron and OR contains precisely one vertex of H, say V..

THEOREM 3.2 [9]. Ifqi,i =-- 0 then the stopping set consists ofn + 1 convex domains Si
Si lies in Rj and contains a H-neighborhood of V..

The proofs of both Theorems 3.1 and 3.2 are probabilistic. If we make, however,
the assumption that the vectors in (3.5) are linearly independent, then we can use
elliptic estimates in order to obtain further results (also in case qi.i 0). For example (see
[9]) one can prove, in this case, that the free boundary is analytic.

Theorems 3.1 and 3.2 should extend to other models, for instance, when z(t) is a
Poisson process with n + 1 possible parameters.

4. A problem of type (0.2). Consider a process

(4.1) z(t)= w(t)+Ot,

where w(t) is a one-dimensional Brownian motion and 0 is unknown, -< 0 < c; we
observe the process z(t) and have to choose between the two simple hypotheses:

Hi: accept 0 01,

H2: accept 0 02.

Here 02 -01 < 0. For any fixed 0, denote by Po the probability, on the space C[0, ),
determined by the process (4.1). We impose the following restriction on the pair of
decision variables (-, 3):- is a stopping time with respect to the or- fields t tr(z(s), 0 <- s <- t), and/ is such
that

(4.2) Po,[Hi is rejected] _-< A,
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where h < 1/2 is given. The objective now is to choose r such that

(4.3) r minimizes max Eor.

The motivation for this problem is given in [2].
Weiss [18] has shown that if we restrict 6 to be "symmetric" then (r, 6) solves (4.3)

if there exists a number p (0, 1) such that (r, 6) minimizes the functional

P PJ=- Po2[H1 is accepted] + Pol [H2 is accepted] + (1 -p)E0-.

An easy calculation shows (see Lai [15]) that

(4.4) J=Eg(w(z), z)--Jx(r), w(O) x,

where

(t(4.5) g(x, t) at + exp --Ix
But then the function

u (x, t) inf Jx (z)

is the solution of the variational inequality

(4.6) ut + 5Uxx >= O, u <= g(x, t),

a.e. in x eR 1, t>0.
By symmetry, Ux(X, 0)= 0. Setting

0
w (u-g),

Ot

(4.8)

2(1 -p)

(u,+u)(u-g)=O

1)(4.9) s log - if > 2,

if 0-<t<2,

is a positive number independent of a.

for a -> O,

s tlog 1- log--a

one can prove that w => 0, and then easily verify that (4.6) is equivalent to following
Stefan problem:

wt+wxx=O if0<x<s(t), t>0,

Wx (0, t) -1/2 e -t/2 if > 0,
(4.7)

w(s(t), t) 0 if > 0,

Wx(S(t), t) ag(t) if >0.

The strong maximum principle implies that w > 0 if 0 < x < s(t) and (t)< 0.
Lai [15] studied the free boundary for (4.7). He proved"
THEOREM 4.1. For fixed a,

1 --t/2s -da e as -. oo;
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We shall now complement this result with the following theorem.
THEOREM 4.2. The free boundary for (4.7) is convex; i.e., g(t) is monotone

decreasing.
This will follow from a more general result for the Stefan problem:

(4.10)

We shall assume"

(4.11)

ut U,,x O if O < x < s(t), 0< t<oo,

u (x, 0) h (x) if 0 < x < s (0) b, b > 0,

ux(O, t) [(t) if > 0,

u(s(t), t) s(t) if > 0,

ux(s(t), t) -(t) if > 0 (or > 0).

h(x)>0, h’(x)<0, h"(x)>0,
h"(x)

is decreasing for 0<x <b,
h’(x)

h(b) 0,

(4.12) h’(0) =riO), h"(b) (h’(b))2,

(4.13) f<0, f’-<0.
The conditions in (4.12) ensure that Ut and Uxx are continuous functions up to the
boundary (at 0).

THEOREM 4.3. If (4.11)-(4.13) hold then g(t) is monotone decreasing.
Proof. The proof is based on an extension of a method of Friedman and Jensen [13]

for proving convexity in case the condition at x 0 is u (0, t) constant. Analogously to
[13], the conditions of the theorem ensure that

and

Ux < O, ut > 0

u--2t is decreasing.
Hx t=O

The function z ut/u, satisfies a parabolic equation, and we consider the regular curves
F" z =/3 which initiate on the free boundary and go into the domain where u > O. As
shown in [13], z cannot take a local extremum at a point of the free boundary; hence, F
cannot end at a point on the free boundary and, further, its t-coordinate is monotone
decreasing. Suppose

F starts at (s(h),

F starts at (s(t), t), and t >

If F, F both end on t=O, say at x and x respectively, then x<x and,
consequently,

h"(xl) h"(x2)
=<=/3.h’(xl) h’(Xl)

Since z =-(t) on the free boundary, we get

(4.14) -(h) <-(t2).
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(4.15)

Indeed, on x 0,

We now make the crucial observation that

z cannot take a minimum on x 0.

Utx UtUxx (Ux)t U
2 f’ 2

Zx ux u Ux Ux =--/- z <=0 by (4.13).

Suppose now that FI, F2 both end on the t-axis, say at [1 and t-2 respectively. Since
t2 > tx, also t-2 > -1, and there is a region O bounded by

t-l<-t<-t--2, x=0; t=2; r, {t < 72},
where 2 -< -1, such that

OT1Fo=OOTIF={t= 2} 71Ft,
and this intersection is nonempty. In view of (4.15), the minimum of z in Q is attained
on Fal and consequently/32 >/31, again giving (4.14).

Consider finally the case where

F/1 ends on 0, F2 ends on x 0.

Then we can introduce curves Fo that end arbitrarily close to (0, 0) on the x-axis and
similar curves Ft, that end near (0, 0) on the t-axis. Applying the previous results to the
pairs Fol, Fo and to Fo., Fo2, completes the proof.

Proof of Theorem 4.2. We can consider w as a limit of solutions wr of truncated
problems in < T with T oo; the terminal condition is

w(x, T)=e2(b-x)+-(b-x)2 for0<x<b,

and we choose e, b so that
-T/2 2e e + eb, (and sayb=e).

Changing variables T-t we arrive at the setting of Theorem 4.3 with

f(’r) -ce -’/2 -T/2c=e

and the conclusion follows.
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PRINCIPAL SOLUTIONS FOR LIINARD’S EQUATION*

DONALD C. BENSON

Abstract. It is found that for a certain class of nonlinear ordinary differential equations there exists a
one-parameter family of solutions which display lower order growth at infinity than the remaining solutions.
This result is found with the help of an auxiliary equation which plays a role similar to that of the Riccati
equation in the linear case. Results on the oscillation of Li6nard’s equation are included.

1. Introduction. In [1] this author gives a generalization of Picone’s identity (see
[8, p. 5]) which is used to obtain comparison and oscillation results for Li6nard’s
equation. In the present article, another device of the theory of ordinary second order
linear differential equations is adapted for application to Li6nard’s equation, namely,
the Riccati equation.

It is well known in the theory of linear ordinary differential equations (see [6,
p. 332]) that, if x(t) is a solution of the linear equation

(1 1)
d2x dx

+ p(t)--;-:+ q(t)x O,
dt2

then on any interval where x(t) is nonzero the function u (dx/dt)x -1 satisfies a Riccati
equation. It is easy to see that, if in addition p(t) is differentiable and nonzero, then

(1.2)

dx
dt

p(t)x(t)

also satisfies a Riccati equation, namely

(1.3)

du 2
P + dtm q

=u p-u +--.
dt p p

Now consider the more general equation

d2x dx
dt

+ p(x, t)--;7+ q(x, t)x O.
at

Let P(x, t) satisfy

--P(x,t)=p(x,t)
Ox

and P(0, t)-0 identically. One is led to generalize (perhaps to overgeneralize) the
Riccati substitution (1.2) by putting

(1.4) u
P(x, t)"

In this paper it is seen that this substitution leads to useful results in an important special

* Received by the editors November 1, 1979, and in revised form September 18, 1980.
Department of Mathematics, University of California, Davis, California 95616.
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case, the case in which p (x, t) and q (x, t) are functions of x only, i.e., in the autonomous
case, the Li6nard equation.

To this end consider the Li6nard equation

d2x dx
(1.5)

dt2
/ k(x)-+ h(x)=0,

where it is assumed that k and h are continuous on (-oo, oo) and that k (x) is positive if x
is nonzero. Put K(x) o k() d, and suppose that x(t) is a nonvanishing solution with
nonvanishing derivative of (1.5) on an interval [a, b). Note that log IK(x(t))l is strictly
monotone. Now put

(1.6) u
K(x)’

and introduce as a new independent variable

(1.7) y -log IK(x(t))l.

A calculation from (1.5), (1.6) and (1.7) yields

du 2(1.8) u--;- u -u +F(y).
ay

The function F(y) is equal to hl(y)/kl(y)Kl(y), where hi, kl, and K1 are determined
by the following equations:

(-log ]K (x)]) h (x),

(1.9) k(-log [K (x)[) k (x),

K(-log IK (x)[) K(x), i.e., [K (y)[ e -y.

Equation (1.8) will be called the extended Riccati equation of (1.5) because it arises
from (1.5) by means of the substitution (1.4), the same substitution which gives the usual
Riccati equation in the linear case. In this paper the study of (1.8) yields information
concerning solutions of (1.5).

In 2, we consider questions of existence, uniqueness and continuation of
solutions for (1.5) and (1.8). In 3, some results on the asymptotic behavior of solutions
of (1.8) are obtained. In 4, the results of the preceding sections are applied to obtain
results concerning oscillation and asymptotic behavior of solutions of (1.5). (To be more
precise we should speak of asymptotic behavior of the inverse functions of monotone
solutions of (1.5).) The concept of principal solution, well known in the linear case (see
[6, p. 350]), is generalized in 4, and it is shown that, in the nonoscillatory case, (1.5) has
a principal solution. We conclude with an example to illustrate that in the case of linear
equations with constant coefficients, the new concept of principal solution coincides
with the usual concept.

2. Existence, uniqueness and continuation of solutions for the extended Riccati
equation. In this section we see that, under certain conditions, solutions of initial value
problems for both (1.5) and (1.8) exist and are unique and can be continued to infinity to
the right. First we consider (1.5).

PROPOSITION 2.1. Let h (x) and k (x) be continuous on (-az, ), and let k (x) and
xh (x) be positive for x nonzero. Then, for any real numbers a, Xo, Vo, there exists a unique
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solution x(t) of (1.5) satisfying x(a) Xo and x’(a) Vo defined on a maximal interval of
existence I such that I

Proof. First note that, according to the standard theorems on existence and
extension of solutions of differential equations [6, pp. 10-13], it follows that solutions of
(1.5) can be continued to the boundary of the region D in (x, x’, t)-space (i.e., R 3) in
which the second and third terms of (1.5) are continuous.

Put

1 IO
x(t)

(2.1t W(t) x’(t)2 + h(:) d.

For x(t) an arbitrary solution of (1.5), we have

(2.2) d____W= x’(x" + h(x)) -x’2k(x).
dt

Since W(t) is decreasing, and since the integral is nonnegative, we see that x’(t) is
bounded; in fact,

(2.3) x’(t)2 <= v + 2 h() d
.0

for all a in the interval of existence.
Suppose that, contrary to the assertion of the theorem, the maximal interval of

existence is bounded to the right. Since x’(t) is bounded, x(t) must be unbounded;
otherwise (x, x’, t) could not approach the boundary of the region D. But it follows
easily from the law of the mean that in a finite interval x(t) cannot be unbounded unless
x’(t) is also unbounded, contrary to (2.3). This contradiction shows that the maximal
interval of existence is unbounded to the right.

The uniqueness of x(t) is established in [1, Thm. 4]. This concludes the proof.
PROPOSITION 2.2. In addition to the hypotheses of Proposition 2.1, suppose Xo > 0

and Vo<0. Then there exists b (a < b <__c) such that x(t) satisfying (1.5) and x(a) xo,
x’(a) Vo is monotone decreasing on [a, b) and limt-,bX(t)=0.

Proof. First we observe that x(t) cannot have a local minimum at a point tx where
x(t) > 0. In fact, if such were the case, we would have x’(tl)= 0 and hence from (1.5),
x"(tl) =-h(X(tl)) < 0, which is not possible at a local minimum.

If x(t) has a zero greater than a, then we are finished because x(t) must be strictly
monotone decreasing up to the first zero.

Now suppose that there is no zero of x(t) greater than a. We need to show
limt-,oo x(t) 0. Since x(t) is strictly monotone decreasing, limt_ x(t) exists; suppose it

is positive, i.e., lim,_,oo x(t) xoo> 0. As above, put W(t) =1/2x ’2 +o h(:) d’. Since W(t)
is decreasing and positive, W(t) tends to a limit W as oo. Hence, since x’(t) is
negative,

ioX )
1/2

x’(t)--\2W-2( h()d =v ast.

Clearly v must equal zero. From (1.5)

Ji(t) vk(x)+ h (x) h(x)

as oe. But the only possible limit for 5/(t) is zero. Hence h(x) 0, which implies
x 0, since xh (x) is positive for x 0.
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PROPOSITION 2.3. In addition to the hypotheses of Proposition 2.1, assume that
Xo > 0 and Vo > O. Then there exists c < a such that (c, a is in the interval of existence of
x(t), the unique solution of (1.5) subject to x(a)=xo and x’(a)= Vo, and such that
limx_,+ x(t) O.

Proof. Let (a, d] be an interval which is maximal in the sense that the solution of
(1.5) subject to the initial conditions satisfies x(t)>0 and x’(t)>0 on (a, d], but this
solution cannot be continued to the left of a without violating these inequalities. Then
x"(t) < 0 on (a, d], which implies d > -c. Moreover, w x’(t) is a decreasing function
which satisfies w’(t) >- -Aw(t)-B, where A maxo<__x__<o k(x) and B maxo_<_<__o h(x).
It follows that limt_,d- x’(t) limt_,d- w(t) < c. Thus both x(t) and x’(t) have finite limits
as + d-, so that x(t) is continuable to the left at d. Since limt_a-x’(t)>0, the
maximality of (d, a] implies x(d)= O.

PROPOSITION 2.4. Leth(x) and k(x) be continuous on (-c, c); letk(x) andxh(x)
be positive for x nonzero. Let yo be in the range of -log IK (x)l and let Uo be arbitrary. Then
them exists a unique solution of (1.8) on [yo, o) satisfying u(yo)= Uo.

Proof. There is a unique positive number Xo such that IK(xo)l e -. Consider the
initial value problem for (1.5),

(2.4) x(0) Xo, x’(0) -uoK(xo).

If uoK(xo)>=O, then by Proposition 2.2 there exists b (0<b _-<) such that x(t) is
monotone decreasing on [0, b) and limt_,b- x(t)= O.

On the other hand, if uoK(Xo) <= O, then by Proposition 2.3 there exists c (-o __< c <
0) such that x(t) is monotone increasing on (c, 0) and limt_,c+ x(t)= O.

In either ease (uoK(xo)>-0 or uoK(xo)<_-0) the substitutions (1.6) and (1.7) yield a
solution of (1.8) on [yo, ) satisfying u(yo)= Uo.

To show that the solution is unique we observe that a solution to (1.8) satisfying
u(yo) Uo determines a solution of (1.5) by means of (1.6), i.e.,

(2.5)
dx

-K(x)u (-log IK (x)l),
dt

together with the condition x (0) Xo where Xo satisfies IK(xo)l e -y. Moreover (2.5)
implies x’(0)=-uoK(xo). By Proposition 2.1, this initial value problem for (1.5) has a
unique solution, and therefore (2.5) determines the function u(y) uniquely. This
concludes the proof.

PROPOSITION 2.5. Let F(y) be continuous and positive on [a, o), and let Uo be
positive. Then (1.8) subfect to the initial condition u(a) Uo has a unique positive solution
on [a, c). If two positive solutions ul(y) and Uz(y) on [a, o) satisfy ul(yo)= uz(yo) for
some Yo in [a, c), then ul(y)= uz(y) for all y in [a, o).

Proof. Let yo be greater than a. Let m=inf{F(y)la<-_y-<_yo} and M=
sup {F(y)la -< y -<_ yo}. Now, for y in [a, yo] and u positive, estimate the right-hand side
of (1.8) above and below as follows:- m=- --+ +m<--u+m<-u-u+F(y)<-_u +M.

2 m - - u

Now consider the auxiliary initial value problems

du (-u2m -a + m
U-y 2

u a uo,

du 2u ula) uo.
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These have solutions, respectively,

(2.6) ul(y) ((U2o m z) e -y-a)/’ + m2)1/2

and

(2.7) u2(y) ((Uo2 +M) e2y-a)-M)1/2.

From standard results on differential inequalities [6, p. 26], any solution u(y) of (1.8)
satisfying u(a)= Uo must satisfy

(2.8) b/l(y b/(y) b/2(y

for all y in [a, Yo]. From standard results on continuation of solutions [6, p. 12], either
there is a solution of the initial value problem which is unbounded somewhere in [a, yo]
or a solution which is not bounded away from 0, or there is a positive solution on the
entire interval [a, y0]. From (2.8), the first two possibilities cannot occur because
inf_-<y_-<yo/,/l(y) > 0 and SUpa=<y_-<yo/g2(Y) ( 0(3. From the usual Picard theorem [6, p. 8] it
follows that this solution is unique. Since yo> a is arbitrary, u(t) can be extended to all
of [a, c). The last assertion of the theorem also follows from the usual Picard theorem.

We have proved something stronger that the theorem requires; namely, (2.6) and
(2.7) give specific upper and lower estimates for the solution.

3. Asymptotic behavior of solutions of the extended Riccati equation. In this
section, we study the asymptotic behavior of positive solutions of (1.8) with the purpose
of later determining the asymptotic behavior as t-> of solutions of (1.5). More
specifically, we wish to determine the asymptotic behavior as y --> of solutions of (1.8) if
the asymptotic behavior of F(y) as y --> is known.

In case Co < , the equation

(3.1) x2-x +Co =0
has two real roots. We denote the smaller root

1 1
(3.2) Bo -- -(1- 4Co)1/2.

PRoPosrro 3.1. Let 0 <-Co < 1/4, and let e > 0 be less than 1/4-Co. Let u(y) be a

solution of (1.8) on some interval [a, b) such that

1 1 1/2(3.3) 0<u(a)<+(1-4(6o+e))
Moreover, let the function F be positive and continuous and let

(3.4t IF(y)-Co[ < e

for all y >=a. Then u(y) can be continued as a positive solution of (1.8) to the interval
[a, c), and

1 1
2 2

(1-4(Co- e))1/2 <--limy_.,oinf u(y)
(3.5)

1 1 )1/2_-< lim inf u (y) <
,-,o = (1-4(Co+ e)

Proof. At the risk of some confusion we use u(y) to denote the original solution
and also its continuation.
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That u(y) can be continued as a positive solution of (1.8) follows directly from
Proposition 2.5.

The quadratic u2- u + Co+ e is negative on the interval II" lU --1/2[ <
1/2(1-4(C0+e)) 1/2", moreover, u2-u+Co-e is positive on the two infinite intervals

and

I2 u u <--(1-4(Co-e))1/2

h u u >-+-(1-4(Co-e))1/2

Moreover, let I4 be the interval 1/2-1/2(1-4(Co-e)) 1/2 <- u _-<-- (1-4(C0 + 8)) 1/2. We
shall show that there .exists y l--> a such that u(y) is in I4 for all y _-> y l. In fact, it is
sufficient to show that there exists yl --> a such that the solution can be continued to the
interval [a, y l] and u(yl) is in I4. Indeed, if this is so and the continuation of u(y) does
not remain in I4 for all y > yl, let y2 inf {y > yl’ u(y) I4}. Then u(y2) must be either
the left or the right endpoint of I4, i.e., respectively either

(3.6)
1 1 1/2u (y2) ---(1- 4(Co e ))

or

1 1 1/2(3.7t u(y2) -(1-4(Co+ e))

If (3.6), then from (1.8), (3.5), and the positivity of u,

1
u’(y) u[y;5 (u (Y))e- u(y2) +F(y))

1
(-Co+ e +F(y)) > O,
U(y2)

which is impossible if u (Y2) is the left endpoint of I4, since by definition y2 is the point at
which u(y) leaves the interval I4. A similar contradiction follows from assuming (3.7).

It remains to show that there exists y --> a such that U(yl)E I4.
For any y -> a such that u (y) E 11,

1
(3.8) u,(y)

1
(u 2 u +F(y))__< (/,/2 U_[_Co+E)<O.

U b/

Thus if u (y) e 11(y -> a), it is impossible for u (y) to remain in I1 for all sufficiently large
y; if such were the case, then u(y) would decrease monotonically to a limit uoo->
1/2- 1/2(1-4(Co + 8)) 1/2", and, since 0 <= Co <41- implies that this bound is positive,

lim u’(y)=
1 (u_uoo+Co)< e

yoO Uoo Ucx:

which is impossible. Hence u(y) must leave I1 at some point yl; by (3.8) u(yl) cannot be
the right endpoint of I1, and the only other alternative is that u (y a) is the left endpoint of
I1, specifically

1 1 ))1/2u(yl) =---(1-4(Co + e

which is the right endpoint of 14.
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A similar argument shows that for y _-> a, if u(y) enters I2 (which cannot occur if
Co < e, i.e., if the left endpoint of I4 is nonpositive), then there exists yl >-- a, such that

1 1
u(yl) -(1 4(Co- e)) l/z,

which is the left endpoint of I4. (This argument uses the positivity of the left endpoint of
I4 in the same manner that the positivity of the right endpoint was used in the previous
argument.)

Since u (a) e I1 U I). U I4, it follows from the above that there exists yl => a such that
u(yl)I4.

As remarked above, it follows that u (y) 14 for all y _-> y 1. This is equivalent to one
of the assertions of the proposition.

This concludes the proof.
PROPOSITION 3.2. Let O<-Co<1/4, and let u(y) be a positive solution of (1.8) on

[a, 00) such that

lim inf u (y) < 1 Bo.

Let F: [a, 00)- R be continuous and positive, and let

lim F(y)= Co.

Then limy_,oo u(y) exists,and is equal to Bo.
Proof. Let e>0 satisfy e<1/4-Co and 1/2+1/2(1-4(Co+e)) 1/2

There exists yo such that

and

> lim infy_,oo u (y).

[F(y)-Co[<e forally=>yo

1 1
0 < u(yo) < =+=(1-4(Co + e))1/2

z z

The assertion follows by applying Proposition 3.1 and observing that e may be
taken arbitarily small.

PROPOSITION 3.3. Let 0 <= Co < 1/4, and let e > 0 be less than 1/4- Co. Let u (y) be a
positive solution of (1.8) on [a, 00) such that

(3.9)
1 1 )a/2u(a)>-+-(1-4(Co-e)

Moreover, let F: [a, 00)-+ R be continuous and positive, and let

(3.10) F(y) > Co- e for all y >- a.

Then u (y) + 00 monotonically as y -+ 00; moreover, for some positive constantP and some
yo >- a, u (y) > Pe for all y > yo.

Proof. The quadratic uZ-u + Co-e is positive in the interval

h u" u >+(1-4(Co-e))1/2

For all y => a
1u(y)=l(u 2 u+F(y))> (u 2 u+Co e).

u u
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Since u(a) belongs to I3 it follows that u(y) is increasing and belongs to I3 for all y => a.
Moreover, u (y) tends monotonically to c as y 00, because if u (y) had a finite limit then
u’(y) would have a positive lower bound, which would be impossible. Consequently
there exists y -> a such that u(yl)> 1. Hence for all y > y

F(y)
(3.11) u’(y) u(y)- 1 + > u(y)- 1.

U

Integrating (3.11) one obtains for y > y

(3.12) u(y) > (u (yl)- 1) e y-y1 + 1;

since u(yx)-I is positive, the order-of-magnitude assertion of the propositions
follows, and the proof is complete.

Next follows a proposition related to Proposition 3.3 more or less as Proposition
3.2 is related to Proposition 3.1.

PROPOSITION 3.4. LetF" [a, oo) R be continuous and positive. Let 0 <- Co < 1/4 and
let liminfy_,ooF(y)>=Co. Let u(y) be a positive solution of (1.8) such that
lim sup y-oou (y) > 1 Bo. Then u (y) oo as y oo; more specifically, u (y) > P e for
some positive constant P for all y sufficiently large.

Proof. For any e > 0 satisfying both e < 1/4-Co and

1 1
-+-(1 4(Co- 8)) 1/2 < lim sup u(y),
2 2. y-,oo

there exists yo -> a such that

and

1 1
u(yo) >+(1 4(Co- e ))1/2

F(y) > Co- e for all y -> yo.

The result now follows by an application of Proposition 3.3.
Propositions 3.2 and 3.4 leave open the analysis of the case limy_ F(y) Co and

limy_ u(y)= 1- Bo. The following discussion fills in this gap.
THEOREM 3.1. LetF: [a, o)R be continuous and positive. Let 0<-_ Co <1/4 and let

limy_o F(y) Co. Let a be a real number. Let there exist at least one bounded solution Ub

of (1.8) on [a, c). Then there exists a unique positive solution U(y) of (1.8) on [a, c)
such that limy_ U(y)= 1-Bo. Moreover, if u(y) is any positive solution of (1.8) on
[a, o), then exactly one of the following conditions holds:

(a) limy_,oo u(y) Bo;
(b) limy_,oo u(y)= 1-Bo;
(c) limy_oo u (y) oo, and there exists P > 0 such that u (y) > P e for all large y.

The three conditions (a), (b), (c) hold accordingly as u(a)< U(a), u(a)= U(a), or
u(a) > U(a), respectively.

Proof. That any positive solution u(y) on [a, oo) satisfies exactly one of conditions
(a), (b), (c), follows immediately from Propositions 3.2 and 3.4.

Let yo be in [a, oo) and let Uo be positive. Let u(y; Yo, Uo) denote the unique
solution of (1.8) on [yo, oo) satisfying u(yo) Uo. The existence of such a unique solution
is assured by Proposition 2.5.

If the given bounded solution u of (1.8) satisfies (b), then we take this solution for
U. If not, then this solution must satisfy lim infy_,oo Ub (y) < 1 Bo or lim supy_. Ub (y) >
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1- Bo. The latter case is impossible, since otherwise Proposition 3.4 would imply that
the solution is unbounded. Hence Proposition 3,2 would imply that the given bounded
solution satisfies limy_, Ub (y Bo.

There exist unbounded solutions of (1.8). In fact, (1.8) and the positivity of F and u
imply du/dy > u 1; integrating, we obtain

u(y)> (u(a)- 1) e y- + 1

for all y >a. If u(a)> 1, then u(y) is unbounded. Moreover, the conclusion of
Proposition 3.4 applies.

Now let

R ={uo>Ollimsupu(y;a, Uo)> l-B0},
=/u0>0 liminf u(y; a, Uo)< l-B01.L

1

From the foregoing, R and L are disjoint and nonempty. They are intervals, because
otherwise the graphs of distinct solutions would have to cross, contrary to the last
assertion of Proposition 2.5. An arbitrary element of R is greater than any element of L.
Let u, sup L, and let u*= inf R.

We shall show that u, u* and that U(y) u (y a, u*) is the unique solution
satisfying condition (b).

First we show that no more than one solution can satisfy (b). Suppose there are two
such solutions u and u2. Then there exists y such that u(y)> 1/2 and u2(y)> 1/2 for all
Y --> yl. Let V(y) lug(y)2-/g2(y)2l for y N a. At points where V(y) # 0, V is differenti-
able and, for y yl, (1.8) implies

V’(y) 2(ul(y)- ua(y)- uz(y)2 + uz(y)) sgn (ul(y)- uz(y))

2 ua(y)- u2(y)- sgn (ua(y)-u2(y))>0.

On the other hand, condition (b) implies V(y) 0 as y m. Since V is also nonnegative
and nondecreasing, V(y) must vanish identically on [ya, m). By Proposition 2.2, it
follows that u(y)= uz(y) for all y on [a, m).

It now follows that u, u*. Indeed, suppose u, < u*; then there exist numbers wa
and w2 such that u, < wa < w2 < u*. By Proposition 2.5, u(y; a, Wl) and u(y; a, wz) must
be distinct. But now, by the definitions of u,, u*, L and R,

lim u(y; a, Wl)= lim u(y; a, 2) 1-Bo.

We have just shown that this implies u(y; a Wl) u(y a, w2) for all y a, contrary to
the distinctness of these two functions.

Now put U(y) u (y a, u*) u (y a, u,). We have seen that U(y) must satisfy
exactly one of the conditions (a), (b), (c).

In particular, suppose (a)is satisfied. Let e -(Co/2). Choose yza such that

(i) U(y2)<
and

(ii) IF(y)- C0[ < e

for all y >_- y2. The usual theorem on continuous dependence on initial values [6, p. 94]
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implies u(y2; a, Uo) is continuous as a function of Uo. Hence there exists a number
Uo>U* such that u(yE;a, uo)<1/2. On the one hand Proposition 3.1 now implies
lim supy_ u (y; a, u0) < 1/2; on the other hand Uo R, and hence Proposition 3.4 implies
limy_o u(y; a, Uo)=Oo. This contradiction shows that, in fact, U(y) cannot satisfy
condition (a).

Now suppose (c) is satisfied. As above, let e - (Co/2). Choose 313 >- a such that

(i) U(y3) > 1,

(ii) F(y) > Co- e,

for all y -> Y3. Arguing as above, we conclude that there exists a number ul < u. such
that U(y3; a, Ul)> 1. On the one hand, Proposition 3.3 implies limy_, u(y; a, ul) oo;
on the other hand, u L, and hence Proposition 3.2 implies limy_,oo u (y; a, u 1) < 1/2. This
contradiction shows that U(y) cannot satisfy condition (c).

Since U(y) does not satisfy (a) or (c), it must satisfy (b). Since U(a)= u*= u,, it
follows that if u(y) is another solution of (1.8) on [a, oo), then (a), (b), (c) hold
accordingly as u(a)< U(a), u(a)= U(a), or u(a)> U(a), respectively. This concludes
the proof.

This section concludes with an examination of the case Co > 41-.
PROPOSITION 3.5. Let Co > 1/4, and let e > 0 be less than Co 1/4. Let u (y) be a positive

solution of (1.8) on [a, oo). Moreover, let F(y) be positive and continuous, and let

(3.13) F(y) > Co- e for all y >-_ a.

Then u (y) oo monotonically as y oo; moreover, for some positive constantP and some
yo --> a, u (y) > P e for all y > yo.

Proof. The right-hand side of (1.8) must be positive under hypothesis (3.14). Now
the order of magnitude assertion (u(y)>Pe) is shown exactly as in the proof of
Proposition 3.3.

PROPOSITION 3.6. Let Co>1/4 and let liminfy_.oF(y)>-Co. Let u(y) be a positive
solution of (1.8) on an interval [a’, oo), and let F be positive and continuous on this
interval. Then u (y) - oo as y o; more specifically u (y) > Pe for some positive constant
and for all y sufficiently large.

Proof. Let e > 0 satisfy e < Co-1/4. There exists a _-> a’ such that the hypotheses of
Proposition 3.5 are satisfied. This proposition yields the desired assertion.

The critical case, Co 1/4, will not be discussed in this paper.

4. Oscillation, nonosciilation, and asymptotic behavior of solutions of the Li6nard
equation. Principal solutions. In this section, we see some applications of the results of
the previous section. We shall consider (1.5) in the case that all solutions can be
continued on the right to a half infinite interval [a, ) and that x-=0 is a globally
asymptotically stable (g.a.s.) solution of (1.5). Conditions that imply this are well known
(see [9, p. 67]); for example, the following conditions suffice:

(4.1) xh(x)>O and k(x)>0 forx0

and

(4.2) h() d - as Ixl-  ,

Other conditions for global asymptotic stability of (1.5) and related equations are
studied in [2], [4], [5], [7], and [10].
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We shall say that a solution of (1.5), not identically zero, is oscillatory if it has a
sequence of zeros tending to +. If this condition does not hold, then the solution is said
to be nonoscillatory.

By Proposition 2.1, if h and k are continuous and (4.1) holds, then a maximal
solution of (1.5) is uniquely determined by its initial values. Moreover, if x and x’ vanish
simultaneously at a single point, then x vanishes identically. Because of these facts,
nonoscillatory solutions in the present case, just as in the more familiar linear case, are
characterized by the fact that they have finitely many zeros.

Oscillation problems for equations related to (1.5) have been studied by other
authors, e.g., 11]. Burton and Townsend [3 give necessary and sufficient conditions for
oscillation of the forced Li6nard equation, but their restrictive assumptions on the
forcing term exclude the unforced case which is presently under consideration. The
author [1] has previously treated oscillation problems in the unforced case.

THEOREM 4.1. Let x =--0 be a g.a.s, solution of (1.5) on 0 <-t < c. Let condition
(4.1) hold, and let h and k be continuous. Let K(x) k() d, and let

h(x)
(4.3) lim Co.

-o k(x)K(x)

If Co > 1/4, then all solutions of (1.5) are oscillatory. If Co < 1/4, then all solutions of (1.5) are
nonoscillatory.

Proof. Suppose C0>1/4. Let x(t) be any solution of (1.5). Suppose x(t) is non-
oscillatory. Then x(t) must tend monotonically to zero on some interval [a, o). In fact,
making use of (4.1), we see that the interval can be chosen such that x’(t) and x(t), are
nonzero. We have seen in 1 that under these conditions transformations (1.6) and
(1.7) yield a solution of (1.8) on the interval -log[K(x(a))[<-_y<o. Moreover,
condition (4.3) becomes F(y) C0 as yo. If x(t) is monotone increasing, then we
replace (1.5) by the equation

(4.4)
d2x dx
-d- + k(-x)-- h(-x) O,

and apply (1.6) and (1.7) to -x(t) accordingly to obtain a solution of (1.8); again
F(y) Co as y o. In either case, Proposition 3.6 asserts that there exists y0 such that
u(y)>Pe for some P>0 for all y > y0. In the case that x(t) is monotone decreasing,
this implies that there exists to such that

dx
dt

(4.5)
K(x)

1
K(x)

for all > to. This is not possible since x(t) is assumed to tend to zero on an infinite
interval. The case in which x(t) is monotone increasing is handled similarly. Thus the
assumption that a nonoscillatory solution exists yields a contradiction.

Now let Co < 1/4. Suppose that x(t) is an oscillatory solution of (1.5). Let e > 0 be less
than 1/4-Co. Since x(t)-->O as t->, there exists a such that x’(a)= 0, x(a)>0, and

h(x) -Co[<ek(x)K(x)

for all x < x(a). Let b > a satisfy x(b) 0 and x(t) > 0 for a =< < b. As above, (1.6) and
(1.7) yield a solution u(y) of (1.8) on the interval -log Ig(x(a))[ _-< y <. Since x’(b) is
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nonzero, u(y) as y . On the other hand, Proposition 3.1 asserts

1 1
lim sup u (y) -<_
y-= (1 4(Co+e))

Thus the assumption that an oscillatory solution exists yields a contradiction. This
concludes the proof.

This theorem may be compared to the oscillation and nonoscillation results in [1].
In particular, the oscillation condition given here is implied by [1, Thm. 5], which gives
information even in the critical case Co 1/4. However, the foregoing theorem still seems
of interest because the methods used here are quite different from those of 1], which
are based on a generalization of the Picone identity.

The remainder of this section is concerned with the nonoscillatory case Co < 1/4. We
continue to assume that x ---0 is a g.a.s, solution of (1.5). We shall give an analogue for
(1.5) of the theory of principal solutions (see [6, pp. 350-361]) of second order linear
equations.

The following lemma is needed.
LEMMA 4.1. Let k(x) be continuous on [0, Xo] and positive on (0, Xo], and let

K (x) k () ds. Then

.(4.6)
dx

Proof. By l’H6pital’s rule,

1/x K(x)
lim lim lim k (x) k (0).
x-*O+I/K(x) x-*O x x-*o

Hence (4.6) holds by the limit form of the comparison test for improper integrals.
Consider the initial value problem for (1.5),

x(0)-Xo>0 and x’(0)=Vo<0.

In the’present case x(t) x(t; Xo, Vo) is strictly monotone decreasing on [0, oe) or else
x(t) vanishes at some point, in which case x(t) is strictly monotone decreasing on an
interval [0, a) and x(a) 0. In either case let T(x)= T(x; xo, vo) denote the inverse of
x(t) which is defined on the interval (0, x (0)). Let u(y) w(y; x0, Vo) be the solution of
(1.8) which corresponds by means of (1.6) and (1.7) to the solution x(t; Xo, Vo). Let U(y)
be the unique solution of (1.8) such that

(4.7)
1 1 1/2lim U(y)= 1-Bo-+(1-4Co)

the existence and uniqueness of U(y) is asserted by Theorem 3.1. Let

Then (4.7)implies

U*(x) U(-log IK(x)l).

lim U*(x) 1-Bo.
x0

THEOREM 4.2. Let condition (4.1) hold, and let h and k be continuous. Let
K(x) o k() dse. Let (4.3) hold with 0< Co<41-. Let Xo>0 and Vo<0. Let x =-0 be a
g.a.s, solution of (1.5) on [0, o). Letx(t; Xo, Vo), T(x Xo, Vo), and U* be as defined in the
preceding paragraph.
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(a) I1 -vo>K(xo)U*(xo), then there exists a, positive and finite, such that
x (a; x0, Vo) 0.

(b) /f-Vo < K(xo)U*(xo), then x(t; Xo, Vo) 0 on [0, ) and

1 d

as x -0. (no=-(1-4Co)/:).
(c) I[-Vo K(xo)U*(xo), then x(t; Xo, Vo) 0 on [0, ), and

1 dT(x Xo, Vo)
1 B-o K(1"

Proof. Suppose -Vo >K (Xo) U*(Xo). Then, by Theorem 3.1, there exists P > 0 such
that o(y; Xo, Vo) > Pe for all sufficiently large y. Taking account of (1.6) and (1.7), we
have -x’> P for x in some right-handed neighborhood of zero, i.e., for x in an open
interval of the form 0 < x < e where e > 0 is suitably chosen.

If there does not exist a, positive and finite, such that x(a; Xo, Vo)-0, then
T(x) --> oo as x --> 0+. Moreover, from the g.a.s, hypothesis, x’(t) --> 0 as --> ; or, in other
words, we would have x’ - 0 as x --> 0+. But this is impossible because it has been shown
above that -x’ > P > 0 for x in a right-handed neighborhood of zero. This contradiction
shows that assertion (a) of the theorem is correct.

Now suppose -Vo <K(Xo) U(xo). By Theorem 3.1, o (y Xo, Vo) --> Bo as y --> .
Taking account of (1.6) and (1.7), using l’H6pital’s rule and Lemma 4.1, we have

BoT(x xo, Vo) Bo(1/d-tt)
(4.8) lim -1 lim lim

Bo 1xo+ o/() d xO+ -;(x)- u(y)

The assertion x(t; Xo, Vo) 0 on [0, o) is now a consequence of

T(x Xo, Vo) o as x 0,

which follows from (4.8) and (4.6). This proves assertion (b) of the theorem. Assertion
(c) is proved in a similar manner by using (b) of Theorem 3.1.

One obtains an interpretation of Theorem 4.2 by introducing an extension of the
concept of principal solution (see [6, p. 350]). In the theory of the linear second order
nonoscillatory equation, a principal solution is a solution, unique apart from a scalar
multiple, which is, roughly speaking, smaller at infinity than any nonprincipal solution.
The extension offered here coincides with the usual concept in the case of second order
linear equations with constant coefficients.

The new principal solutions are small at infinity in a different sense. As is
reasonable for solutions of an autonomous equation, translation of the independent
variable takes a principal solution into another principal solution.

THEOREM 4.3. Let condition (4.1) hold, and let h and k be continuous. Let
K(x) ko k () d. Let x =- 0 be a g.a.s, solution of (1.5). Let (4.3) hold with 0 < Co < 1/4.
There exists a positive strictly monotone solution x*(t) of (1.5) defined on a right-half line,
which we shall call a principal solution, such that

-x*’(t) 1 1
(4.9) lim--=l-Bo= + (1-4Co)1/2

t-, K(x*(t)) - -The solution x* is uniquely defined by (4.9) apart from a translation of the independent
variable; i.e., any other posittve solution x(t) o" (1.5) satisfying (4.9) must satisfy, ]’or all
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sufficiently large t,

x(t)=x*(t+q)

,for some real number tl. Let T*(x denote the inverse ofx*(t). Letx (t) be any otherpositive
monotone solution of (1.5) on a right-half line, and let T(x) be the inverse of x(t). (From
the g.a.s, assumption it follows that T* and T are both defined in a right-handed
neighborhood of 0.) Exactly one of the following two alternatives must hold:

T(x) 1 -Bo
(i) lim

x-,o T*(x) Bo

or

T(x)
(ii) }iomo+ T,(x----- 1.

In case (i), x(t) is a nonprincipal solution; in case (ii), x(t) is a principal solution.
Proof. By Theorem 3.1, there exists a unique positive solution U(y) of (1.8) on

some interval [yl, oo) such that

lim U(y)= 1-Bo.

Let x*(t) be a solution of

dx
(4.10) -K(x) U(-log IK (x

dt

satisfying x(0) x 1, where K(x 1) e -yl. We must show that x*(t) is well defined and has
the asserted properties. Since k (x) is positive, x is uniquely determined. It is clear that
x * must satisfy (4.9). Differentiating both sides of (4.10) and making use of (1.6), (1.7)
and (1.8), we see that x*(t) must be a solution of (1.5). Let x**(t) be another solution of
(1.5) satisfying (4.9). By putting x(t) =- x**(t) in (1.6) and (1.7), a solution u(y) of (1.8) is
obtained which satisfies

lim u(y)= l-B0.

From the uniqueness assertion of Theorem 3.1, u(y) U(y). Therefore x**(t) satisfies
(4.10). Since (4.10) is autonomous and the right-hand side is continuously differentiable,
solutions of (4.10) are unique apart from a translation of the independent variable. Thus
we have shown the uniqueness assertion of the theorem.

If x(t) is any positive monotone solution of (1.5) defined on a right-half line, then
either case (b) or case (c) of Theorem 4.2 applies. If (b), then assertion (i) of the theorem
holds, and x(t) is nonprincipal; if (c), then (ii) holds and x(t) is principal. This concludes
the proof.

The following example shows that the new concept of principal solution coincides
with the old in the only case in which it is possible to compare them, namely, the case of
constant coefficients.

Example 4.1. Consider the equation

d2x dx
(4.11)

dt2
+ 3-+ 2x O.
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We have (see 1):

h(x)=2x,

k(x) 3,

K(x)=3x,

hi(y) 32- e -y

kl(y) 3,

Kl(y) e -y

hi(y) 2
F(y)

kl(y)Kl(y) 9’

2
Co lira F(y)

Since 0 < Co < 1/4, the preceding theorem applies. The principal solutions are charac-
terized by (4.9), which reads in our special case

(4.12) lim-X*’(t) 1 1 2
teo 3x*(/--- +(1-4C0)a/2

3"

The solutions of (4.11) are of the form

X C1 e -t + C2 e -2t.
The only functions of this form which satisfy (4.12) are those for which C1 =0.
According to Theorem 4.3, the principal solutions are of the form

C2 e -2(t+tl).

by replacing C2 by another suitable constant C, we see that the principal solutions
in the new sense have the form

C2 e -2t.

these are precisely the principal solutions in the old sense.

Acknowledgment. The author is grateful to the referee for the present simplified
version of the proof of Theorem 2.3.
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HIERARCHIES OF ITERATED AVERAGES
FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

WITH A SMALL PARAMETER*

STEPHEN C. PERSEKt

Abstract. A hierarchy of iterated or nonlinear averaging methods is developed for periodic systems by
the introduction of the general nth order iterated average. Approximations are then derived with O(e)
accuracy, uniformly valid on intervals 0= < c or (the lesser case) 0 -< -< O(1/en).

1. Introduction. With e > 0 and w in R k, consider the initial value problem on
0 =< < for the system of ordinary differential equations

(1), (2) dW=eE(w,t,e), wlt=o-o/eVl(e),
dt

with E quasiperiodic in t, and with e > 0 small. Bogoliubov-Mitropolskii [1] obtained
an approximating system to (1), (2) by replacing the vector E(w, t, e) with its average on
0 _-< < at e 0, denoted (l(w). This approximation results in solutions accurate to
O(e) uniformly on 0 _<- _<- O(1/e), and this accuracy extends uniformly to 0 _-< < c if
the approximating system is exponentially asymptotically stable.

Now if ((w)-- 0, then for periodic systems in the form (1), Lari6eva [2] replaces
E by an iterated average eff.(2(w), and obtains an approximation to the solution of (1)
and (2), accurate to O(e) on 0-< -< O(1/e2). Persek and Hoppensteadt [3] extend the
definition of (2(w) to aperiodic systems including those in the form (1), show that
the Larieva approximation holds equally well for such systems, and show
that, provided the obtained approximating system is asymptotically stable, the O(e)
accuracy of the approximation can be extended uniformly to the semi-infinite interval
0 _-< < c. Finally, in the latter case, Persek [4] demonstrates that the original aperiodic
system is also asymptotically stable.

Now if/()(w) 0 (2)(w) for the periodic system (1), Larieva [2] then replaces
-/((E by its nth order iterated average e w) for some choice of n > 3, resulting in a

system which approximates solutions of (1) and (2) to O(e) accuracy on 0<-t <-

O(1/e"). In this paper, we will show that if the approximating system is asymptotically
stable, the O(e) accuracy of the approximation can be extended to the full interval
0 <= < m. This is our main result and forms Case B of the theorem given in 3. And
since Larieva’s work restricts itself only to systems where E E(w, t) is independent of
e, we mention the results for the general situation where E E(w, t, e) in Case A of our
theorem.

2. Preliminaries. With w in R k, consider the system

(3) dw= eE(w, t, e),
dt

(4) wl,=,o( 10 / EII(E),

defined for to(e)-<_ < o and e > 0 small, where to(e) -> 0 has been arbitrarily chosen.
Now, for some co>0, define the set D consisting of points (w, t,e) by D=

* Received by the editors October 5, 1979, and in revised form June 18, 1980.
CBA-MGT, St. John’s University, 160 Banbury Road, Mineola, New York 11501.

413



414 s.c. PERSEK

Dw x [0, 0o) x [0, eo ], with Dw a bounded convex open set in R k. Let w be an open set
with its closure contained in Dw, and let w be a subset of oWw.

HYPOTHESIS H1 (periodicity, smoothness). E(w, t, e) is periodic in on the setD of
fixed period P > O. E and several of its derivatives with respect to (w, e) are bounded
uniformly on the set D, and for each fixed (0 <- <- P) are smooth functions of w, e) on
Dw x[0, eo]. Finally, any l(e) used in (4) is assumed to be bounded in norm by a given
constant on 0 <-_ e <- eo.

Now consider a solution of (3), (4), at any two points and f, where It- ’1 O(1).
With w w(t), w(f), E(w, t, e) can be expanded as a power series to some order in
e with coefficients in (, t), provided

sup Iw(s)- rbl O(e).

In fact,

with (OE/Ow) a Jacobian matrix, (02E/Ow 0w)(,t, O)(w(t)-)(w(()-k) a tensor

product, etc. Hence,

E(w(t),t,e)

E(k, t, O)

+e(w ) (V, t, O) [ frtE(k, s, O) ds + e le’ () rb, s, O) t
E(, 4, O) d& ds

+e (rb, s, O) ds+.

So for [t-f]=o() and supe<=s<__t[w(s)-vl=O(e), a sufficiently smooth E(w(t), t, e)
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can be expanded as

i-lE(i)E(w(t),t,e)= . e w,t,t)+R,(w(t)-v,t,t,e)
i=1

with

IR,(w(t)- v, t, , e) O(e").

HYPOTHESIS H2 (the nth iterated-average system). For w in Dw, 0 <-_ r < P and
1 <-_ <- n, define the iterated averages

1 f’+Eff.i)(w, r)=-ff-, w, t, r) dt,

and assume )(w, r) =- 0 ]’or 1 <- <- n 1. Assume that ff.")(w, r) is independent of r,
i.e., ff.")= ")(w), and define the nth iterated-average system by

(5) d .<.d--; (p),

(6) Pl,=,o(,) Vo,

with ff,(")(w) smooth on Dw. Assume a constantM > 0 exists (Mmay be infinite) such that
the solution p=p(t,e) to (5), (6), exists and remains in w for to(e)<=t<=
to(e) +Me ", 0 < e < eo, and for all rbo in w.

HYPOTHESIS H3 (stability of the variational system). Assume M and let
U(t, s) be the fundamental solution to

dU
at

=e"
aw )(p(t,e))U, Ult==Ikg,

with Ikxk the identity matrix in R kk. We assume constants , and A>0 exist
(independent of e, s, to(e) and the p(t, e) chosen from Hypothesis H2) such that, for
to(e) <-_ s <- <

IIu(t, s)ll <_-g. exp (-e"A,(t-s)),

independent of the chosen p and to(e).

3. Result and applications.
THEOREM: Let w(t, e) be the solution to the initial value problem (3), (4), with

to(e) >-0 arbitrarily chosen, and let p(t, e) be a solution to the iterated average system (5),
(6), for 0 < e <=

Case A. LetHypotheses H1 andH2 hold withMfinite. Then constants K, (M) and
e,(M)>0 exist, (with values depending on D, 5w, w and the bounds in H1, H2, but
independent ofto(e )), such thatfor 0 < e <-_ e (M), the solutions w (t, e andp (t, e exist on
to(e <= <= to(e + M/e , and

sup Iw(t, e)-p(t, e)[ <-K,(M)e
to(e) <---- t<= to(e )+M/

uniformly for all o in w.
Case B. Let Hypotheses H1-H3 hold (M o). Then constants K*, e* >0 exist

(with values independent of to(e), but depending on D, 5w, w, and the bounds in
H1-H3) such that, for 0< e < e,*, the solutions w(t, e) and p(t, e) exist on fo(e) <= <
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and

sup Iw(t, e) p(t, e)l <K*
to(e)t<oo

uniformly for all Vo in w.
Before beginning applications, we note the expansions preceding Hypothesis H2,

and define the following iterated-averages through them"

1 f.’+P(1)(w, ’)=- E(w, t, O) dt,

(w, t, O) E(w, s, O) ds dt +- -e (w, t, O) dr,

P()(w, )=-fi w (w, t, o)

w, s, O) ds] dt

1 r+P

( 02E
+ -- IT \Ow Ow) w, t, O)[IrtE(w, s, O)dsJ[frtE(w, qb, O)dc] dt

+- Ow Oe
(w, t, O) E(w, s, O) ds dt

1 f,’+P[o2E2P ,e ] (w’ t’ O) dt"

Example 1. With u scalar and c,/3, y constants, consider the equation

dZu du
dt2

+ e2(u -ye)--+(1-eau)u =0,

which in system form becomes

du
dt

dt

Then, letting u w cos 0 and v w sin 0, and using the (w, 0)-phase plane, we obtain

dw aw2 cos2 0 sin 0 + ew2 cos 0 sin2 0- ye2w sin2 0

d-- =-e 1-e(aw cos30+ew cos2 0 sin O-ye2sin 0 cos 0)
2 2W3=-eaw cos2 0 sin 0- e2(/w2 cos 0 sin2 0 + c cos 0 sin 0)

3 4+e3()’W sin2 0--2cflw3 cos4 0 sin2 0-c w cos8 0 sin O)-]-e4ER(W, O,

with ER a smooth function of e. As (1)(w)=0=(2)(w), we obtain (3)(w)=
yw/2- aW3/8 and the approximating system

dfl_e 3

dO ----(4yO- cqp3), Ol0--0o Wlo=oo fro,
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with 0o O(t 0). Since the p-system has a stable rest-point at p 2x/y/(a), then, by
the theorem, constantsK and e > 0 exist independent of the choice of 0o and W(0o),
(provided the latter is restricted to a bounded set with w(Oo) > 0) such that, for all 0o and
for all w (0o) in this set,

sup ]w(O, e)-p(O, e)l<-Ke,
0o<=0<eo

for all e satisfying 0<e--<ca*. Note that we have restricted ourselves to the (w, 0)-
phase plane to avoid having to deal with stable subsystems, as these will be treated in a
later paper.

Example 2. With u and v scalars and w (u, v) a vector, consider the system

dbl
.-7 el(u, v) sin t,
ta

dt
eg(u, v) cos 2t.

With p (’, rt) corresponding to w (u, v), we obtain the averaged system

d’rl e
3

{
In particular, choosing f(u, v) uv and g(u, v) au +u2 + 3"U3V with a,/3, 3’
constants, we obtain the iterated-average system

d( e
3

d- 4 r2 (a + 2/3r + 3 3’r2), sr[t--o u(t 0),

3d/ e 2

d---= -’r (a +4’+93"ar), rt[t=o v(t 0),

which has a stable rest-point located at (’, rt) (-a/B,/2/(3a3")), provided a < 0,/3 >
0, 3" < 0 (actually, provided a3"/fl > 0). Then by the theorem K3* and e 3* > 0 exist such
that, for all to(e)>= 0 and all initial values in a bounded subdomain of stability of the
averaged system,

sup {lu(t, e)-C(t, e)l+iv(t, e)-n(t,
to(e)<-- t<oo

for 0 < e <_-e 3*, independent of the choice of initial values.

4. Proot of the theorem. With w w(t, e) the solution to (3), (4), and p p(t, e)
the solution to (5), (6), let w p + e W. Let d be the distance between the boundaries of
w and Dw, and let N1 majorize E(w, t, e) and its appropriate derivatives on the set D,
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and bound l’l(e), the initial data for 0<=e --<eo. We now write

(7)
dW
dt

n-1/(n=E(w, t, e)-e (O),

(8) Wl= o(s) 121(

Now, given any constant a > sup0<_<,,, IIl(e)l, there exists some tl(e)> t0(e),
to(e)+M/e") such that w(t,e) exists on to(e)<-t<-tl(e) for 0<e<_-eo, and
supto(,)=<t_-<tl(,) [W(t, e)l<-a for 0<e --<eo. Choose el=min (eo, d/(2a), 1); then, by
Hypothesis H2, w(t, e) lies in Dw for to(e) <= <-_ tl(e), 0< e -<_ el. Now with [.] denoting
the greatest integer function define the function " by ’ [(t to(e))/P]P + to(e), and
by =v(t,e)=-w(, e). Since Iw-l=O(e)on to(e)<-t<=tl(e) and 0<e_<-el, then
E(w, t, e) in (7) can be expanded in powers of e according to the procedure outlined
following Hypothesis H1. Hence (7) becomes

dW _E()( ,_g()(p,t,t)+R(w-.w,t,t,e)-e
dt i=1

and a constant N2 also exists independent of e, a, to(e), tl(e) such that, for to(e)<-_t<=
tl(e) and O< e <= el,IR,(w(t, e)- ge(t, e), t, e)l <=NEe . Since, by Hypothesis H2,
__,(i)(w, r)0 on Dw for l<=i<-n-1 and/(")(w, r)=/(n)(w), then, with w=p+eW,

i-1 -,( l{/,(n)(dW
e {E()(k, t, f) ’)(, ’)}+e )-(")(w)}

dt i=l

.-’{#(. w)_#(.)(o+e )(p+e )}+R.(w ,t,f,e).

So, with e2-min (El, l/a2), a constant N exists independent of e, a, to(e) and t(e)
such that

.(0dW _I{E(i)( t, )--J(i)(, )}"- 8 \"’OW ) ([) W + C(W, t,(9)
dt i=1

where IC(W(t, e), , e)[<-N3e"(l+ea2)<=2N3e" on to(e)<=t<=tl(e), for 0<e <e2.
Defining U(t, s) as in Hypothesis H3 and noting that

dU-(s, to(e)) dU(s, to(e))=-U-(s, to(e)) U-X(s, to(e))
ds ds

and

U(t, s)= U(t, to(e))u-l(s, to(e)),

we can write (8) and (9) as

W(t) U(t, to(e))Vl(e)

i-1 fit(10) + e U(t, $) {E(i)(w(:(), S, :)- ](i)(w(ff), )} ds
o(e

+ | U(t, s)C(W(s), s, e) ds,
ato()

where is defined like f, and we have abbreviated W(t, e) by W(t), w(f, e) by w(f), etc.
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Using the properties of U, we integrate (10) by parts"

(11)

o()
U(t, s)C(W(s), s, e) ds.

Then a constant N4 exists independent of e, a, to(e), tl(e), majorizing (Offn)/dw)(w) in
norm on Dw and, by Hypotheses H1-H2, majorizing

Ito( {E(i)(w (), s, )- l(i)(w(), )} ds,

for i <-- <- n, on to(e <- <-_ tl (e ), O < e <- e2. Then, for to(e <-_ <- tl (e ), O < e _-< e2,withl["
the vector or matrix norm,

(12)

IIW(t)ll--IIU(t, to(e))llN +N
i=1

+ I[U(t, s)lle N42 e
o(e) i=1

+2N3} ds.

The rest of the proof for Case A. Now, from Hypothesis H2 and the above,
[[U(t,s)l[<-e "N"(’-s) on to(e)<-s<-_t<-to(e)+M/e , 0<e <----eD. Hence, fo; to(e)<--t <-

tx(e)<-to(e)+M/e and O<e<--e2=--min(eD, d/(2a),l, 1/a2), by a Gronwall
inequality,

IIW(t)ll N1 +N4 e
i=1

2N3) i--1+
N4 ]

exp (enN4(t-t(e)))+N4 i=1i 8

2N3] u.M 1
<= N1 + rtN4 +

N4 ]
e + nN4 =---K, (M),

with K,(M) independent of e, a, to(e) and h(e). Hence, if a is taken as equal to K(M)
and en (M) min {eD, d/[2Kn (M)], 1, 1/[Kn (M)]2}, then, if tl(e) is picked such that
IIW(t)ll<=a on to(e)<-t<-tl(e) and 0<e _-<e(M), it follows that ]lW(t)ll<-a/2 there.
Thus we are free to choose tl(e)=to(e)+M/e , from which it follows that
supto()<=t<=to()+t/.llW(t)ll<K(M), independent of all rbo in 5w and with 0<e_<-

The rest of the prooffor Case B. Now from Hypothesis H3, constantsK and , > 0
exist such that IIU(t, s)ll <-R exp (-e nA (t s)) for to(e) <- s <-_ < oc, 0 < e < eD, and all
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rb0 in w. So from (12), for to(e)<=t<-ta(e), 0<e _-< ez-=min (eo, d/(2a), 1, l/a2),

IIW(t)lI-Nlg. exp (-e"h,(t-to(e)))+U4 e
i=1

i-1 }+ NI e +2N /(1-exp(-e ,n(t-to(e)))/n)
i=1

K 1 ,NIK, + nN4+(nN] +2N3)K,,
with K independent of e, a, to(e) and tl(e). Hence, if we choose aK and
e min[eo, d/(ZK), 1, 1/(K])2], then if t(e)is picked such that [W(t)l[a on
t0(e) <= <= tl(e) and 0<e < e*,, it follows that llW(t)[l <= a/2 there. Thus we are free to
choose t(e) m, from which it follows that supto(,)=t<[lW(t)[[ <K, for 0 < e e ] and
for all fro in w. The theorem is proved.
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STABLE SOLUTION OF THE INVERSE
REFLECTION PROBLEM FOR A SMOOTHLY

STRATIFIED ELASTIC MEDIUM*

w. w. SYMES"

Abstract. The subject of this paper is a version of the inverse reflection problem for a smoothly stratified
elastic medium. The same mathematics describes the inverse problem of the vibrating string. This problem is
solved in a constructive way. Also, a priori estimates are derived which exhibit the continuous dependence of
the solution (index of refraction, relative sound speed) on the data (scattering or reflection measurements).

1. Introduction. The subject of this paper is a version of the inverse reflection
problem for a smoothly stratified elastic medium. The same mathematics describes the
inverse problem of the vibrating string. This problem is solved in a constructive way.
Also, a priori estimates are derived which exhibit the continuous dependence of the
solution (index of refraction, relative sound speed) on the data (scattering or reflection
measurements).

We take particular care to use only constructions which apply in principle to higher
dimensional problems of a similar sort. Most other treatments of this problem proceed
via a reduction to an inverse Sturm-Liouville problem (see, e.g., [1] and [2]). This
coordinate transformation is no longer available in higher-dimensional problems, so we
avoid it, except where it can be interpreted as a coordinate transformation along the
rays of geometric topics; this is the case for the a priori estimates of c at the end of 4.
(See 4 for a discussion of this point.)

Other authors who avoid dependence on peculiarly one-dimensional tricks have
invariably used approximate methods (JWKB, Born series: see [3], I-4, Ch. XIII] and
practically any article in the literature of inverse scattering in exploration geophysics,
physical chemistry, ultrasound radiology, etc.). In contrast, our methods are exact: we
construct the index of refraction exactly by an iterative approximation procedure.

Our formulation of the inverse reflection problem is time dependent, which also
contrasts with many other treatments (e.g., [2], [5]). The solution propounded here can
also be adapted to steady state (frequency domain) problem formulations, other
boundary conditions, etc.

Our presentation shares some features with the work of Weston and Kreuger (see
[17] and references cited therein), and Kay [18]. Sondhi and Gopinath [21] seem to
have been the first to notice the attractive computational (stability) aspects of the
nonlinear Gel’fand-Levitan Volterra equation, which is related to the main analytical
device of the present work. None of these authors, however, prove stability results.
Regularization techniques from the theory of ill-posed problems have been applied to
reflection data inversion by M. Gerver [20] and, more recently, by A. Bamberger et al.
[19]. Our results show that the problem for smooth stratification may be regarded as a
well-posed problem, rather than as a regularization of an ill-posed problem. We remark
that we have recently shown that the crucial parameter, denoted by e below, which
determines the condition number or local Lipshitz constant of the problem, is closely
related to the rate of local energy decay; see [12] for details. Finally, we mention the

* Received by the editors November 1, 1979, and in revised form August 25, 1980. This work was
sponsored by the United States Army under contract DAAG29-75-C-0024. This material is based on work
supported by the National Science Foundation under grant MCS78-09525, and performed in part at the
Mathematics Research Center, University of Wisconsin, Madison. A preliminary form of the paper appeared
as Technical Summary Report 2007, MRC, University of Wisconsin.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.
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work of O. Hald [8] on inverse Sturm-Liouville problems and P. Deift and E. Trubowitz
[9] on inverse Schr6dinger scattering, who also derive stability results in those contexts.
Their techniques are closely related in several respects to those presented here.

We abjure further discussion of the literature and proceed to describe our results.
The physical setting of our problem is as follows. Consider a stratified elastic

medium with unit elastic moduli (Lam6 constants). (This latter restriction may be
removed, in which case we recover the elastic impedance rather than the density). The
density 0 varies as a function of only one of the coordinates, say x. We assume that p is
known and constant in the halfspace {x <- 0}; in fact, for the sake of simplicity, p =- 1 for
x -< 0 and smooth (of class C:) otherwise. We set up a measuring device at x O, and
record the (infinitesimal) reflected wave F(t), >0 resulting from an (infinitesimal)
impulsive incident wave of the form (x t), < 0 impinging on the unknown medium
{x _-> o}.

--1/2Our results are phrased in terms of the index of refraction c =p We obtain
sufficient conditions on F (which are very close to necessary), as in

TIJOgM B. Suppose T > 0, F’[0, 2T]- is of class C 1, F(O) O, and the kernel

H(s, t) 1/2F(s + t)- dr F(s r)F(t- r), O<_s<_t<=T,

H(t,s)=-H(s,t),

defines a self-adfoint Hilbert-$chmidt operator H on L2[0, T] with the property

11+4H-> e >0.

Then there exists a uniqueX > 0 and a unique positive function c" [0, I] I {c > O} of
class C so that IoXc -a T and F(t) u(O, t), > 0 for the solution u of the initial value
problem ([or which define c =- 1 ]’or x < 0)"

( x
2

)(1.1a) -.-c2(x) u(x, t)=-O,

in the domain of dependence of (0, 2 T)

(1.1b)

Denote by 5 the set

u(x,O)=(x),

Oil
=(x, 0) -= o.

{(x, c). x > o, c e c[o, x]}.

9’ is given the topology determined by the following distance function"
de((X, c), (g, e))= Ix-g[ +llc- ellc2[o,minfX,2)].

Then the map F - (X, c) whose existence is implicit in the above statement is continuous
(even locally Lipschitz) as a map

37- {F e C’[0, 2T]" F(0) 0,

The proof proceeds along the lines laid down in [6], where a similar problem was
solved with the differential equation (1.1a) replaced by

( 0202 + q(x) u(x, t) O.
Ot x
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In reference [6], therefore, the characteristics of the problem are known from the
outset. The characteristics are exactly what is to be found in the present problem,
however, which gives it the nature of a free boundary problem. This nature is
unavoidable in higher-dimensional inverse problems for elastic waves, and we meet it
head-on, which causes some headaches. In particular, the necessary a priori estimates
are more difficult to derive than are the corresponding estimates in [6].

The main tool is the progressing wave decomposition of the solution u of an initial
value problem (1.1):

u(x, t) 1/2cl/2(x)[5(t + T(x)) + 6(t- T(x))] + K(x, t),

where

T(x) c -1

is the travel-time function and K is smooth inside the light cone with apex (0, 0) ( 2).
This expansion is an example of the progressing wave construction of Luneburg,

Lax, Courant and Ludwig. Detailed calculations of this type seem to be rare in the
literature. Also, the discussions in the literature typically assume infinitely differenti-
able coefficients, whereas we require a result for finitely differentiable coefficients. In
view of these circumstances, we have decided to include in 2 a (rather lengthy)
detailed discussion of the progressing wave decomposition for (1.1). We show that the
type of expansion depicted above exists when p has two measurable, bounded
derivatives (Theorem A). In that case (and generally not otherwise) the remainder or
reflected wave K has finite energy.

We remark that a sharp converse to Theorem B can be formulated: if F has one
bounded measurable derivative, then p has two. The proof is similar to the proof of the
sharp results in [6], and we do not give the details here.

In 3, it is shown that the pair (K, c) solves the GL system of Volterra equations
(Theorem C):

H(T(x),t) -1/2(xc )K (x, t)
(1.2a)

+ dy c-2(y)K(y, r(x))K(y, t) for >- T(x),

(1.2b) K(T(x), x)=1/4cl/2(x) cl/2(ca/2)".

The initials GL stand for Gel’land and Levitan, for they introduced integral equations
of this sort into inverse scattering theory in their seminal paper [13]. Our work is in
direct line of descent from theirs; the "nonlinear integral equation" of [13] is derived by
the present techniques in [6]. GL also stands for group law; indeed, the equation (1.2a)
expresses in compact form the propagation of Cauchy data for 7qc by a one-parameter
group of operators, which follows from the time-independence of the coefficient.

A number of crucial a priori estimates are determined in 4 for the solution {K, c }
of (1.2). These involve sup norms of F and the number e -1. This latter number,
although in principle present in the data F, is in practice difficult to extract. On the other
hand, in practical problems one often has known bounds on the density. It is shown in
6 that a priori bounds on c and its first two derivatives determine a lower bound for e,

hence, can be employed in place of e in the a priori and stability estimates. We use the
results of 4 in 5 to show that an iteration scheme converges to a global solution of the
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GL system (1.2). The solution defines a continuous map

where

-r --> -= {(X, c,K):X>O, c C2[O,X],K CI(q(T, c))},

(T,c)={(x,t):O<-x<-X, T(x)<-t<=2T-T(x)}.

Finally, we establish in 7 that the solution (K, c) of the GL system actually solves the
Chudov boundary value problem

02 02 )(1.3a) -7-c 0-- K =0 in Cg(T, c),

(1.3b) K(0, t)= F(t),
0 O)K-Uxx (o, t)=o

(1.3c) K(x, T(x)) 1/4cl/2(x) C1/2(C1/2)".

Since it was established in 2 that the (necessarily unique) solution of (1.3) is the
smooth part of the solution of the singular initial value problem (1.1), it follows that c is
the solution of the inverse problem sought in Theorem B, which completes its proof.

The result of 7 also establishes that the GL system (1.2) and the Chudov problem
(1.3) are completely equivalent. In particular, the a priori estimates of 4 also hold for
the solution of (1.3). In the context of the inverse problem of [6], a similar observation
was used in [7] to prove stability of an optimally efficient numerical scheme based on a
Chudov problem. In fact, the Chudov problem of [6], [7] was suggested as an approach
to the inverse spectral problem for the Schr6dinger operator by Chudov in the mid
1950’s (see [14, Appendix]), hence the name. The present results will likewise provide
the base for a stability result and consequent a priori error estimates for efficient
numerical solution of the present problem. This matter will be discussed elsewhere.

To end this introduction, we note that the present results can be combined with
well-known techniques from exploration seismology to solve the inverse problem for
piecewise C2 index of refraction with jump discontinuities.

2. The progressing wave expansion. The goal of this section is to express the
solution u of the singular initial value problem

2
2 02 \

(2.1a) [Slca --- c x2) a =- O,

a (x, 0) (x xo),
(2. lb)

" (x, o) =- o,
ot

in the form

(2.2)

where

a(x,t) =gC /2(X)C-3/2(Xo)[t(t+ T(x, Xo))+6(t- T(x, Xo))]+K(x, t; Xo),

T(x, Xo)= c -1
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and the remainder K (x, t; Xo) is smooth inside the light cone with apex (x0, 0) and has a
jump discontinuity on the boundary of the light cone given by

(2.3) K(x, +T(x, xo);Xo) +1/4(Xo)-3/2l/2(X) 1/2(1/2)., X>Xo.

Such representations do not hold without some smoothness restrictions on c. We
shall at first assume that c is infinitely differentiable, and at the end determine to what
extent this requirement can be relaxed. In fact, a version of (2.2), (2.3) holds when c has
two bounded, measurable derivatives (Theorem A).

The decomposition (2.2), (2.3) is a typical progressing wave expansion, a device for
analyzing the singular parts of solutions of hyperbolic initial value problems, which is
closely related to the asymptotic expansions of geometric optics. Indeed, the solution of
the initial value problem for singular initial data is reduced, modulo the solution of an
initial value problem with smooth data, to the solution of a sequence of linear ordinary
differential equations along the rays of geometric optics. For a general discussion of this
idea and its background, we refer the reader to the treatise of Courant and Hilbert ([11,
Chapt. 6, 4, esp. pp. 618-635-1, see also [10, Chapt. 7]). Since detailed calculations of
this expansion seem to be rare, we will give a thorough treatment for the general
operator of one-dimensional linear elasticity,

w W(x, ; Ox)

and initial values

u(x, 0; xo)= ,(x -Xo), otu(x, 0; xo)-= 0.

Here p, E are smooth and positive on R. We will specialize at the conclusion of the
section to the special case p c -2 E--- 1 to obtain the formulas listed above

The expansions involve compound distributions (terminology of Lax [10]) of the
form g6(k)(q), where g, q C([n), q satisfies the condition

d{p(x) 0 if q(x) 0

and 8 (k) denotes the kth derivative of the Dirac delta distribution. These distributions
are given an exhaustive treatment in Gel’fand-Shilov [15, Chapt. III, pp. 209-247].

We first recall the definition of 8(q) (we refer the reader to [15] for the careful
definition of 6k)(q), k => 1). As shown in [15], there is an (n 1)-form w on n for which

d{p A dx1 A A dx,.

This form is not unique; however, any two choices differ by an (n 1)-form containing
dq as a factor, hence

((), u) f=oU60

is well defined and defines the functional 6(0).
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In the following statements, abstracted from [15], we use the notation

1, q->0,(-1)(q) H(0)
0, < 0,

(a) 8()() Oq9 ((k+l)(q), k-- -1, O, 1,...
0x

(b) q8(q)=0 iff>k _->0,

(c) q8k(,)+kS-(q)=O, k=0, 1,2,....

The statement (c) also implies the first part of

LEMMA 1. (extension lemma). A distribution of the form gt(k)(q) extends to a
continuous linear functional on Cko -1 (Rn) if and only if g offor some f C(Rn).

Proof. We give a proof for k 1 only. The proof for general k is similar. It is clear
from the definition given above that 6(k)(q) extends continuously to a continuous linear
functional on Co

g ("), k 1, 2,.... Therefore, in view of (c) above, we need only
prove the following statement:

Suppose g6’(q) extends to a continuous linear functional on Co ("). Then g =fq,
some C(").

Indeed, from [15, p. 288 ft.] one obtains an expression for g6’(q) as follows. One
may choose, in a suitable neighborhood U of a point in {q 0}, coordinates yl, ’, y,
so that 0 Yl. Then, for any u C (n) with support in U,

(g6’(q), u)= (8’(), gu)

f’’" f dy2""dy,,O-l(Jgu)(O, y2,""’,

Og:I’I
ihyFor any v s C (U), A s R, one may choose u s C’ (U) so that Ju e v, and in so

doing supulu(x)l is bounded uniformly in A. Then the above may be written

(gS’(q),u) dy2’"dy,,-ylV+gyl+ih dy2’"dy,,gv.

Under the hypotheses, the left-hand side and the first term on the right-hand side are
bounded uniformly in A. It follows that

J dy2 dyn gv O.

But v C (U) was arbitrary, so g -= 0 on { 0} fq U. Also, U is an arbitrary suitably
small neighborhood of a point in {0 0}, so in fact g =- 0 on {o 0}. A standard calculus
argument then shows that g qf for suitable f C(["). Q.E.D.

The starting point for the progressing wave expansion for W is the observation that
there exist distributions of the form v gS(q), for suitable choice of g, q C()2, for
which the singular nature of Wv is no worse than that of v" precisely, Wv extends to a
continuous linear functional on the space CoO of continuous functions of compact
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support, as does v. To see that this is so, compute Wv using the chain rule (a) to obtain

(o, -oOx)g() g(o(o)-E(Ox))"() + (2pOgO, 2EOgOxO)’()

+ [g(paEt q -Ox(EOxq))]g’(q) + (paZt g -Ox(EOxg))6(qg)

,,() + r’() +(),

whereby g, fro and yo are defined. This distribution is then required to extend
continuously to C (R2). Afortiori, it must extend continuously to C ([2). Since the last
two terms have this property, the first term 8"() must itself extend continuously to

Co (7/2). According to Lemma 4 above, there must exist 8’1 C(2) so that g ql
and

(e) =p(Otqg)2-E(Oxqg)2=O on {q 0}.

Using (c) above, we now olgtain

Wv (-o_ 291)6’(q)+56(q).

Now we apply the same reasoning as above to conclude the existence of a 1 e C(R2)
with -o_ 291 , in particular,

(t) o_291=0 on{e=0}.

Thus, provided (e) and (t) are satisfied,

wv (-)a(),
and we have achieved continuity of Wv in C ().

We now discuss the conditions (e) and (t) in some detail. To begin with, it is
customary to consider the stronger condition

(e) v (ot) (o) 0,

called the eikonal equation, rather than (e). Clearly, a solution of the first-order partial
differential equation (e) provides a function which satisfies (e). In fact, no essential
generality is lost by replacing (e) with (e) (although this point is hardly obvious).

The eikonal equation (e) is easily solved: along any level curve { c} of a solution

dt 1/2E-1/2=p
dx

So the lvl curves of a solution of () passing through (Xo, to) ar described by the
relation

where

is the travel-time function and

1/2E-1/2+ p +to

+ T(x, Xo)+ to,

T(x, xo) c -1

c p-1/2E1/2
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is the local sound speed. The function q is determined, therefore, if its values are given
along any curve intersecting the level curves transversally, e.g., along the curves {t 0}.

If we wish the curve {q 0} to pass through (Xo, 0), then a convenient choice is

o+/-(x, t; Xo) T(x, Xo) q:

Of course, many other choices are possible. For (0), we may replace q+(x, 0, Xo)=
T(x, Xo) by any other function vanishing at Xo, with nonzero x-derivative (to ensure that
do 0 near q-0). On the other hand, any multiple of the above choices by a
nonvanishing smooth function satisfies (e).

We note that a vector field tangent to the level curve {q+= c} is

D+ Ox .+- c-lOt.
Of course, any multiple of this vector field by a nonvanishing function also gives a vector
field tangent to {q+ c}, but the above choice is convenient. A parameterization of the
curve {q+= O} is

x (x, + T(x, Xo)).

The level curves {q c} are called (characteristic) rays for W.
Consider next the condition (t)" since we have solved (0.) rather than (e), the

function ’1 vanishes identically, and (t) becomes

(t) 3-=0 on{=O}.

For our choices + of phase function (as is called, terminology again from geometric
optics)

-+ qZ2pOtg 2Ec-lO,g + g+(-OxEc-1),
and this quantity is required to vanish along the ray {q+= 0}. Multiply the right-hand
side by -1/2E-Ic to obtain

0 4-c-lOtg++Oxg + 1/2 g
1/2 ,.-+g+/-,D+/-g + g O log r/

where

1/2E1/2 -1
rl =p =Ec

is the acoustical impedance and -+/- are the transport operators. Note that condition ()
has now taken the form of a linear scalar first-order ordinary differential equation along
the rays {q+/-= 0}, and is easily solved"

g+/-(x, 4- T(x, Xo))= g+/-(xo, O)(TI(X)-ITI(X)) 1/2.

Note also that the initial values g+/-(x, O) are completely immaterial for x # Xo. We
shall take advantage of this situation by constructing a family of solutions of (0,), (t)
parameterized by Xo" define

q (x, t; Xo)= T(x, Xo) q: t,

g+/-(x, 4- T(x, Xo); Xo)= g+/-(xo, 0; Xo)(rl(x)-7(Xo)) 1/2.

Now we superimpose the two compound distributions g+/-6(q +/-) to construct a dis-
tribution

us(x, t; Xo)= g+(x, t; Xo)6(q+(x, t; Xo)) + g-(x, t; Xo)(q-(x, t; Xo)),
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which satisfies the initial conditions

u(x, O;xo)=8(x-xo), o,u,(x, O; xo) O.

That this is possible rests on the following observation"
LEMMA 2. (restriction lemma). Suppose that the hypersurface M

intersects {o O} transversally. Then there is a unique distribution Yk E 9’(M) SO that, for
any sequence {vn) Coo(N) tending to 6() in the sense of’(N), and any u

(Yk, UlM)= lim (6(k(q), V,U}.

"k is called the restriction of 6(k)(q) to M {0 0}. The name is justified by the
observation that, if {an} is any sequence in Coo(R) approximating 6, then the ordinary
functional restrictions a(f)(q)[M tend to Yk in @’(M).

The proof is not difficult, and we omit it. In the course of the proof, one observes
that, if coordinates are chosen so that , yl, so that y2" y, are coordinates on M,
then

,, 8()((0, y... yn)), k=0,1,....

In the application, 0(x, t) t, M is the x-axis and the restrictions of Us and Otus to {t 0}
become

us(x, O; Xo)= {g/(x, O; Xo}+ g-(x, O; Xo)}6(T(x, Xo)),

Otus(x, O; Xo)= {Otg+(x, O;Xo)+Otg(x, O; Xo)}6(T(x, Xo))

+{-g+(x, O; Xo}+ g-(x, O;xo}6’(T(x, Xo)).

According to the change of variable formula for the delta function (or see [15, pp.
-1236-7]), since T(x, Xo) (x Xo)C (Xo) + O( T(x, Xo)2), we have

and

6(T(x, Xo)) C(Xo)6(x -Xo),

6’( T(x, Xo)) c:’ (Xo)6’(x Xo) + 1/2 -x ,S (x xo).
X-Xo

The initial conditions to be imposed therefore amount to the following restrictions on
g

-1(i) g/(xo, O;xo)/g-(xo, O;xo)-C (Xo),

(ii) g+(xo, O; Xo) g-(xo, O; Xo),

(iii) C(Xo){Otg+(xo, O;xo)+Otg-(xo, O;xo)}

-c2(xo)[Ox(-g+(x, 0; x0)+ g-(x, 0; x0))ix=xo] 0

(where, in deriving the second and third conditions, we have used the recurrence
relation (c) and the extension lemma).

To analyze (iii), multiply by c-2(Xo) and use the definition of the vector fields D to
obtain the equivalent condition

(D+g+)(Xo, O; Xo) D-g-(xo, O; Xo).
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Because of the transport equation ’+g+ 0, this is equivalent to
+ 1/2)g (Xo, 0; Xo)(O, log r/ (Xo) g-(xo, 0; Xo)(O,, log r/ /:Z)(Xo),

which is implied by (ii). Therefore, condition (iii) is redundant.
Conditions (i) and (ii) together determine

g (Xo, 0; Xo 1/2c(xo)-,
and therefore

g (x, +/- T(x, x0); Xo) 1/2C(Xo)-l(n(x)- n(Xo))/.

To recapitulate, us solves the wave equation approximately, in the sense that Wu, is no
more singular than us and u, has the desired initial values. The next step is to add a
correction term to u,, to obtain a solution of the wave equation. The reader is cautioned
that our treatment diverges somewhat from the usual, e.g., Courant-Hilbert 11 ], and is
designed to treat coefficients with finite order of smoothness.

We seek a distribution K for which

W(us+K)=O.

If the coefficients p, E are C, solutions of the (distribution) initial value problem

WK Wus in{t>O},

K OtK 0 on {t 0}

are unique. This result can be established by standard energy methods and duality
arguments (see [16, p. 237 ff.] or [10, Chapt. 7]). A local version of this result can
also be proved: distribution solutions of initial value problems for W are unique in
domains bounded by space-like hypersurfaces, i.e., in domains of dependence.
For smooth coefficients, it follows that K must identically be zero outside the light cone
{[ T(x, x0)[--< t}.

The first step in constructing K is to examine the remainder term, Wus. This
distribution is computed as indicated, following the statement of condition (t). To
simplify computations, we choose to require that the transport equations be solved
globally, not just along the characteristic rays {q+/-= 0}. A convenient choice of global
solution is

(2.4) g+(x, t; Xo)= 1/2C(Xo)(Tl(x)-lTl(Xo)) 1/2.
Then

Wus Wg+)6(+) + Wg-),(-),

Wg+(x, t; xo)= 1/2C(Xo)Ox(E(x)Oxrt(x)-/rl(Xo)/).

Consider now the local problem

Wv

in some open region in z, where q is assumed to satisfy the eikonal equation (0). We
will construct a solution of the form

v gH(q).

According to the chain rule, then

Wv ’1( (q) -[" H(q),
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where

and

;]’1 2pC3tqgOtgl 2EOxqpC3xgl + gl Wq

By now familiar arguments, ’-’1- must vanish on { 0},

’I-R
and 1 must vanish identically in the support of H(p). Thus, g must solve the wave
equation in {q -> 0}, and its boundary values on {q 0} must satisfy 31- 0.

This local construction suggests an ansatz for K"

K(x, t; Xo) g /1 (x, t’, xo)H(T(x, Xo)- t) + g-; (x, t’, xo)H(T(x, Xo) + t).

Exactly as above, we obtain that

(tl) 2Ec- +/-,-if- g Wg+/-, on T(x, Xo) + t.

This ordinary differential equation is similar to the first transport equation (t), and is
called the second transport equation (in the usual theory, a sequence of higher transport
equations appears, whose solutions form the coefficients of an asymptotic series
solution of the wave equation, see [11, Chapt. 6]). Its solution is

gl (X, -t- T(x, Xo)’, XO) 1/4C(Xo)7(Xo) 1/2 7q(X )-1 /2 r/-1/2(E(r 1/2),),

-1/2(x-F gl (Xo, O;xo)rll/2(Xo)q ).

The two characteristic rays through (Xo, 0) divide the upper halfplane {t-> 0} into
three open regions, which we shall number I, II and III from the left. In region I, K 0.
In region II, K g-. In region III, K g*+ g-. In all three regions, K solves the
(homogeneous) wave equation. In region III, K must also vanish identically, which
shows in particular that

K(x, T(x, xo); Xo) g-( (x, T(x, xo); X) -g- (x, T(x, xo); X).

To determine appropriate initial conditions for the second transport equation, we
proceed as in the case of the first transport equation, by way of the restriction lemma.
The conditions

K =OtK =0, =0

translate into
(i) (g+(x,O’xo)+l g-(x,O’xo))H(T(x, O,
(ii) (Otg-(x, O;xo)+Otg-f (x, O;xo))H(T(x, xo))

+ (g- (x, O; x,,)- g- (x, O; Xo))(T(x, Xo)) O,

which are clearly equivalent to
/ /

gl +gl =Ot(gl +g-)-O,

and

X Xo,

g-f g- O, X --Xo,
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which give the initial conditions

g (Xo, O;xo) 0

for the second transport equation.
Now we collect the above computations into the following statement:
PROPOSITION 1. If K L(N x(t_->O}) is identically zero in regions I and III,

satisfies the wave equation in region II (the forward light cone), and on the boundary rays
has a lump discontinuity given by

K(x, +/- T(x, Xo); Xo)

"+- 1/4C(Xo)TI(Xo)I/2n(X)-I/2 n -/2(E(r/ -1/2),) ,’ X Xo,

then K solves the problem

WK Wus in {t >-_ 0},

K =OtK =0, =0.

Moreover, K is the unique distribution solution of this problem, by virtue of the existence
theorem quoted above.

This statement holds for smooth coefficients p, E and, in that case, K may also be
constructed by the method of characteristics (see [11, p. 476 if]), whence it follows that
K is smooth inside the light cone.

To obtain a result which applies to coefficients with a finite degree of smoothness,
we apply a theorem on existence and uniqueness for the Cauchy problem for W in the
presence of measurable coefficients, which may be proved by the method described in
Lions’ book [22, pp. 272 ft.]:

PROPOSITION 2. Suppose that p, E, p-, E- are uniformly bounded on N and
measurable. Suppose f Hoc (N, L2(N)), k 77, with supp f {t _-> 0}. Then there exists a

unique distribution y Hkoc (N, Ha(R)) with supp y c {t >_- 0} and Oyt Hlkoc (N, Lz(N))
so that Wy f.

The calculation following (2.4) above show that Wus has the form h+;(q+)+
h-6(-) with h bounded and measurable when p", E" are bounded and measurable.
Reference to the definition of hS(q) shows that it makes sense provided that q has a
bounded, measurable differential and h is bounded and measurable. Also in that
case, provided that h depends on x alone, h+6(q+)=+/-(d/dt)h+/-H(q -) and

hH(q+) e L12oc(N, Lz(N)), which shows that h +6(q +/-) e H-;lc (N, Lz(N)). To summarize:
PROPOSITION 3. Suppose p", E" are bounded and measurable. Then the problem

WK Wu,

K=-O fort<=O
has a unique solution K e H-I(N, Hi(N)) with OtK e H-I(N, Lz(N)).
The hypothesis p", E"e L is strong enough to allow the construction of K by the
energy method as described in 10] or 11]. In fact, we can prove the following theorem
concerning the characteristic Cauchy problem"

PROPOSITION 4. Suppose p", E" are bounded and measurable. Then the charac-
teristic boundary value problem

Wv O, IT(x, Xo)l < t, > 0,

v(x, IT(x, x0)l)=f(x)
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has a unique solution in Hoc (II), provided thatf H (). Moreover, v has finite energy"
r(x, Xo)=

IIv( , t)ll dxc-2(O,v)2
/ (OxV)2

aT(x, Xo)--’-

and so also

v z;({t_>- 0}; c(n)),
i.e., v is continuous on the lines {t const.}

To apply this theorem to the construction of K, we note that the boundary values of
K are in H when the second derivatives of p and E are bounded and measurable.
Note also that, when the second derivatives of p and E are bounded and measurable,
the phase functions q+/- have three bounded measurable derivatives. On the basis of the
theory presented in [15], the statements (1)-(4) made earlier concerning the dis-
tributions rSk)(q+), k-<2, are valid in this case, and therefore the derivations of the
conditions (e), (t), and (ta) proceed exactly as in the smooth case. (This result is
somewhat nontrivial, and has to do with the fact that q+ are actually smooth in a
direction transverse to their level surfaces.)

The foregoing constitutes the proof of the following result, which is the culmination
of this section’

THEOREM A. Suppose that p, JU are positive functions and that p", E" are bounded
and measurable. Then the singular initial value problem

Wl O, l (X, O) ( (X Xo), Ota (X, O) 0

has a unique solution in ,([2),
a(x, t 1/2c(xo)- /rt(Xo) rl(x)- /2{3(T(x, xo)-t)+6(T(x, xo)+t)}

+K (x, t, Xo),

where K =- 0 if IT(x, Xo)l > Itl, and g is the unique Ha-solution of WK 0 in the interior
{IT(x, x0)[ < It[} of the light cone with boundary values

K(x, + T(x, Xo); Xo)

+ 1/4cxo)n(xo)/n(x)/ ,-/(z(n-/)’)’.

Also, K is continuous on the intersections of the lines {t const.} with the closed light cone,
and the sup norms along these segments are locally bounded in t.

We mention another regularity result needed later, proved via the method of
characteristics (a device peculiar to 1 + 1 dimensions; the other results are proved by
energy methods, hence generalize to higher-dimensional problems)"

PROPOSITION 5. Ifp, E are ofclass Ck + a, k > 1, then K is ofclass C in the interior of
the light cone.

Finally, by setting E =- 1, so that p c -2 -1
r/= c we obtain the expressions (2.2),

(2.3). These are valid when p" is bounded and measurable and K Ck in the interior
of the light cone when p C+a.

3. The GL equation. We assume until further notice that c C2. Since any
function may be written as a superposition of delta functions, we can write the general
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solution u(x, t) of the partial differential equation

satisfying the initial condition

as

where

l--]cU O,

-(x, o) =- o,
ot

u(x, t)= I_ dxoS(X, t; Xo, O)u(xo, 0),

S(x, t; xo, o)= a(x, t),

is the solution examined in the previous section; that is,

(0_ _x)S(x, Xo, O) O,l-]c at’

$(x, 0; Xo, 0)= (x-Xo),

D2S(x, O; Xo, O) O.

S is related to the Reimann function R of 7-1c, which solves the initial value problem

R (x, t; xo, O) =- O,

R(x, O; Xo, 0)=-0,

(see [11, Chapt. V, 5]) by

Define

(3.1)

D2R(x, O; Xo, O)= 6(x -Xo)

R (x, t; Xo, O)= Io ds S(x, s; Xo, 0).

R (x, t; Xo, to) R (x, to; Xo, 0),

S(x, t; Xo, to) S(x, t- to; Xo, 0).

Then the general solution of 7-] 0 with arbitrary initial data is given by

u (xo, to)u(x, t)= dxo S(x, t; Xo, to)U(Xo, to)+ R (x, t; Xo, to)
Oto

This works because the coefficient of is independent of t. For the same reason,
the initial value vector (u(., to); Ou/Ot(., to)) is propagated in by a group of operators
(bounded, in fact, in a suitable function space). The distribution kernel of this group of
solution operators is the matrix

(sf
D2S DaR
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Thus,

dxo S(x, t; Xo, to)U(Xo, to)+R (x, t; Xo, to)-t (Xo, to)

dxo D2$(x, t; Xo, to)U(Xo, to)+D2R(x, t; Xo, to)-(Xo, to)

The operators U(t) are bounded in a suitable sense, and form a one-parameter group:

U(s)U(t)-U(s+t).

In terms of the matrix kernel Yt, this group law reads

(3.2) Yt (x, t; Xo, to) I_ dy Yt (x, t; y, t’) (y, t’; Xo, to).

This relation is fundamental for what follows. Since the components of may all be
expressed in terms of the scalar kernel S, it is plausible that (3.2) may be expressed in
terms of a property of S. This is indeed the case.

To derive this relation, we require some further symmetries of S, which are as
follows:

1 $ is even in t-to, whereas R is odd in t-to.
2 The kernel

S*(x, t; Xo, to)- S(xo, to; s, t)

is a solution of the adjoint equation

(see [11, Chapt. V, 5.3]).
Now

2[--]* c
Ot2 8X2

So (we suppress for the moment the dependence on Xo, to)

2 S*
0 2O- 72 oxYC (x) (x, t)- S*(x, t)-x2(C (x)S*(x, t))

C (X)ot2 XX"2 (c2(x)S*(x, t)) c-2(x)l-lc(C2(X)S*(s, t)).

Since c > 0, it follows that c2(x)S*(x, t) solves

Now

[--]cC2(X)S*(x, t) O.

c2(x)S*(x, to)= c2(x)6(x -Xo) c2(xo)6(x -Xo),
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and

Therefore,

--c2(x)S*(x, t)l=o-- 0.
0t

c:(x)S*(x, t)= c:(xo)S(x, t),

S(xo, to; x, t)= c(xo)c-(x)S(x, t; Xo, to),

which is the desired symmetry relation.
Now examine the (1, 1)-component of the group law equation (3.2), which reads

S(x, t; Xo, to)= I dy {(S(x, t; y, t’)S(y, t’; Xo, to)

+ R (x, t; y, t’)D2S(y, t’;Xo, to)}.

We set x Xo, to 0 and replace by + s, t’ by s to obtain

S(xo, + s; Xo, O) I dy {S(xo, + s; y, s)S(y, s; Xo, 0)

+R(xo, t+s; y,s)D2S(y,s;xo, 0)}.

Using the time-translation symmetry (2.1), rewrite the right-hand side as

| dy {S(xo, t; y, 0)S(y, s; Xo, O)+R(xo, t; y, 0)D2S(y, s; Xo, 0)}.

Now note that, since S(y, s; Xo, 0) is even in s, its s-derivative D2S(y, s; Xo, 0) is odd.
The second term in the integrand is therefore odd in s, whereas the first is even. Replace
s by -s, add, and divide by two to obtain

[S(xo, t+S;xo, O)+S(Xo, t-S;xo, O)]=l dyS(xo, t; y,O)S(y,s;xo, O).

Now use the adjoint symmetry (2) above to interchange the arguments in the first factor
in the integrand"

c(xo)l dy c-2(y)S(y, 0; Xo, t)S(y, s; Xo, O)

(3.3) c2(xo)/ dy c-2(y)S(y, -t; Xo, 0)S(y, s; Xo, 0)
d.

)Ic (Xo dy c-a(y)S(y, t; Xo, 0)S(y, s; Xo, 0).

Conversely, one can show that (3.3) entails the group law equation for the full Riemann
matrix .

Now set

F(t) S(xo, t; Xo, 0), : O.

According to the transport equation (2.3), K (Xo, 0; Xo) 0. Since K is continuous in the
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with

S(x, t; O, O)=1/2cl/2(x)[6(t+ T(x))+6(t- T(x))]+K(x, t).

One now substitutes (3.5) into (3.4), and after some computation eliminates the singular
terms to obtain

G(s, t)=1/2[c-1/2(x-(s))K(X-(s), t)+c-1/2(X/(s))g(X/(s), t)]
(3.6)

+ Jx-(s)dy c-2(y)K(y, t)K(y, s).

Here, s - X+(s) x is the inverse function to x + T(x) s, and is thus the solution of

x* +/- c(X), x(o) o.
ds

The light cone through (0, O) is thus described by {(x, t): X-(t)<-x<-X+(t)}, and
t--> (X+/-(t), t), x-> (x, + T(x)) are equivalent descriptions of the characteristic curves
emanating from (0, 0). Recall that ( 2, (2.3))

K(x, T(x))=1/4cl/2(x) cl/2(cl/2)’’, x >-0,

(3.7)
g(x, -T(x)) --1/41/2(X) 1/2(C1/2)", X 0.

INVERSE REFLECTION PROBLEM

closed light cone, and F(t) K(xo, t; Xo) for 0, one can set

F(0) 0,

to obtain a continuous, even function for all t. Define also

G(s, t) 1/2[F(t + s) + F(t s)].

Now

S(xo, t; Xo, O) 6(t) + F(t),

so the left-hand side of (3.3) is

1/2[S(xo, t+S,xo, O)+S(xo, S,Xo, 0)] 1/2[6(s+t)+6(s-t)]+G(s,t).
Recall also from 2 the expansion

S(X, t’ Xo, O) 1/2C1/2(X)C-3/2(Xo)[6(t Jr- T(x, Xo)) + 6(t- T(x, Xo))]

+K (x, t; Xo).

Since Xo will remain fixed for the rest of this discussion, we shall henceforth set Xo 0.
The number c (Xo) c (0) is now surely a positive constant which can be set equal to 1 by
scaling t, which we assume has been done. We write

r(x) T(x, O)= c -1.

We now have in place of (3.3)

(3.4) 1/2[6(s+t)+6(s-t)]+G(x,t)=I_ dyc-2(y)S(y,t;O,O)S(y,s;O,O),



438 w.w. SYMES

In view of the formulation of the inverse problem ( 1), we now assume that

c(x)=- 1, x<_-0.

LEMMA A.

K(y, t) F(t + y), y-<_0.

Proof. K, being the smooth part of a solution of the wave equation, must solve it in
the interior of the light cone. For x <= O, T(x) x and (3.7) show that

K(x, -x) 0, x-<0.(3.8)

Finally,

(3.9)

A solution to the problem

K(O,t)=F(t).

=0,

together with the conditions (3.8) and (3.9) in the region {-t <= x -< 0, >- 0}, is

K (x, t) F(x + t).

However, since one of the boundaries of this region is characteristic, the solution is
unique (see [11, Chapt. V]). Q.E.D.

Now X-(s)= -s, and set X(s)= X+(s). Then (3.6) reads, for 0 =< s-< t,
X(s)

G(s,t)=1/2c-1/2(X(s))K(X(s),t)+1/2K(-s,t)+ f dyc-2(y)K(y,s)K(y,t),
o

=F(t-s)+| dyV(y + t)F(y +s)+1/2c-1/2(X(s))K(X(s), t)

X(s)

+ f dy c-Z(y)K(y, s)K(y, t).
a0

Now set

(3.10c)

We have proved:

H(s, t)=1/2F(t + s)- d’F(t--)F(s --).

THEOREM C. The smooth partKofthe solution u of the singular initial value problem
(2.1) satisfies, for 0 <= s <-_ t,

(3.10a)
-X(s)

H(s, t)=1/2c-I/2(X(s)lg(X(s), t)+ Io dy c-2(y)g(y, slg(y, t),

and is related to the coefficient c by the transport equation

(3.10b) K(x, T(x))=1/4c/Z(x) c/2(c/2)’’.

We shall refer to the system of integral equation (3.10) as the GL system, partly because
it expresses the group law for the Cauchy problem for E3c, and partly because it is related
to an equation discovered by Gel’land and Levitan and derived in a completely different
way in their fundamental paper [13].

The converse of Theorem C will be proved in 7.
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4. A priori estimates. In this section, we derive some necessary conditions for
scattering data. We shall make use of the substitution x ->s T(x) throughout. We
point out that this is not the same as reduction to the case of the SchrSdinger equationz
Indeed, in the first part of this section, leading up to the estimate (4.11), the kernel K
can be replaced by the kernel J, defined in the next section. The operator IK can be
replaced by an operator 3"L2(dt)-L(c-l(x)dx), and all mention of the coordinate
transformation xs can be eliminated. In higher-dimensional problems, the volume
element of the Riemannian metric associated with the relevant hyperbolic p.d.e, will
play the role of c-(x) dx, so our methods conform to the rubric laid down in 1. Also,
the last part of the section, leading up to the bounds (4.16), depends only on x s as
arc-length parameterization of the geodesics of the above-mentioned metric, so this
again an admissible trick.

Note that the kernel H is symmetric. It follows that (3.10a) also holds with s and
interchanged for 0 _-< -< s.

Now define

I(s, t)-2c-/2(X(s))K(X(s), t) for0_-<s<-t,

K (s, t) 0 for s > _-> 0.

Since c-(y)dy ds with s T(y), i.e., y X(s), we can rewrite (3.10) as

(4.2) 4H(s, t)=/(s, t)+ d-Ig2(-,s)Ig2(r, t).

For T > 0, denote by N the Volterra operator on L[0, T] defined by
T

IKq(r) I dtI(r, t)q(t)

for q e L2[0, T]. Denote by the symmetric operator with kerneI H. The hypotheses
on c are sufficient to ensure that H is a Hilbert-Schmidt operator on L2[0, T]. Denote
finally by the identity operator on L[0, T] (with kernel 8(r-t)). Then (4.2) can be
written

+ 4[I-I] (D + I)’(D +)

(see [6, eq. 4.10], also [14, eq. 8.1, 2]). This shows that D+4H must be positive definite
(since + is invertible). According to the Fredholm character of + 411-11, we must in fact
have

(4.3) + 4[!-I] >= e (T) > 0.

Obviously, e (T) is a monotone nonincreasing function of T. We note for later use the
identity

2 2(4.4) e(T)- sup {ll(n / )-I(,)I}L to,’ IIll =co, 1},

which follows immediately from (4.3).
Next, we extract from (4.3) some a priori estimates which will be crucial for the next

section. Denote by Hi, t the functions

Ht(s) H(s, t), I,(s) I(s, t),

and note that (4.2) may be written

4H,(s) ((ll + )+/,)(s), 0 _-< s _-< t.
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It follows that

(4.5) 61ln, 2 >

Now the invertible self-adjoint operator (+)(+)t has the same spectrum as the
operator ( + )t( + I) + 4H, hence, in particular, the same lower bound. Therefore,
one may combine (4.3) and (4.5) to obtain

(4.6) 16l]Ht]l z,2ro,T3_--> (T)IITIIL2[0,T].

Now IIHII may be estimated in the following truly crude fashion:

II,ll <2(IIFIIo,a ,o,+ T’llfllbo,-9.(4.7)

Also,

d’r/-’(’r, s)/(r, t) (/".,

Hence, recalling (4.6) and using (4.7) gives
X(s)

8) I| ,# c-=(), (),, s)K (y, < ,ro.- + TllFIl,ro,9.8(T)-I(IIFII = 4

I--a0

Combined with (3.10a), this yields the estimate

11/2c-’/:(X(s))K (X(s), t)l < IIFIl,:oco.=- + IIFII L2[O,T]
(4.9)

+8 (T)-’[IIFII = T2 4,=o.-a+ IIFll,=ro.a],
valid in the range 0 <= s <= <= T.

Finally, we give a priori bounds for c, in terms of T and K*=
SUpo<=,<=T]2C-1/Z(x(t))K(x(t), t)[. Note that the latter quantity has just been estimated in
terms of F.

According to (3.10b), for O<-x <=X(T),

(4.10)

Set

Then

112(1/2),,4c ll2(x)K(x, T(x))- c

#O
-c’(x)- c-’(c’).

g(x) 8c-ll2(x)K(x, T(x)).

c(x)-lg(x) (log c)’(x)-1/2c-l(x) C-I(ct)2.

Since c(0)= 1, obtain

iolog c(x)>- c

i.e.,

(4.11)

-1g>=-4K* c-l>= -4K’T,

c _-> exp 4K* T),

which is the required lower bound for c.
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To obtain upper bounds for c, write

1/4g(X(s)) g(S) I(S, S) (4 C_I/2 d
ds

Then (4.10) may be rewritten

2/(t) (log g,) (t)- Io ((log q)" )2.

It follows that o obeys the equation

O,,

where Q 2/. (This relation is also part of the Liouville reduction which figures in
other treatments of this inverse problem; see, e.g., [2].) Note that

(0) , 4 (0) 0, K (0) 0.

Hence, q is the solution of

(t) 1 + [ ds (t-s)c(s)Q(s)

(4.12a)

Also, b is the solution of

(4.12b)

1+2 dsq(s)K(s)-2 ds (t-s)((s)K(s).

(o(t) 2q(t)K(t)-2 ds (o(s)K(s).

Define 0 b- 2Kq. Then the Volterra system (4.12) may be rewritten as

io io(4.13a) rp(t)= 1 + ds 2g(s)(1 +2(s-t)g(s))rp(s)+ ds 2g(s)(s-t)O(s),

(4.13b) 0(t)= -4 IodS (/(s))q(s)- 2 IodS I(s)O(s).
Set

K** max {4K* + 8 T(K*)2, 8(K*)2, 4 TK*, 4K*}.

Then the following estimate is easily derived for the solution of (4.13)’

(4.14a) IIqIIL[O,T <-- exp TK**.

Also,

(4.14b) [[4’[[L[O, T] _-<exp TK**.

In view of the definition of 0, this entails

(4.15) [[([[L[0,T]_-< (1 + 2K*) exp TK**.

Now b- (d/ds)(c-1/2) c(d/dx)(cl/2)=1/2cl/2c ’. Thus, combining (4.15), (4.14a) and
(4.11), we get the estimates, valid for 0 _-< x -<X(T),

(4.16a) exp 4K* T) -<_ [c (x)[ _-< exp (2 TK**),
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and

(4.16b) Ic’(x)l<-2(l+2g*)exp T(K**+4K*).

5. Solution of the GL system. With this section, we begin the solution of the
inverse problem as stated in 1. The first step is to show that the GL system as presented
in Theorem C,

X(s)

(5.1a) H(s, t)--1/2c-1/2(X(s))K(X(s), t)+ f dy c-2(y)K(y, s)K(y, t),
Jo

(5.1b) K(x, T(x))=1/4cl/2(x) ca/2(c/2)’’,

O<=s<=t<=T,

has a unique solution {K, c}, where c is defined on 0 =< x-<_ X(T) and K is defined in
CT={(x,t):O<=x<=X(T),T(x)<=t<=2T-T(x)}. Since the domains on which the
solutions are defined are themselves defined by part of the solution (namely c), the
problem has something of the nature of a free boundary problem.

We note that continuous solutions are trivially unique, in view of the Volterra
character of (5.1).

The system (5.1) will only have a solution as described when H has the positivity
property

(5.2) D+4H=>e(T)>0,

in the notation of the last section, for the reasons explained there. Our goal is to show
that this necessary condition is also sufficient.

First introduce the function

J(x, t)= 2c-a/Z(x)K(x, t),

and rewrite (5.1) as
X(s)

(5.3a) 4H(s, t) J(X(s), t) + Io dy c-(y)J(y, s)J(y, t),

(5.3b) J(x, T(x)) 1/2 c/2(c/2)".

We have from (5.3b), (4.10)

](x, T(x))=1/4c’(x)- c-(c’),
SO

(5.4) c(x)= 1 +4 dy J(y, T(y)) +1/2 dy c

We shall suppose that (5.3) has been solved for 0-<_x -<x0. Set

IoxIYI(x, t)= 4H(s, t)- dy c- (y)J(y, s)J(y, t).
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Then, for x =>Xo, (5.3) may be rewritten
X(s)

(5.5a) t(s, t)= J(X(s), t)+ dy c (y)J(y, t),

(5.5b) c(x)=k(x, xo)+4 dyJ(y, T(y))+1/2 dy c-l(c’)2,

where

io io io
xoxo

(c +1/2(x-xo) c (c(5.5c) k(x, Xo) C(Xo) +1/2 dy c-1 ,)2 -1

and (5.5a) is to be construed for T(xo)<= s <= t.
Now define a sequence of approximate solutions by iterating the right-hand sides

of (5.5): select Ax > 0 and define

For n _-> 1, define

Here

Similarly,

Co(X) c (Xo). for Xo_-< x <= Xo + Ax,

Jo(x, t) =- 0 for Xo =< x _-< Xo + Ax, => O.

Ix IxXlxcn(x)=k(x, xo)+4 dyJn-l(y, T-I(y))+ dy

for Xo _-< x <_- Xo + Ax.

T (x) c _1_ c for Xo x Xo + Ax.
0

Jn(X, t) I-I(Tn_l(X), t)- dy c1_1 (Y)J-I(Y, Tn-l(X))Jn- I(Y, t)

for Xo-< x -<_ Xo + Ax, _-> O.

Now suppose 6 >0, and select c, with O<c, <-C(Xo)-6. We claim that, for Ax
small enough, we have c,,(x) >-c,, Xo<=X <=Xo + Ax. In fact, suppose that this is so for Ck,

k O, 1, , n 1 (it is obviously true for n 0). As the first part of the induction, we
estimate J,-1,

(5.6)

Now

-1 IJ-2(y, Y_2(x))[ IJ-2(y, t)[[J-l(X,t)l[I(Y_2(x),t)l+ dyc,

x
--1H(s, t)=4 F(s + t)+ d’F(s-’)F(t-’) dy c (y)J(y, s)J(y, t).

So long as Tn_2(x0-- AX) <- T, which we assume for the moment, we have

IlH(s, t)l < IIFIloot0,2a / IIFII 2L2[0,T], s T._2(x).
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The second summand on the r.h.s, is estimated by (4.10)"

I[o dy c-(y)J (y, s)J(y, t)I <= 32e (T)-[[IFII2O.ZT]+

So

I(s, t)l 411Flleo,zr + (4 + 32e (r)-)llfll=co,2 + 32e (T)-1 r211fll4=co,a
(57)

=-N(F, T, e).

Combined with (5.6), this yields

IlL-llooN(f, T, )+(X-Xo)cXllJn_211,

where IIJIIoo means, for the moment, sup {IJ(x, t)[" Xo _-< x -<_ Xo + Ax, _--> 0}. Now suppose
that

Then

IIJ-2[Ioo (a + ’)N(F, T, e ).

IlJ-lll [1 +(x-xo)c-X(1 +6’)N(F, T, e)]N(F, T, e).

Suppose that Ax is so small that

(5.8) Axc- (1 + 6’)N(F, T, e) 6’.

Then we have once again that

(5.9) [I/.-lll (1 + 8’)N(F, T, e).

To complete the induction, notice from (5.5c) that

k(x, Xo) C(Xo) c. + 6,

so that (from the definition of c,)

c(x)c,+8-4 dyJ_(y, T,_(y)) c,+8-4(I+8’)N(F, T,e)x,

so we have proved:
LEMMA B. Suppose 6, ’> O, and

x Nmin {c.[(1 + 8’)N(F, T, e)]--a6’,[4(1 + 8’)N(F, T, e)]-a6}.
Then

c,(x)c., n =0, 1,2,. , XoNXNXo+X.
Note that 6’> 0 is arbitrary here, whereas 6 must be chosen so that 0 < C(Xo)- 6.

he next step begins with the assumption of a Lipschitz bound on F:

(5.10) IF(t)-F(s)l Lls tl.

It follows that

(5.11) Ig(r,t)-g(r,s)l<-_lf(r/t)-f(r/s)]/ do’F(r-cr)(F(t-cr)-f(s-o’))

<= gls tl(1 + TIIFIILO, T) L1Is tl.
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Set Js,t(Y)--J(y, s)-H(y, t). It follows from (5.5a) that

J.t(y) 4[H(T(y), s)-H(T(y), t)]+ drc-(r)J(r, y)J.t(r).

This is a linear Volterra equation, whence follows the estimate (for 0=<y=<
min(X(s),X(t))

(5.12)
-1IJ(y, s)-J(y, t)l llJ,,llootO,xot,(1 + TIIFIIro. ) x exp [XoC. IIJIl]([s t[)

=t21s-tl.

Here, [IJll-- sup {IJ(x, t)l" 0x xo, =>0} is estimated by (4.11)in terms of F, so L2 is
estimated in terms of F, c., T, Xo.

Next, we observe that

Tn(X Tn_l(X c-l -1 -1 -1 (Cn Cn).C --1 Cn C -1 -1

So

T. (x)- T.-l(x)l <- (x -Xo)C-, sup
Xoy

where for the moment

IIc_-cll= sup ]Cn-l(y) c, (y)],
Xo=Y<xo+Ax

and so on.
According to the definition of/-,

I(s, t)-lYI(t, "r)= 4[H(s, r)-H(t, r)]-Io’ dy c-l(y)[J(y, s)-Y(y, t)]J(y, ’).

Hence,

(5.14)
-1I(s, -)-(t, ’)l4LllS-t]+XoC. IIJl[oL2]s

=L31s-tl,

where again L3 is estimated in terms of F, c., T, and Xo. Next, estimate for Xo =< y -< x

J,, (Y, t)-J, (y, s)[ <= I/-(T,_ (y), t)-/-(T,,_ (y), s)

(5.15) + dz C-1-1 (Z)Jn-1 (Z, rn_l(y)) X {Jn-l(Z, ) Jn-l(Z, $)}

<=L3[t-sl +(y-xo)c-llJ_xllo sup [J-,(z,t)-Jn_l(z,s)].

According to (5.8), (5.9),

(y Xo)C, IIJn-l[Io <= 8’.
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Select L4 so that

L4 =< (1 ’)-1L3,
(which introduces the new restriction 8’<1). Then (5.15) and obvious induction
guarantees that

(5.16) sup IJ (y, s) ar (y, t)l L4ls tl, n O, 1, 2,...
Xo<=Y<=xo+Ax

Note that C’n satisfies

Hence,

ok ).c’(x)=-x(X, Xo)+4J,-l(x, Tn-l(X))q-1/2 C-!I(C -1

(5.18)

o
-(c’) (cn ).Ic.(x)l1/2 c /41J_(x, rn-l(X))lq-1/2 C -1

We suppose that d*> 0 such that

IIc’llotO, xo3<-d*,

and [Ck (X)[ <-- d**, k 0, 1, ’, n 1, Xo --< x -<_ Xo + Ax, where

-1** =c, (a*)Xo+4(l+8)N(F, T, e)+8.

Then
--1Ic.(x)l<-1/2c;,(d*)xo+4(1 +6)N(F, T, e)+1/2Axc. (d**)2,

where we have used (5.9) and Lemma A. So we have proved’
LZMMA C. Provided Ax satisfies the bounds ofLemma B and additionally

Ax <= 2c.(d**)-26,
we have the estimates for all n >-O"

(5.17) Ic ’ (x)l -< d**, Xo < x < Xo + Ax.

We are now ready for the main estimates. First,

[J.(x, t)-J._(x, t)[

<=[I(rn-x(X), t)-t(r._(x), t)[

+ dy {1_1 (y)J-a(y, T.-a (x))J._ I(Y, t) c 21-2 (y)Jn-2(y, Tn-2(x))Jn-2(y, t)}

+ dy Ic2X_l(y)-c2_2(y)[ [Jn-l(Y, rn-l(X))Jn-l(y, t)[

+ dy c2a (y)lJ-(y, T_(x))-J_(y, T_(x))l IJ-(y,

+ dy C2!2 (Y)IL-I(Y, Tn-2(x))-Jn-2(y, Tn-2(x))[ [Jn-l(Y, t)[
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where

A=c-2[L3+(1 +8’)N(F, T, e)[(1 +3’)N(F, T, e)+c-lL4]],
a 2c- (1 + 6’)N(F, T, e ).

Next, estimate

(5.19)

Ic.(x)-c.-(x)l

-<4 dy [Jn-l(Y, Tn-l(Y))-Jn-2(y, T,-2(y))I
0

+ 1/2 dy Ic1 (c’ 2 2[
_ _ c-g. (c ._

0

<--_4 dy IJ-(y, T,_(y))-J,_(y,

+ dy c2ac2X-=lc.-a-C.-zl(c.-x

+ dy c -lc’- + c- Ic’n-1 --Cn-2

-1+l(x)c (d**)llC-e- cn-ll +(x)c, d**llc-

Finally,

(5.20)

Ic’.(x)-c’.-

=< 4[J,,_x(x, T,,_x(x))- L-z(X, r,,_2(x))[+1/2 [c-- (c’_x)z- c,,a-2- (c,,-2’)2

<_-4]J_(x, T,,_(x))-J_a(x, T,,_2(x))l+4lY._1(x, T,,-2(x))-J.-z(X, T,,_z(X))]

+1/2 c c2_lc_ -c-l(c’._ + c;_lc +c.-=l Ic’n--1 C’n-2[

+ Ax c.’d**llc’.-a
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The estimates (5.18), (5.19) and (5.20), taken together, show that, provided that Ax > 0
satisfies the bounds in Lemmas B and C, and is possibly smaller yet, the sequences {Jn },
{cn} and {c’,,} converge uniformly on Xo<-X <-_Xo+ Ax to solutions of (5.5). The numbers
which determine how small Ax must be are c,, 6’, N(F, T, e), 6, L (in (5.10)), IIFIl, T,
IIJIl, d* and Xo. Of these, N(F, T, e), L, IIFII and T are determined by the data, c, is
estimated from below by (4.16a), d* is estimated by (4.16b), I[JIl is governed by the
main a priori estimate (4.11), and

Xo<=c*T,

where c* is an upper bound for c, given by (4.16a). It follows that, for given T and F
satisfying the positivity condition (5.2), Ax may be chosen independently of x0 so long as
Xo<=X(T). Thus, finitely many repetitions of the iteration scheme outlined above
suffice to determine c on the interval [0, X(T)], and J on the corresponding domain.
The system (5.5) (and with it (5.1)) has therefore been solved, as promised.

By differentiating the GL system (5.1), one obtains systems of Volterra equations
for the derivatives of c and the partial derivatives of K. These are (essentially) linear
systems. Without carrying out the details, we state that these systems for the derivatives
possess continuous solutions. As in the case of the GL equation itself, c winds up with
one more derivative than K, and K has as many derivatives as F. The solution of the GL
system, therefore, defines a map F-->{K, c}. It is easily verified that the positivity
condition is stable under perturbation. It follows that the map F-->{K, c} is continuous
in the obvious sense of C -norms, as outlined in the Introduction.

6. The lower bound on e. For reasons explained in the Introduction, we now
estimate e(T) (see (4.3)) in terms of the bounds c,, *, d* and e* which we suppose
given:

c,<-c(x)<-c *,

Ic’(x)l<-d *,

Ic"(x)l<-e *, O<-x <-X(V).

Recall that K solves the boundary value problem

(6.1)

0 02 )2-- c (x)0-- K (x, t) 0,

K(x, T(x))=1/4l/Zlo cl/:Z(cl/2)"

/(x - ’),=c/(x)c (x)-6c c (c

t>= T(x),

x>-O.

Also, according to Lemma A ( 3) (recall c 1 for x < 0),

K(x, -x)-- O, x<O.

It follows, as in [11, Chapt. V], that K is the solution of an integral equation of
Volterra type. In fact, if one denotes by C(x, t) the intersection of the backward light
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cone with vertex (x, t) with the forward light cone with vertex (0, 0), and by F(x, t) the x
coordinate of the intersection of the characteristic curve of negative shape through (x, t)
with the characteristic curve of positive slope through (0, 0), one eventually obtains

](x, t) I {1/2c"+1/4c-(c’)a}]
(x,t)

+- c’(1-’(x, t)- c-(c’)
aO

(recalling that J(x, t)= 2cf/2(x)K(x, t)). Now

vol C(x, t) _-< 1/2c * 2.

It follows easily that

(6.2) IJ (x, t)l el(47* Qt),

where f is the entire function with power series

4 6 8

f(z)= 1 +z2+---+-y+7.5------+
and

P sup
O<=x<=X(T)

-, ,) - )c (x)-- c (c _-<-[d* +1/2c*c (d* T],

-1 (d*)2"sup [1/2c"(x)+-c-l(x)(c’(x))2]<=1/2e * +1/4C,
O<=x<=X(T)

Recalling the definition (4.1) of/ and of the operator N, one sees that/ obeys the
same sup norm bound as J, namely (6.2) above. The kernel of the inverse operator
( + )-1, say/, is then easily bounded"

(6.3) IIRII IIRII exp (llRIIooT).

It follows immediately that

So (see (4.4)),

It(n + o)-0 = (1 + IlRl[oo T)=[I =.

e(T)-<-_ (1 / IIRllooT exp (IIRIGT)),
which together with the bound (6.2) estimates e(T) in terms of T and the a priori
information on c, as desired.

7. Equivalence of GL and Chudov systems. We show by direct computation that
the solution of the GL system constructed in 5 solves the Chudov boundary value
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problem,

(7.1a)

(7.1b)

---ca K--0 in {t_->0, 0=<x_<-X(t)},

K(O,t)=F(t),

(o, t)--o,

(7.1c) K(x, T(x))=1/4cl/a(x) cl/a(cl/2)’’.

Now, it was shown in 2 that the smooth part of the solution of the initial value
problem (2.1) solves (7.1). Since the solution of (7.1) can easily be shown to be unique, it
follows that the solution of the GL system is, in fact, the smooth part of the solution of
(2.1) with corresponding coefficient c; hence, we have solved the inverse problem.

First note from (3.10c) that

H(s, t) F(t)F’(s)-F’(t)F(s)(7.2)
0ta

Now denote by {K, c} the solution of the GL system as constructed in 5. We
assume first that F satisfies the positivity condition (5.2) and is of class Ca on its interval
of definition, so that K and c are of classes C2 and C3, respectively, on their domains of
definition.

Setting s 0 in (5.10) and recalling the definition (3.10c) of H one obtains

F(t) K (0, t).

Using the definition (3.10c) again, and the requirement F(0)= 0, one sees that

--s H(O,t)--O.

On the other hand, from (5.1) one obtains (recalling c(0)= 1, c’(0)= 0 and K(0, 0)=
F(0) 0)

O= - H(O, t)=(DK(O, t)-DK(O, t)).

Thus, K obeys the boundary conditions on the Chudov system. It remains only to verify
thatK solves the wave equation in the interior of the light cone. To do this, first compute

( 0202 ) C1-1
Ot2 O72. H(s, t)= /2(X(s))DK(X(s), t)

-2(y)K(y, s)DK(y, t)]
-c-/(X(s))(c’(X(s)))zK(X(s), t)

+ t)

t)

d [c_l(X(s))K(X(s), s)K(X(s), t)]
ds
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Using (7. lc) one sees that

-1-c (X(s))D2K(X(s), s)K(X(s), t)
X(s)

f dy c-2(y)DZzK(y, s)K(y, t).
a0

c-1/2(X(s))s[2C-1/2(X(s))K(X(s), s)]

2c-l(X(s))-sK(X(s), s)-c-l(X(s))c’(X(s))K(X(s), s)

1/4c/(X(s))c"(X(s))- c-/(X(s))(c,(X(s))).
Also,

d -1s[C (X(s))K(X(s), s)K(X(s), t]+c-I(X(s))D2K(X(s), s)K(X(s), t)

-c-l(X(s))c’(X(s))K(X(s), s)K(X(s), t)

+ 2c-l(X(s))sK(X(s), s)K(X(s), t)-D1K(X(s), s)K(X(s), t)

+K(X(s), s)D1K(X(s), t)

[1/4cl/2(X(s))c"(X(s))-c-1/2(X(s))(c’(X(s)))2]K(X(s), t)

-D1K(X(s), s)K(X(s), t)+ K(X(s), s)D1K(X(s), t).

Ot2 c3-2 H(s, t)=1/2c-1/Z(X(s))[DK(X(s), t)-cZ(X(s))DK(X(s), 1)]

,.X(s)

(7.3) + J dy c-2(y)[K(y, s)DK(y, t)-DK(y, s)K(y, t)]

+DIK(X(s), s)K(X(s), t)-K(X(s), s)D1K(X(s), t).

Now add to (7.3) the identity

0 -D1K(X(s), s)K(X(s), t)+ K(X(s), s)D1K(X(s), t)

+D1K(O, s)K(O, t)-K(O, s)DK(O, t)
X(s)o dy c-2(y)[K(y, s)(c2(y)OK(y, t))-(cZ(y)DK(y, s))K(y,

obtained by integration by parts. After a little manipulation, one gets

g (s, tl-(o, sly(o, +(o, s(o, t

=c-/(X(sll[g(X(sl, O-c(X(sl(X(s,
(7.4)

X(s

+ [ dy c-(y)[K(y, s){DK(y, t)-c(y)DK(y,
0

-{DK(y, s)-c(y)DK(y, s)}K(y, t)].

Hence,
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Comparing with (7.2) and using (7.1b), one sees that the 1.h.s. of (7.4) in fact vanishes
identically. Equation (7.4) is therefore a linear integral equation of Volterra type, since
K is continuous and c > 0, for DK c2D21K. It follows that this expression vanishes in
the domain covered by the limits of integration, that is, in the light cone.

To obtain this result for F C1, hence c C2, K C1, we must resort to a limiting
argument, since VqcK is defined only as a distribution in the interior of the light cone. We
assume that F obeys an estimate (4.3). Let {Fn} c C2 have F as C limit. Then an easy
estimate (like (5.7) in [6]) shows that {Fn} obeys an estimate (4.3) with e replaced by e.
Therefore the GL equations for F, have solutions c, C3 and K, C2, and c + c in C2,
Kn +K in C1. By the result just proved, V.K 0 for all n. For any test function
supported in the interior of the light cone for c,

(cK, ok) -D2KD2ck +DIKDI(C2Ck)

lim (V3c.K,, b)=0.

The second equality is valid because the light cone for c, tends to the light cone for c,
and supp 4’ must have a nonzero distance to the boundary rays.

The result shows that the solution K of the GL equation solves the Chudov system
also. Since we showed in 2 and 3 that the solution of the Chudov system solves the
GL system, it follows that these two systems are completely equivalent. It also follows
that c, as part of the solution of the GL system for prescribed F, solves the inverse
problem stated in 1. Together with the stability statement of 5, this constitutes a
proof of Theorem B.
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THE BASIC BESSEL FUNCTIONS AND POLYNOMIALS*

MOURAD E. H. ISMAIL"

This paper is dedicated to my parents on the occasion of their 40th anniversary

Abstract. Basic analogues of the Bessel polynomials and their generalization are introduced. These
polynomials are orthogonal on the unit circle [z[ with respect to a complex weight function. They satisfy a
three-term recurrence relation, and the associated continued fraction is computed. Similar results are also
established for the little q-Jacobi polynomials. Integral representations for the modified basic Bessel functions
are also established..

Introduction and notation. The present work is a detailed study of a basic analogue
of the Bessel polynomials

(1.1) yn(x) .Fo(-n,n+ 1;-;-)
and the generalized Bessel polynomials

(1.2) yn(x; a)=zF0(-n,n+a-1;-;-);
see Grosswald [10, (8) p. 6, (10) p. 7, (27) p. 13]. The hypergeometric function 2F0 is
defined by

(a),(b),,
(1.3) 2Fo(a, b -; x) x",

o

where

(1.4) (a)o 1, (a), a(a + 1). (a + n 1), n > 0.

Another notation for the generalized Bessel polynomials is

(1.5) y(x; a, b)= zFo(-n,n+a-1;-;-).
The generalized Bessel polynomials are orthogonal on the unit circle with respect to a
complex "weight" function. The orthogonality relation is (Grosswald [10, p. 30])

yn(z;a)y(z;a) (-2/z) 2(-1)+n!
(1.6) - zl=X k=o (a 25 ]-)- j

dz
(2n + a 1)(a 1), """

The zeros of the Bessel polynomials have very interesting properties; see Burchnal [6],
Grosswald [9], [10] and Ismail and Kelker [14]. The recent interesting article of De
Bruin, Satt and Varga [8] contains refinements of the asymptotic results collected in 10]
and settles a conjecture of Luke.

We recall that the basic hypergeometric function r/lbr is

(al;q), "(ar+;q), X"
(1.7) r+lr(al," ar+l; bl," ’, br; q; x)

0 (bl; q)n "-’ri-qi’ (q; q)n’

* Received by the editors June 17, 1980 and in revised form September 16, 1980. This research was
partially supported by the National Science Foundation under grant MCS-7903518 and the Natural Science
and Engineering Research Council of Canada under grant A4522.

5" Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
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with

(1.8) (a;q)o=l, (a;q),,=(1-a)...(1-aq"-l), (a;q)=l-I(1-aq").
0

Abdi [1] defines a basic analogue of y, (x; a) as

(1.9) J(q, a 1" n, x)=
(q’-" ;q-),2bl(q-,,q,/,,-.O;q,x),
(q;q),,

which is a q-analogue of the 2F0 representation (1.2). Grosswald [10, p. 151] says that,
in the spirit of a "basic" function, limq_.l- J(q; a 1; n; x) is ((a 1.)n/n !)yn(x a). He
then adds "otherwise, the connection of J(q; a-l; n;x) to y,(x; a,b) is rather
tenuous". Our basic analogue is different from Abdi’s. Our polynomials are orthogonal
on the unit circle and arise from the basic Bessel functions in the same way the Bessel
polynomials and their generalization arise from the ordinary Bessel functions.

The paper is arranged as follows. Section 2 discusses the relationship between the
Bessel and Lommel polynomials and the Bessel functions. When we apply the same
procedure to basic Bessel functions we are naturally led to basic Lommel polynomials
(Ismail 13]) and basic Bessel polynomials. The simlale basic Bessel polynomials turn out
to be

(1 lO) y,,(x[q 2) q"("-*)/E2b +,(q q -q; q, -2xq),

and are generalized to

(1.11) y,(x;alqE)=q n(n-1)/22bl(q-n qn+a-1.,-q, q,-2xq),

bearing the same analogy to (1.1) and (1.2). In 3 we establish the orthogonality
relation for the polynomials in (1.10) and (1.11). Both our polynomials and Abdi’s
polynomials are special cases of the little q-Jacobi polynomials of Hahn,

(1.12) p,(x; a,/ Iq)= 2bl(q-, aSq’+’, aq’, q, qx),

studied by Andrews and Askey [3], [4] and Hahn [11]. They proved the orthogonality
relation

aiqi(qi+, q)Y. i+ p,,(qi, o, fllq)pm(qi, a,
o (flq ;q)oo

(1.13) n+l
a q (aq q)o(q; q)n
q)(aq; q)oo(aq; q),(1-aflq2+) 3m.n.

Following the ideas in [12], A1-Salam and Ismail [2] derived reproducing kernels
for the little q-Jacobi polynomials; also see Stanton’s very interesting work [18]. Our
polynomials correspond to a -1, fl _qa-2, while Abdi’s correspond to the limiting
case /3 =qa-E/a and a-0. In 3 we also establish the orthogonality of the little
q-Jacobi polynomials on a circle with respect to a complex weight function. To the best
of my knowledge this is a new result. It is interesting to note that (1.13) follows from our
complex orthogonality relation, as will be indicated in 3. In 4 the continued fraction
associated with y, (x Iq 2) is computed using the asymptotic results of [13]. A generating
function and an asymptotic for"mula are also established. Using a theorem of Markott
and analytic continuation arguments we compute the continued fraction associated with
the little q-Jacobi polynomials. The last section, 5, contains a basic analogue of the
Hankel integral representation for 1/F(z). This integral is related to some integrals of
Ramanujan; see Askey [5]. Using the basic analogue of the Hankel integral we derive
an integral representation for a modified basic Bessel function.
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2. The basic Bessel polynomials. There are two sets of orthogonal polynomials
associated with Bessel functions. The first is the set of Lommel polynomials {R,(1/z )}
which arises when we iterate the recursion (Watson 19, p. 294)).

(2.1) Jv+l(Z) 2Pjv(Z)-Jv-l(Z),
z

to

(2.2) Y,,+,,,(z) R.,(z)J,,(z)-R,,,,-x.,,+x(z)J_l(Z).

The Lommel polynomials are orthogonal on a finite interval; see 13 for references and
details. The Bessel function of the first kind J,,(z) has two basic analogues, namely

v+lq ;q) . (-1)"(z/2)+2"(’) (z ;q)= -(t; ]o o (q, q).(q ;q).
(2.3)

I(2) (z" q)=
(qv+l., q)o (--1)"(Z/2)+2"

(q; q)oo o (q; q)-- (-7";ii )- q

for 0<q < 1. Jackson [15] introduced the basic Bessel functions using a different
notation. The above notation is due to us in [13]. The function J))(z;q) is an entire
transcendental function. It is clear that

lim J(f)(z(1-q);q)=Z,(z), k= 1,2.
ql-

The basic Bessel functions satisfy the recursion [13]
’(i) (z;q) 2(1 )z-r(i)(z;q) (i) (z" q), /’= 1 2(2.4) q a+x -q --Iterating the recursion (2.5) leads to the basic Lommel polynomials [13]. We now

introduce the modified basic Bessel functions I( (z; q) and K(f (z; q), j 1, 2 in the
following manner:

(2.5) I(j (z; q) e-irrvl2j(,/) (Z e irrl2", q)
and

(2.6)

K<j (z;q)=2 sin (rv)
{I),, (z q) t{j (z q)},

K (i). (z’, q)= lim --(i) (z’, q), n =0,+1, +2,.

v #0, +1, +2, ,

j 1, 2. These definitions are analogues to the case q 1 (Watson [19, pp. 77, 78)].
Surprisingly, the modified basic Bessel functions have not been studied earlier.

The recurrence relation

(i) (z;) 2(1 ")z-K(f (i) (z;q) ] 1 2(2.7) q +1 q -q (z;q)+K,._x

follows from (2.4), (2.5) and (2.6). The I(f (z;q) also satisfies (2.7). We now iterate
(2.7) to obtain

’> (z" q)(2.8) q’m+m(m-l>/2K(i),+m (z q)-bm,,(z)K(i)(z, q)+m 1,v+l(Zl.tXv-1

where the functions .,(z) depend on q, of course, and are generated by

(2.9) &.+l,(z) 2(1-q’+")z-l&m,,,(z)+q"+"-l&.,_l,,(z), m 1, 2,...,
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and the initial conditions

(2. 0) o,(z) 1, ,(z) 2(-q)z-.
When v =2 we get

m2/2r--(2.11) gm+l/2(j) (z; q) q- .(Pm,1/2,z)+4)m_l,3/2(z)}g]5)2(z; q),

because K,, (z’q), is an even function of v’, see (2.6). The polynomial

(2.12) ym(zlq) &.,/). + 4)m-,/2

is the basic analogue of the simple polynomial y.(z). The polynomials {y.(x)} are
similarly related to the modified Bessel functions.

We now derive the explicit formula

(2.13) Y.(zlq) i (ql/2"ql/2)n+k(2Z)k, (n-k)(n-k-1)/4

k=O (q," q)k(q 1/2 qCaTg-’k- q

We first go back to (2.9) and (2.10), and replace z by iz to get
""+ (iz)=2i"(1 q"+’)z-&n,.(iz) n-1 n+ (iz)l(n+l,v q ,-l&,_,

which when compared with the three-term recurrence relation for the q-Lommel
polynomials {Rn,(z;q)} (Ismail [13]) identifies .,(z) as

(2.14) C,.(z) i-"R,,,(-iz;q).

We now use this identification, the explicit formula [13],

(2.15) R,.,(z; q)=
i=o

and the definition (2.12) to get

i(i+v-1)q

In/2] (2iz),-2i(_l)(q/2. q),_,(q q),-iq.(-/2}Y,(zlq) i-" Y 1/2
o (q;q)i(q ;q),(q;q),-2,

(2.16)
t-1)/27 (2iz),-1-2i(_1)i(q3/2;

+ i-" Y q).-1-i(q; q)n-l-iqi(i+/2)
o (q; q)(q3/2., q),(q., q),-2-

When n is even, (2.16) and the observations

(q/2., q) (q; q) (q/2., q /2)2,, (q/2., q),,(q., q) (q; ql/:)2m
imply (2.13). Similarly the case of odd n can be handled.

Another way of proving (2.13) is to first establish the three-term recurrence
relation

(2.17) yn+l(Z[q) 2(1--qn+l/2)zyn(zlq)+qn-/2yn-l(Z[q), n >-- 1,

by letting v n + 1/2 in (2.7) and making use of

(2.18) K(i’n+l/2 (Z;)q =q-"Z/2y.(1-)K5)2(z;q),
\Z/

which follows from (2.11) and (2.12). Then use (2.18) to get.

(2.19) yo(z) 1, yl(z) 1 + 2(1-q1/Z)z.
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Now it is a routine matter to see that (2.13) satisfies the recursion (2.17) and the initial
conditions (2.19).

A basic hypergeometric representation of yn(zlq) follows from (2.13) and

(q; q)n
(q-n; q)k(_l)kqk(2n-k+l)/2

(q; q)n-

(Slater [17, p. 241]). The result is

(2.20) yn(x]q) qnO,-V22&(q-n qn/. --q" q, --2qx)

Clearly as q 1, yn(X/(1-q)[q)2Fo(-n, n + 1;-; x/2) as one expected. Formula
(2.20) suggests defining the generalized Bessel polynomials yn (x;alq) by

(2.21) yn(x; alq 2) qn(n-1)/22 n+a-1l(q q -q; q, -2qx),

which is radically different from Abdi’s (1.9) although as q 1 both essentially tend to
the common limit 2Fo(-n, n +a-1;-; x/2). We shall assume that a is neither a
negative integer nor zero in order to ensure that yn (x; a ]q2) has degree n.

3. Orthogonality. Let w(z) be a weight function, possibly complex-valued, with
moments Wk; that is,

(3.1) w Ju zkw(z) dz, k ->0,

where w(z) and the contour U are to be determined from the orthogonality relation

(3.2) fw(z)z’pn(Z;a,lq)dz=O, k=0, 1,"" ,n-1.

Therefore

(3.3) .. (q-n; q)i(aflqn+a; q)iq"
i=o (q; q)i(aq; qii ’wi+k =0, k 0, 1,..., n-1.

Since all the known identities of this type are basic hypergeometric function identities,
we attempt

(c; q)k
(3.4) w,

(d;q)k

and proceed to compute c and d from (3.3). This leads to

(3.5) 3b2(q-n, qn+l cqk. aq, dq k" q, q)=O

We used (c; q)k+i (C; q)k(Cq ’’, q)i" We now go through the list of summable 3&2’s in
Slater [17, p. 247] and realize that the 302 in (3.5) must be balanced (Saalschutzian). A
basic hypergeometric function (1.7) is balanced if

r+l

q II ai= bi.

The limiting case a 0,/3 c while a/3 has a limit will be treated separately. The basic
hypergeometric function in (3.5) is balanced if a 0 or d cq when a 0. If a 0, the
left side of (3.5) is (cqk) (d/c; q)n/(dq k’, q)n and it is clear that no choice of c and d will
make it vanish when k 0, 1, , n 1. Thus a 0 and d is qc. With this choice of d



BASIC BESSEL FUNCTIONS AND POLYNOMIALS 459

the left side of (3.5) becomes

(q-"/fl; q)n(aq-k/c; q)
(aq; q),(q-n-kc-8-’, q),,’

in view of [17, p. 247]. The only wa for the above expression to vanish when 0 =< k < n

is if c -cq. This leads to

(aq;q)k
(3.6) Wk (aflq2; q)k

Set

(3.7) p(z a, fl[q) z -k-1
(aq, q)k

o (Bq’, q)

Clearly,

2ril I kPzl=,Z (z a, fllq) dz wk

holds for any r > 1. Therefore

1 I p(z;a,lq)p,,(z;a,lq)p(z;a,[q)dz=,,Sm.
2rri l=

We now evaluate A. It is clear that

Jn
z[=r

pn(Z; a, 8[q)p(z; a,/3[q) dz

(q-n; n.
Ji znPn(Z;a’lq)P(Z;a’fl[q)dz

(q-n; q)n(flq n+’, q)n (cq; q)n
(q; q)n (aq; q)n (Cflq a’, q)n q

3q2(q -n, a/3qn+ ceq n+l", O[q n+2, aq’, q, q)

(q-n; q)n(aflq n+’, q) (q’, q)n(flq’, q)n
q

(q; q)n(aqZ; q)n (aqn+2 q)n(q-"/ a’q)n,

by [17, IV-4, p. 247]. After some straightforward manipulations we establish the
orthogonality relation

pn(z a, fl[q)pm(Z a, lq)o(z c,/lq) dz
2rri l=r>a

(3.8)
(flq; q)n(q; q)n(1-aflq)

." 2-n + (m=a q
(aq,q)n(ceq,q)n(1-aq

holding for a, fl q-n, aft q-n for any positive integer n. For our q-Bessel poly-
nomials (2.20) the orthogonality relation (3.8) reduces to

y,.(z; alq y..(z" alq 2) (-2z)- dz
2rri zl=r>/2 0 (qa- ;q)

(3.9)
t-l) q t-q q)ntq; q)n

7-7=i --i- -, ---Wn ----i, m.n.
t-q; q),tq q)ntl--q
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In certain cases the weight function in (3.7), (3.8) and (3.9) can be simplified by adding
an analytic function to it. The sum to be used is Ramanujan’s 151 sum (Slater [17,
p. 248])

(c;q)__._e_(3.10) -oE (d’, q),,
z

where

(dc-1; q)(q q)oo(qc-lz-1; q),(cz; q)o
(d q)(dc-z-1; q)(qc-1; q)(z; q)

o[0i (1-*q.) , =0, :t:1,’..(3.11) (’ q)
(1-aq

It is easy to see that (3.11) agrees with (1.8) when n is nonnegative. Furthermore

(3.12) (a q)_,
(--A)-nqn(n+l)/2

(q/a;q),

The bilateral series in (3.10) converges if and only if Izl < 1 and Izl
d # q-" for any nonnegative integer n. Set

(3.13) 01(2’; C, /lq) Y- Z- (C q)
(aflq; q)k

Clearly, p(z; a, [q)-(1-aq)(1-a)-lpl(z; a, lq) is an analytic function of z when
a # 1, aft # 1 and both p and/91 converge; hence, all its moments vanish. We have, by
(3.10),

(Bq q)(q q)(qz/a q)oo(a/z; q)o
(3.14) pl(Z ce, fllq)

(cq3q; q)o(qBz; q)o(q/a; q)oo(1/z; q)o"

This proves the following theorem.
THEOREM 3.1. When [flq] < 1, a # O, a # q’, aflq # q-", n 0, 1,. , the ortho-

gonality relation

(3.15)
2rri zl=P"(Z; a, fllq)p,(z; c,/31q) (qz/a q)(a/z q)o

(qflz; q)(1/z; q)o

a"q" (cq3q"+a; q)(q/; q)oo(1 )
(q, + 1., q)oo(q,+l., q)o(a q), (1- aflq

z, +1)6,,

dz

holds for 1 < r < I/q[-1.
We now illustrate how our orthogonality relation (3.15) implies Hahn’s (1.13). The

idea is to observe that if a sequence of polynomials {p, (x)} js orthogonal on a bounded
interval (a, b) with respect to a Borel measure d/z then o dtx(t)/(z-t) is a complex
weight function (Pollaczek [16]). This is so because if U is a contour containing (a, b) in
its interior then

2 rri
p,, (z )p, (z

z

b

dz I dlz(t) IuPn(Z)pm(Z) dz
z -t 2rri

bI p.(t)pm(t) dt.t(t).

so there is a chance our complex weight function in (3.15) differs from b dtx(t)/(z- t)
by an analytic function. To recover x(t) from its Stieltjes transform, we use the
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Perron-Stieltjes inversion formula

F(z) f dtz(t)
implies

J_

/(t2)-tz(tl) lim It t2 F(t-ie)-F(t + ie)
dt.

-,o+ 2ri

The candidate measure d for the little q-Jacobi polynomials must be purely discrete in
order to make d(t)/(z t) single valued, since the complex weight is single valued.
The point masses will occur at the poles of d(t)/(z-t). The only poles of the
complex weight function in (3.5) that lie within Izl r are z qi, f 0, 1, .. The point
masses obviously equal the respective residues. The residue Ri at z qi of the complex
weight function is

R (i[ g)-/; q) lim
z q’

(qi+; q)(q-i; q)i(q; q) q, l_qi/z,

which can be simplified to

aiqi(q/a; q)(a q)
Ri (qi+., q)(q., q)(q q)i

All that is left now is to show that the complex weight function and the Stieltjes
transform of the constructed measure differ by a function analytic in ]z] r. This follows
from the Mittag-Leer expansion. Note that we could have obtained the same result
simply by evaluating the contour integral in (3.15) using the calculus of residues. One
reason for including the above argument is that it relates the complex weight function to
the Stieltjes transform of the real measure. This will be further explored in the next
section when we compute the continued fraction associated with the little q-Jacobi
polynomials.

In the case of our q-Bessel polynomials, the orthogonality relation (3.15) reduces to

1 ) ) (-2q)(-1/2z,q) dzy(z; alq ym(Z; alq
(-2q z, q)(1/2z, q)2i 1=

(3.16)
(-1)"+q"(q "+a-a q)(- "+q ;q)

(-q +"-’, q)(q +’, q)(1
where <r<q-, a> 1.

Finally we come to the case B y/a and a 0. It is easy to repeat the aforemen-
tioned manipulations. The only difference is that the balanced 32 sum is replaced by
the q-Vandermonde sum [17, p. 247] and the 6 sum no longer works, so in (3.8) O
may be replaced by

_
z--a/(yq 2", q). This new complex weight can be summed only

if y 1 and the resulting real measure agrees with the limiting case of the measure
constructed by Andrews and Askey and Hahn.

4. Continued fraction and asymptotic formulas. It is known that the nth con-
vergent of the continued fraction

of (e:/ + 1)/(e:/- 1) is [y,(z) + (-1)"y(-z)]/[y,(z)- (-1)"y,(-z)] (Grosswald [10,
Chapt. 8]). We now derive a basic analogue of this result via the connection between the
basic Bessel polynomials and the basic Lommel polynomials.
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In [13] we proved that the basic Lommel polynomials {R.,v (1/z q)} are ortho-
gonal with respect to a purely discrete measure d/x of bounded support, and that

(4.1) I) d(t)-2(lq-v)J)(’q)/J-l(-;q),(2)1 z supp {dtx}.
ooz--t Z

The left side of (4.1) is the continued fraction

2(1 qi) q
(4.2) X(z)=12(1-q z-[2(1-q+l)z
because R.,(z;q) satisfies

q+l
12(1 -q"+Z)z

(4.3) Rn+l,,.,(z; q)= 2(1-q"+")z-lR.,,(z; q)-q"+’-lRn-l,,)(z; q);

see 13 ]. In 13 we also proved that

2(1-q")R._,,+x(1/z; q)
(4.4) X(z) lim

.-.oo R.,,,(1/z;q)

Using this information, (2.5), (2.9) and (2.14) we obtain the continued fraction
representation

q1 I+ -q’+’)I+ q’+l+2)Z I+...X"(Z)=12(1--q")Z 12(1 Z ]2(1-q
(4.5)

Iz) (l/z; q)
r(2)._a(1/z;q)

When we replace z by z/(1-q) and let q 1, the special case v =1/2 of (4.5) reduces to
Lambert’s continued fraction

1]+ 1
; s,n,(zl-)/cos,

since, (Watson [19, pp. 54, 55])

(4.7) F I1/z(z)=sinh z and F I_l/(z)=cosh z.

The same analogy holds in the basic case. It is easy to see that

()
1/2 (ql/2 .(4 8) r(2) (z")=

;q)= (z/2)/1. qn(n+l/2)"1/2 q
(q; q)oo o (ql/2, q 2n+l

and
1/2

() (ql/2;q) (z/2)2"(4.9) I(__z,2 (z" q)= i/i/-o o (q q1/2. 1/2)2 qn(n-1/2),

which, in view of Euler’s formula (Slater [17, p. 93])

(4.10) o (-1)"z"
(q; i q,(,-a)/2 (z q),

imply
1/2()1/2 (2 (Z q)+() .(2) (ql/’;q)oo( Z I/,)(4.11) I_ /2 "1/2(Z; q)= i/’i/- --; q
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and

(4.12) I/2 (Z q) /-(2) (Z,)’-"
q)o 1/2

/2 q
(q;q)oo

;q "The relationships (4.11) and (4.12) lead to

I(__2/2 (z; q2) (-z/2; q+ (z/2; q)(4.13) r2) (z, 2)--1/2 q (-z/2;q) (z/2;q)"

Combining (4.5) and (4.13) we obtain the following generalization of (4.6):

(-q)zl+ (-q)z]+ (-q)zl+. (-z -" q)+(z-" q)o
(4.14)

q q3 q5 (_z-a q)_(z-al, q)
We now relate the convergents of (4.14) to the Bessel polynomials. Recall that the

nth convergent in Xa/2(z) is 49n-a,3/2(1/z)/4)n,1/2(1/z); see (2.14) and (4.4). The
polynomials bn,v(z) are symmetric, that is, b.,v(-z)=(-1)nb..(z), as can be
seen from (2.14) and (2.15). Use this information and (2.12) to get

(4.15) 6,/2(zl--) Y(Z[q)+(--1)mym(Zlq)

and

(1)(4.16) 4.,-a,3/2 - Ym(Zlq)--(--1)mYm(Zlq).

This establishes
THZORZM 4.1. The nth convergent of the continued fraction (4.14) is

y, (z/2lq 2) + (- 1)y, (z/2lq z

Yn (z/2]q)) -(-1)nyn (z/2]q2)

which converges to the right side in (4.13).
Note that (z(1-q);q) tends to e as ql-, as can be seen from (4.10).

Consequently the right side of (4.14) is

[1 + (-z_’_; q)l. [ (-z-’i q)--l-’
(z- i2 J -1 + (z_l; q) _l

which is the analogue of (eZZ+ 1)(e2Z-1)-a. The function (-z; q)oo/(z; q) has the
power series expansion

(4.17) (-z" q)/(z" q)=o(-1;q),(q; q).
z

(Slater [17, p. 248]).
We now establish a generating function and an asymptotic formula for the

polynomials {y, (xlq)}. We shall prove the following:
TI-IZORZM 4.2. We have

(4.18) y,(zlq2)’-.(2z)"(q; q2)oo --; q as n o0,
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and

(4.19)
E Yn (zlq)t E (t/2z;_q_!l_ tq,.2/2
o o (2zt; q)t+l

(-2zt)

(t/2z q)t tqt(t+l)/2

Proof. Formula (4.18) follows from (2.12), (2.14) and the asymptotic formula [13]

Rn.+a(z,q)’(q,q)

The reader can easily fill in the details. The second relationship (4.19) follows from
(2.12), (2.14) and the generating function [13]

(-tz/2"q)l( 2tzq’)lERn(z;q)t,=.. ,.__ ,-- 1(1-1)/2

0 0 (2t/z; q)t+
q

We conclude the present section by computing the continued fraction associated
with the little q-Jacobi polynomials. They satisfy the three-term recurrence relation

-xp.(x; , lq)= a.pn+(x; , lq)- (a. + b.)p.(x; , lq)
(4.20)

+b,p,_l(X;,[q), n>0,
with

po(x; c,/3lq) 1, pl(X; c,/3[q) 1-(1 -cq2)x/(1-oeq),
(4.21)

(1 cq"+l)(1 q.+l) q" (1 q")(1 q")
a, =q(1Lf]L-), b, =(l_q2)(l_aq2+

The following lemma identifies the continued fraction associated with a sequence of
orthogonal polynomials (Chihara [7, pp. 89-90] and Pollaczek [16]).

LZMMA 4.3 (Markoff’s theorem). If {p,(x)} is a sequence of polynomials satis-
fying

p+I(X)=(Ax+B,)p,(x)-C,p,-I(x),po(x)=I, pl(X)=Aox+Bo,

with A,C,+ O, n 0 and are orthogonal with respect to a positive Borel measure d> on a
bounded interval (a, b), then the continued fraction

ao Cx

_
C2(4.22) ]Aoz + Bo -]A lZ + Ba ]A2z + B2

converges to d>(t)/(z-t) for z (a, b)provided that d>(t) 1.
We now prove

THeOReM 4.4. The continued fraction (4.22), where

(4.23) a, 1
B, 1+ C,

an an an
and an, b, are as in (4.21) (with bo interpreted as zero), is equal to

(4.24) F(z)=(z- 1)(q2; q)2 q’-;-;q’qzz
z[0, 1].

Pro@ In view of Lemma 4.3 all we need to show is that F(z) is the Stieltjes
transform of the real measure d(t) normalized by S d(t)= 1. Let be a step
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function with a point mass Aaiqi(q;q)i/(q;q)i at x=qi, j=0, 1,... and A to be
determined from the normalization condition. Clearly,

1 aJqJ(flq; q)i_ (aflq2; q)
(4.25) --o ii-)-i (aq; q)

by the q-binomial theorem [17, p. 248]. If G(z) denotes the continued fraction under
consideration, then

aiq’(/3q;q)i A (/3q;q)i(1/z;q)iG(z)=A (/i)S-qi) z- 1 o (q; q)i(q/z; q)i
a JqJ

-z-12b q,z,z, q’aq

which when combined with (4.25) imply (4.24). This completes the proof.

5. Integral representations. The Hankel integral representation of 1/F(z) is

1 1 IC tt-z-1(5.1)
F(z) 2"rri

e dt,

where C consists of the lower edge of the cut (along the negative real axis) from -c to
-p, the circle pe i -r <= 0 =< 7r and the upper edge of the cut from -p to -. We
now derive a similar integral representation for 1/Fq(z), where

(q;q)(1-q)-(5.2) Fq(z) 0<q < 1, z 0, -1, -2,.
(q; q)

see Askey [2]. Askey [2] gave a proof of Ramanujan’s formula

(5.3) Io tz-1 (-at; q)o (a; q)(ql-Z; q) rr

(-t; q)oo dt=(q; q)o(aq_Z; q) sin (rz)’
Re z >0,

and we shall always assume 0 < q < 1. Taking a 0 in (5.3), we see that

z- dt r (l-q)
(-; sin (rz) Fq(1 z)"

In the above formula replace z by 1-z and by (1-q)t to get

1 sin (Trz) I dt
(5.4)

Fq(z---- ---- (-t(1-q); q)"

The basic analogue of the series expansion of e x, namely (Slater [17, p. 92])

z 1Z(5.5)
(q; q). (z; q)o

suggests the following basic analogue of the integral in (5.1)"

1 fc dt
I i (t(1-q); q)’

where C is the same contour in (5.1). When 0<x < 1, I can be evaluated in the
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following manner:

11 (te-i)-X (-dt) 1 I) (tei)- (-dt)

sin (rx) dt 1
(-t(1-q); q) Fq(X)

by (5.4). The integral representation

1 1 t t-dt
(5.6)

F(z) 2 Jc (t(1 q); q)

then follows from the identity theorem for analytic functions. The representation (5.6)
is a basic analogue of Hankel’s formula (5.1).

We now turn to finding integral representations for the modified basic Bessel
functions. Note that

(z/2)’(I

follows from (2.3), (2.5) and (5.2). We substitute the integral representation (5.6) in
(5.7) and "formally" change the integration and summation processes, then change the
integration variable to t(I q) to obtain

(5.8) I (z; q)
(t; q)(z/4t; q) dt, ]arg z[ <,

using Euler’s formula (5.5). The above derivation is indeed formal because the series in
(5.5) converges only for Izl < 1 and the integral in (5.8) extends to infinity. We now
prove (5.8) by showing that both sides satisfy the same second order q-difference
equation and have the same behavior at the origin. Denote the right side in (5.8) by
f(z). It suffices to consider only positive z, by analytic continuation. Clearly

f(4-z) q/2 (z/2) Ic t--l[1 -(z2/4t)] dt
2zri (t; q)oo(z2/4t; q)o

(5.9)
zq/2f(Z)---q/f+a(Z).

In the definition of [(z) replace by tz2/4 to get

(z/2) f
--1 dt

Jf(z)
27ri c[tZ2/4; q](t-’, q)’

which leads to

__/ z-"/’b (z).(5.10) f(4-z) q l.(z)--q -Combining (5.9) and (5.10) leads to
2

which is the same q-difference equation satisfied by r() t() () as can be seen from
[13, (2.2)] and (2.5). Since __t() and K(). are O(z-") as z 0, for v > 0 the function
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f,,(z) must be a constant multiple of I(1,,)(z; q). The constant is unity since the limits
limz_,o(2/z)"I(1)(z’q) and limz_,o(2/z)"f,,(z) have the common value (1-q)-/
Fq(v + 1); see (5.7) and (5.6). This completes the proof of (5.8).

We now derive two more integral representations. Assume z > 0 and set zeW/2.
The relationship (4.8) then becomes

(5.11)
1 f

oo+.tri e-W dwI(J (z;q)=-i
-=i (eWz/2; q)(e-Wz/2; q)o’

whose domain of validity can then be extended to [arg z[ < zr/2. The representation
(5.11) is a generalization of Watson [19, (4), p. 176]. In (5.11) take the contour to
consist of three sides of a rectangle with vertices at oo- i-, -ri, ri and oo + -i. Write
+ izr for w on the sides parallel to the real axis, and +/-iO for w on the lines joining p to

+izr, to obtain

(5.12)

r(1) (z; q) --1 [’ cos vO dO
7r Jo (eiz/2; q)o(e-iz/2; q)oo

sin vTr fo t
e dt

-t/zr (-z e 2; q)(-z e 2; q)o’

a basic analogue of [19, (4), p. 18]. Finally we have, via (2.6),

cosh vt dt
(5.13) K(1) (z;q)=

(-z e/2/2; q)o(-z e-t/2/2; q)oo’

or

1 I; t/2/
e-t dt zr

(5.14) K(x) (z" q)=
(-z e 2, q)oo(-z e t/2/2; q)oo

[arg z[ <
2

Note that similar integral representations can be established for I( (z; q), since
2

(5.15) ,(if) (z; q)= (--; q) 19 (z; q),

which follows from the definitions of I0 and _r{2, Euler’s formula (5.5) or (4.10) and
Slater [17, (IV. 1), p. 247].

REFERENCES

1. W. H. ABDI, A basic analogue of the Bessel polynomial, Math. Nachr., 30 (1966), pp. 209-219.
2. W. AL-SALAM AND M. E. H. ISMAIL, Reproducing kernels for q-Jacobi polynomials, Proc. Amer. Math.

Soc., 57 (1977), pp. 105-110.
3. G. E. ANDREWS AND R. A. ASKEY, Enumeration of partitions: the role of Eulerian series and

q-orthogonal polynomials, in Higher Combinatorics, M. Ainger, ed, Reidel, Dordrecht, 1977, pp.
3-26.

4. , The classical and discrete orthogonal polynomials and their q-analogues, in preparation.
5. R. A. ASKEY, Ramanujan’s extensions of the gamma and beta functions, Amer. Math. Monthly, 87

(1980), pp. 346-359.
6. J. L. BURCHNAL, The Bessel polynomials, Canad. J. Math., 3 (1951), pp. 62-68.
7. T. CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
8. M. G. DEBRUIN, E. SAFF AND R. VARGA, On the zeros of generalized Bessel polynomials, to appear.
9. E. GROSSWALD, The student’s t-distribution for odd degrees of freedom is infinitely divisible, Ann.

Probab., 4 (1976), pp. 680-693.
10. , The Bessel Polynomials, Lecture Notes in Mathematics, Springer-Verlag, New York, 1978.
11. W. HAHN, Ober orthogonalpolynome, die q-differenzengleichungen geniigen, Math. Nachr., 2 (1949), pp.

4-34.



468 MOURAD E. H. ISMAIL

12. M. E. H. ISMAIL, Connection relations and bilinear formulas for the classical orthogonal polynomials, J.
Math. Anal. Appl., 57 (1977), pp. 487-496.

13. , The zeros of basic Bessel functions, the function Jv+ax(x) and associated orthogonal polynomials,
J. Math. Anal. Applications, to appear.

14. M.E.H. ISMAIL AND D. H. KELKER, The Besselpolynomials and the student t-distribution, this Journal,
7 (1976), pp. 82-91.

15. F. H. JACKSON, On generalized functions of Legendre and Bessel, Trans. Royal Soc. Edinburgh, 41
(1903), pp. 1-28.

16. F. POLLACZEK, Sur une gYnYralisation des polyn3mes de Jacobi, Memorial des Sciences Mathematique
121, Paris, 1956.

17. L. J. SEATER, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966
18. D. STANTON, A short proof of a generating function ]:or Jacobi polynomials, Proc. Amer. Math. Soc., 80

(1980), pp. 398-400.
19. G. N. WATSON, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press,

Cambridge, 1944.



SIAM J. MATH. ANAL.
Vol. 12, No. 3, May 1981

1981 Society for Industrial and Applied Mathematics

0036-1410/81/1203-0013 $01.00/0

A NOTE ON STRICTLY CAUSAL OPERATORS*

VACLAV DOLEZAL

Abstract. It is shown that every linear, bounded, strictly causal operator on a resolution space [H, pt] is in
fact contractive under a certain inner product which generates a norm equivalent to the original norm on H.

As is known, strictly causal operators, introduced in [1], are generalizations of
Volterra operators, and play an important role in system theory. In particular, they
enjoy the following property: If A" H H is a linear, bounded, strictly causal operator,
then I-A possesses a causal, bounded inverse and

Sn Ai(I-A)-1

i=0

as n az in the uniform operator topology.
In this note we show that every linear, bounded, strictly causal operator A’ H H

is a contraction provided that the inner product (., .)o on H is replaced by a certain
inner product (.,.)1 which generates a norm [. I1 equivalent to the original norm I" [o. As
a consequence, we give an estimate for the speed of convergence of Sn to (I-A)-1 in
the original operator norm.

To state the result, we introduce the following notation. IfH is a Hilbert space with
inner product (.,.), we denote by I" [ the norm generated by (.,.). Moreover, if
A"H H is a linear, bounded operator, we put IIAII= -sup {[Ax[.x

THEOREM. Let H be a Hilbert space with inner product (., )o, let A"H H be a
linear, bounded (in norm ]. [o) operator having zero spectral radius and let 0< A < 1.
Then

(i) There exists an innerproduct (., )1 on Hsuch thatthe generated norm [. ]1 onH
is equivalent to l" ]o, and

(1) IIAII1 <-- .
(ii) For every integer n >-_ O,

i=0 0

where the constant C. is independent of n.
COROLLARY. If [H, pt] is a Hilbert resolution space with inner product (.,.)o,

if A" H H is strictly causal [1] and if 0 < h < 1, then (i) and (ii) hold.
Proof of the theorem. By Gel’fand’s theorem [2, p. 263], IIAllo/-, r(A)=0 as

n . Thus, select an integer k _-> 1 so that

(3)

Next, for each x, y H put

(x, y)l A :z/-:Z(x, Y)o + A :zk-4(Ax, Ay)o +"
(4)

+A2(Ak-2 k-2 -x, A y)o + (A ix, A Y)o.

* Received by the editors December 13, 1978, and in revised form September 22, 1980.
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Clearly, (., )1 is an inner product on H, and for the corresponding norm I" I1 we have

(5) Ix[12 A 2k-2[X 120 d" A 2k-4[Axlg -[-’’"-[" A 21Ak-2xl At-IA k-lxI20.
From (5) it follows that

(6) lxlo-<lxl-<_lxlo
for every x H, where

(7) cex -A- /x -(A-= + A-4IIAII+""" + I[A-lllo)/=

Hence, the norms [. [1 and]. [o are equivalent.
On the other hand, (5) and (3) yield, for any x H,

]ax[ A=-=laxlo+h-4lA=x[+ +A=IA-x[o + [axlo

=lxll.
Hence, [[A[II--< h and claim (i)is proven.

Furthermore, (6) shows that a linear operator M:H H is bounded in [. [1 if and
only if M is bounded in[. ]o, and we have

-1(8) ah/3h IIM[[o --<--[]Mill -< a h h
However, (i) implies that, for any integer n _-> 0,

-A-- A r. IIA r. a-(-a-a/.
i=0 0 i=n+l i=n+l

Hence, by (8),

=0 0 =0

which proves (ii).
To prove the corollary, note that aA is strictly causal for any number a whenever A

is strictly causal [1, Thm. 3.1]. Thus, by virtue of [1, Thm. 4.2], the series 2=o aA
converges in the operator norm Iio. Hence, r(A)= 0, which proves the claim.

Note that under the new inner product {., )1 the operators P from the resolution
of identity {P} remain bounded projections, but are no longer orthogonal projections
except for the trivial case when A 0.
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TWO RESULTS OF RAMANUJAN*

JACQUES DUTKA"

Abstract. New proofs are given of two results of Ramanujan, one of the latter of which has attracted a
good deal of attention. For series associated with these results, inverse factorial expansions which converge
rapidly for large n are derived. Included here is an improvement of a result of Watson [Quart. J. Math.
Oxford, (1930), pp. 310-318.]

1. About a half century ago, a result stated by Ramanujan [1, p. 351],

(1.1)
n n+l n+2

r(n+l/2)
1+ +(-) +...tonterms,

aroused considerable interest among British mathematicians. Proofs were given by
Watson [2], Darling [3], and generalizations by Whipple [4], Bailey [5] and [7] and
Hodgkinson [6]. A discussion of this is also given by Hardy [8, pp. 106-107, 112].

In 1957, a facsimile edition of Ramanujan’s Notebooks was published [9]. On
pages 237 and 239 of Volume I, there is a group of related results stated without proofs,
including (in a different notation) (1.1) and the complementary formula

+ +...
2n+1 2n+3 2n+5

(1.2)
2
2

1/-2)] 2

2G+ 1+ + 3 +"’tnterms
rr F(n + 1) J

where G =0.915956... is Catalan’s constant.
It does not appear to have been noticed previously that (1.1) and (1.2) can be

obtained by equating two distinct evaluations of the integral (2/7r) k’nKdk in the
particular cases where m is an odd and an even integer respectively and K is the
complete elliptic integral of the first kind. This is shown in 2. In 3, there are derived
some inverse factorial expansions for series arising in (1’.1) and (1.2) which converge
rapidly for large n.

2. On expanding the integrand of
/2 d(2.1) K
0 /1 k2 sin2 q

k2<l

and integrating term by term, one finds that

{rr 2 1’3 4K=- 1+ k + k +...

and

(2.2) 2Ioa 1 ()2 1 ( 1"3
2

12.5’k"K dk + + 17r m+l m+3 m+5

* Received by the editors August 4, 1980, and in revised form October 22, 1980.
"t Audits and Surveys, Inc., One Park Avenue, New York, New York 10016.
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On the other hand, by Byrd and Friedman [10, no. 615.12],

m2(m + 1) Jo k"’K dk (m2-1)(m 1) Jo k"-2K dk + (m + 1),

whence the reduction formula

fo 12 (m 1)2 Iol(2.3) k"’K dk + km-2K dk
m m

follows.
At this point, it is convenient to consider the cases where m is even and m is odd

separately. By Byrd and Friedman [10, no. 616.03], o kKdk 1 Thus, from (2.2), for
n 1, (1.1) holds. For m 2n 1, n > 1, one gets, on applying (2.3) repeatedly,

1
(2n 1)2+ [(2 (2n-2) ]2[n-ll(2n-3)

+
(2

(2n 2)(2n -4) 3
2

n-1)(2n-3)(2n-5)

(2n 1)(2n 3) -J +
(2n 1)(2n 3) (3)J

On rewriting the terms on the right-hand side in reverse order, one gets

Io k2"-lKdk=[ (2n-2)(2n-4)’’’(2)]2(2n 1)(2n -3) J

{ (_)2 (1.3)2 [1.3...(2n_3)]21x 1/ / .4 +" ’+
2 4 (2n-

or

(2.4)
2 ol k2n-lKdk=- r(fi/2)J 1+ + +...

[1.3...(2n-3] 2}+
2 4 (2n-

In (2.2), substitute m 2n- 1 and compare with (2.4). Then (1.1) follows.
Similarly, for m 2n one gets, on applying (2.3) repeatedly,

k"Kdk (2n)+ (2n)(2n-2)
+

(2
(2n 1)(2n -3)

Jn)(2n 2)(2n -4)

+...+[(2n-1)(2n?)’’’(3)]
:2

[(2n-1)(2n?)...(1)]
2

Io(2n)(2n --- (2i +
(2n)(2n --- (2] Kdk.

By Byrd and Friedman [9, no. 615.01], I Kdk =2G. Thus on substituting this and
proceeding as above, one gets

x 2G+ 1+ + +’" "+
3 5 (2n-ii
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or

2Iol 22{F(n+1/2)}2{ (32-)2 (2.423.5/]k2"K dk 2G + l + +
_

+...
7r 7r F(n + 1)

[2.4...(2n-2)]
2

}+
3 5 (2n-]7

In (2.2), substitute m 2n and compare with (2.5). Then (1.2) follows.

3. Expansions for .series arising in (1.1) and (1.2) respectively,

(_)2 (1.3
2

(.3... (2n_I)2(3.1) $, 1 + + -----) +" "+
4 (2n

and

(3.2) (32_)
2 2.4 2

(2.4...(2n-2])
2

T,,=I+ +(-7) +’’’+
3 5 (2n-

which are useful for large n, will now be obtained.
On rewriting Sn, one finds

1 [F(m + 1/2)] 2

S,=--Trm=o r(m+i J
n=>l,

and by Nielsen [11, p. 288],

(3.3)
F(x +1/2) x , x +1; 1 R(x)>0,

where F(a, b, c; z) is the hypergeometric function. Thus, on substituting, one gets

s.=- ,, ,r,,,_-om+l/2
F m+ 1

where

m+l/2
F ,, m+; 1

1 (_)2 1 (1.3
2 1

m +1/-------- + l!(m+l/2)(m+3/2)+\.21 2!(m+l/Z)(m+3/Z)(m+5/2)

m+l/- k +
m+ (m+l/2)(m+3/2) +’’"

and (f(m))=f(m + 1)-f(m). On summing this series, one finds that

s. E+ ) 22(m + /2)(m + 3/2)m=o m +1/2 l! l(m +1/2)
+

]1+
2 2 33(m+l/2)(m+3/2)(m+5/2)+"" m=,’
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zrS.= Y. + + 2-) + +""
.,=o m +1/2 - 4

1 1 1.3 1.3
1 2n + 1 2(2n + 1)(2n + 3)

+ 2.4 3(2n + 1)(2n +3)(2n +5)

By Nielsen [11, p. 15, (2) and (4)],

n-1 1
,,_-o m + 1/2= n+ - = n+ +y+21n2,

where (z) d In F(z)/dz and y 0.577215... is Euler’s constant. By Jolley [12, no.
(262)],

]-+ 2- + 2 4 6 + 21n2.

Thus

(3.4)

$,=-- n+ +y+41n2

1(2n+1)
+

2(2n+l)(2n+3)
+’’" n>_-l,

where, by N6rlund [13, p. 42],

(3.5) (x+l)=log(x+a)+ Y (-1) Bt)(a)
R(x+a)>0,

s=l S (X + 1)(X + 2)’’’ (X + S)’

and the coefficients B(s* (a) are generated by the relation

t(1 + t)-a

sOlog (1 + t)

(For the cases 0 and 1, the series in (3.5) were obtained by J. Binet. The
coefficients B() (), which arise in interpolation formulas, etc., have been tabulated for
various values of s and .)

This result for S is an improvement over that of Watson [14, pp. 314-315], who,
using a different method, obtained the equivalent of the asymptotic expansion

(3.6) S, log n +y+4 In 2-+192n2+
An expansion for Tn in (3.2) will be obtained similarly:

rr [ F(m, ] rr 1F(1, 1 )Tn - m=l F(r]-/2) =- m=l 7 \ ’ rn + 1; 1

where

ml__ (1122 ) 1 [() 1 (1)(1.3’21A( 1 ) ]F =,=, m+l"l A +
rn - \2-1 m(m+l)+’’"
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On summing this series, one finds that

-+ -+
rr =1 rn m 2!2 m(m + 1)

(’3"52)2 1 1
+

2 3!3 m(m+l)(m+2)+’’"

4Tn= i 1 [()21 ( ’1.3 21 (12i3!56)21 ]_+ +
rr m=lm 4

[()2 1 1’3 2 1--,... 1,1(n+1)+(2--) 2,2(n+l)(n+2)

+
.2 3!3(n+l)(n+2)(n+3)

By Nielsen [11, p. 15,(2) and (5)],

--= (n + )-q() q*(n + )+.
m=lm

By Jolley [11, no. (385)],

()21 ( ’]1"3 21 (1"3"56)21 8-+ \---/ + 2 4 + 4 In 2 G.

m=l

m=n+l

Thus

(3.7)
T. - qt(n+l)+y+41n2-8G

l!l(n+l)
1"3 2 1

+,2-) 2,2(n + 1)(n +2)

where q(n + 1) can be obtained from (3.5).
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AN APPLICATION OF GLICKSBERG’S THEOREM
TO SET-VALUED INTEGRAL EQUATIONS

ARISING IN THE THEORY OF THERMOSTATS*

K. GLASHOFF AND J. SPREKELS"

Abstract. In this paper we model a heat conduction problem arising in the theory of temperature
regulation by thermostats. The corresponding mathematical problem consists of a parabolic initial-boundary
value problem, with nonlinear discontinuous boundary conditions. The problem is transformed into an
equivalent set-valued integrodifferential equation, a solution of which is shown to exist by an application of a
theorem due to Glicksberg [Proc. Amer. Math. Soc., 3 (1952), pp. 170-174].

1. Introduction. Many heat conduction processes are regulated by a thermostat,
i.e., by a temperature-regulated switch that electrically activates the burner of a
heater, such as that used for the central heating of a building.

In a recent paper [2] the authors discussed a one-dimensional model consisting of a
rod which is heated at both ends. The thermostat responded to the temperature at the
midpoint of the rod. In this paper we generalize the results of [2] to general N-
dimensional domains; from the practical point of view we think of a solid heated at its
surface. The thermostat responds to the temperature measured at a fixed point of the
solid. The corresponding mathematical model is a parabolic initial-boundary value
problem with discontinuous, nonlinear boundary conditions.

In 2 we formulate the model and the equations involved. Moreover, we motivate
the transformation into an equivalent set-valued integrodifferential equation of the
form

(1.1) y(t) J0 K(t, z)F(y(r), ))(r)) dr, 0_-<t-< T.

Here F: [2- 2R denotes a set-valued function.
In 3 we prove an extension of an existence result established in [2] for systems of

set-valued integral equations of the form
T

(1.2) y(t) Jo K(t, r)F(r, y(r)) dr, 0_-<t_-< T, y(r)[n.

Since more general kernels K(t, 7) are admitted than in [2], we are forced to use
Glicksberg’s fixed-point theorem as main tool instead of Bohnenblust-Karlin’s (see
[2]).

Section 4, the main section of this paper, brings a detailed study of the thermostat
equation (1.1). Since the kernel K of the thermostat equation turns out to have exactly
the properties needed for the application of the results of 3, an existence result for the
thermostat problem can be established.

We remark at this point that numerical calculations (see [2] for the one-dimen-
sional case) suggest that the temperature distribution approaches a periodic state very
rapidly. A proof of a corresponding result has not yet been given.

2. The mathematical model. The thermostat in question is assumed to have the
following characteristic. There exist upper (lower) threshold values r0(rl) for the

* Received by the editors February 8, 1980 and in revised form September 15, 1980.
5- Universitit Hamburg, Institut fiir Angewandte Mathematik, Hamburg, West Germany.
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temperature such that the burner of the heater is switched

--"oil", if the temperature rises and exceeds Zo,

--"on", if the temperature falls and drops below

This behavior can be interpreted as a hysteresis; see Fig. 1.

OFF

T1

FIG. 1. Hysteresis loop of the thermostat.

Let y(t) denote the temperature of the surrounding medium. Then the characteristic
may be described by a function f(y(t), ))(t)), the behavior of which can be read from
the phase-plane picture in Fig. 2.

+ in the hatched region,
f(Y, 3)

0 elsewhere.

FIG. 2

Analytically, f is given by

(2.1) f(y, 3)) 1/4(1-sgn (y rl))(1 -sgn 3).) +(1 -sgn (y to))(1 +sgn 3)).

The discontinuity of f would give rise to a discontinuous single-valued integrodifferen-
tial operator. In order to overcome this discontinuity, we switch from the single-valued
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tO the set-valued convexification of f; i.e., we introduce the function F" R2--> 2:

(2.2) F(y, )) =/[0’ 1] whenever I
{f(y, p)} otherwise.

y ’, -<_0,
’rl< y <’to, )=0,
y ’to, )>=0,

We now formulate our mathematical model. Let c [N be a bounded, open
domain, where N => 1 is an integer. We assume that 013, is a C-manifold.

For fixed T>0 and arbitrary (0, T) we set

(2.3) G:=Iq(0, T), F:=01q(0, T), F,:=01x(0, t).

The heat conduction process in 13, is governed by a parabolic equation of the form

(2.4) to-Y(X’ t)-Ly(x, t)=0 in G,

where L denotes a symmetric, uniformly elliptic operator of second order on f"

Ly(x):= E x/ aii(x)(x) +a(x)y(x),
i,/=1 Ox

a, aij C(-), aij aji, i, j 1," ., N,
N

E aii(x)PiPi >--colp[2, Co>0.
id=l

For the initial temperature distribution we assume for convenience that

(2.5) y (x, 0) 0, x 13,.

The heating process is modeled by a third boundary condition of the form

(2.6) By(, t)= g(()u(t), (, t) F.

Here we have set (with a fixed constant a > 0)

By() := aOy () + y

If n(:)= (nl(),..., nu(:)) denotes the outer normal at : 0D,, the outer conormal
derivative 0y(:) at is given by

zv Oy
Oy(’) := Y’. li()aij()().

i,]=l

Finally, the function g L(O) is assumed to be nonnegative on 0(l and positive on a
subset of 0t’l with positive measure. We assume that [Igll--< 1.

In terms of our model, the solid ll is heated at its surface; the time-dependent
"temperature input" u(t) is "distributed" by g() over the whole surface 0D,. For given
"temperature-input-functions" u(t) the system (2.4)-(2.6) is a well-posed parabolic
initial-boundary value problem (in suitable function spaces).

We now have to take into account, however, that u(t) is controlled by a thermostat.
Let the thermostat be positioned at the (fixed) point .f s fl. We now describe how u (t) is
determined by a heater. Here we choose a simple model to describe the relationship
between the control u and fuel supply v (see [5] for the open-loop case). To this end, let
v(t), 0 <-_ v(t) =< 1 denote the supply of fuel. We assume that with some fixed constant
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/3 > 0 we have

(2.7) tJ(t)+u(t)=v(t), t>0, u(0) 0

(" ." denotes differentiation with respect to t). The whole analysis.of this paper remains
valid if (2.7) is replaced by a higher order linear differential equation, Du v, with
appropriate boundary conditions.

The supply of fuel is controlled by the thermostat which in turn responds to the
temperature y($, t). Hence we obtain, with f as given by (2.1),

(2.8) v(t) f(y(2, t), 3)(, t)), >- 0.

We thus have arrived at the system (2.4)-(2.8) as our final model.
As motivation for the following sections we briefly indicate how the given system

can be transformed into a nonlinear integrodifferential equation; for details we refer to
4. Let K(x, t-r) denote the Green’s kernel of the initial-boundary value problem

(2.4)-(2.6); that is, let

(2.9) y (x, t) K (x, ’)u (r) dr.

or for short,

(3.1) y(t) J0 G(t, r)F(r, y(’)) dr.

Here F: Rn+l 2Rn is a set-valued mapping, and we assume that the bounded operators
Ai L[0, T] C[0, T],

T

(3.2) (Aiu)(t) := J0 Gi(t, "r)u(7") d’, 1,..

satisfy the hypothesis
(HI) Whenever {v,,},,c L[0, T] is a bounded sequence with v,---’*v for

some v L[0, T], then Air,,--, Air in C[0, T].

By (2.7) we obtain

(2.10) u(r) k(r- s)v(s) ds,

where k can easily be determined. A convolution of (2.9) and (2.10) yields for
y(t) :- y(Y, t) an integral equation of the form

(2.11) y(t)= G(t, r)C’(y (r), ) (r)) dr.

The integral operator on the right-hand side is not continuous which forces us to change
to its set-valued analogue as induced by the mapping F. Such integral equations will be
discussed in the next section. In order to stress the general structures we restrict our
attention to a more special case. The corresponding results for the thermostat equation
are established in 4.

3. Nonlinear set-valued integral equations. Let T > 0 be fixed. We consider the
system

T

y(t) | G(t, ’)F(z, yl(’), , yn(r)) dr, i= 1,’’ ’, n,
J0
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Let Cn[0, T] denote the space of continuous n-vector functions on [0, T]; L[0, T] is
the space of essentially bounded measurable n-vector functions. The norm of either
space is denoted by

By a solution of (3.1) we mean a function y Cn[0, T] such that there is a
v L[0, T] with

T

(3.3a) y(t) | G(t, z)v(z) d’, 0 <-_ <- T,
./o

(3.3b) v(z) e F(z, y(z)) a.e. (almost everywhere) on [0, T].

Now let A. L[0, T] Cn[0, T], A := (A1,.. , An) be defined by (3.2), and let

(3.4) A := A,

where " Cn[0, T] 2LT[’T] is defined by

(3.5) ve(y) iff v(z) eF(z, y(z)) a.e.

Then we may rewrite (3.1) as a fixed-point equation for the set-valued operator A,

(3.6) yAy.

We want to apply the following result:
THEOREM 3.1 (Glicksberg [4]). LetXbe a locally convex topological vector space,

and let M cX be nonempty, convex and compact. Let the mapping A M 2M satisfy
the assumptions"

(3.7) Ay is nonempty, convex and closed for every y M.

(3.8) The graph G(A):= {(y, ): y M, strAy} ofA is closed.

Then there exists a y M such that y Ay.
Theorem 3.1 yields as consequence:

COROLLARY 3.2. Let A. L[0, T] Cn[0, T] be as above, and let & satisfy the
assumptions:

(3.9)

(3.10)

(y) c L[0, T] is for every y Cn[0, T] a nonempty and convex set.

Ilvll <-_ c, whenever v &(y) and y Cn[0, T] with a fixed constant C>0.

(3.11) & is weakly closed; i.e., the graph of is closed with respect to the weak-star
topology ofL[0, T] and the weak topology of Cn[0, T].

Then there is a y Cn [0, T] such that y A(y).
Proof. Let X be the space Cn[0, T] equipped with the weak topology. We set

M := A(K), where K := {v LT[0, T]" Ilvll <_-c). By the linearity of A, M is convex.
Moreover, K is weak-star sequentially compact in L[0, T] and bounded. By
hypothesis (HI), A(K) is compact with respect to the weak topology of Cn[0, T]. (3.10)
yields AM M, and by (3.9) Ay is convex and nonempty for every y M.

According to Theorem 3.1, we are left to show that the graph of A is closed. To this
end, let {Yx}xA and {A}AA be Moore-Smith sequences in Cn[0, T] such that x Ayx,
A A, and ’x ’, yx y, for some so, y Cn [0, T].

Then : Av, with suitable vx (yx), A A. By (3.10) {V}xA is bounded in
L[0, T]. Hence there exists a subsequence {v,,},,, of {V}A such that v,,---’* v for
some vL[O, T]. By (3.11) we have v(y), and (H1) implies Avm---Av in
Cn[0, T]. The uniqueness of the weak limit yields : Av, i.e., Ay.
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We now assume"

(H2) The set-valued mapping F’[0, T] x Rn- 2R" satisfies the conditions:
(i) F(t,z)cR is nonempty, closed and convex, for every (t,z)

[0, T] x N".
(ii) F is upper semicontinuous" To every y (t, z) e [0, T] x I" and every

open set with F(y)c ’ there is a neighborhood U(y) of y such that
f(U(y) f’l ([0, T] x N")) c (.

(iii) Ivl-<M, with a fixed M>0, whenever veF(t,z) for some (t,z)e
[0, T] x N" (1" denotes the maximum-norm in

In [2, Lemma 3.4] we have shown that the operator b as given by (3.5) satisfies (3.9)
under the assumption (H2); (3.10) is an easy consequence of (H2, iii). Hence in order to
apply Corollary 3.2 to the given situation, we are left to show that b is weakly closed.
We need a result stated in [2]:

LEMMA 3.3. Let (H2) be satisfied. Then ]:or every y =(t, z)e[0, T]xN it follows
that

(3.12) F(y)= co F(U(y (’l ([0, T]xN")).
>0

(Here, ]:or [I ", the closed convex hull of I) is denoted by co D,).
Proof. See [2, Lemma 3.4]. l-I
TIEOREM 3.4. Let (H2) be satisfied. Then the operator c as given by (3.5) is a

weakly closed operator; i.e., c satisfies (3.11).
Proofi Let {Yx}xA C,[0, T] be a Moore-Smith sequence such that yx--y for

some y e Cn[0, T]; moreover, let vx e b(yx), e A and vx ---’*v for some v L[0, T].
We have to show that v e b(y). Since {vx} is a bounded subset of L[0, T], a
subsequence v,, m N, of {vx } converges in the weak-star topology of L[0, T]. By the
uniqueness of the limit, v,,---’*v. Let Ym be the element of {yx} associated with
rnN.

Let 6>0 be given, and let te(0, T) be fixed. Since y,,---" y, y,(s) y(s) for every
s [0, T]. Hence there is an no(t, 6) such that

6
(3.13) [ym (t) y(t)l <

whenever m >--no(t, 6). Now Y,n is uniformly continuous on [0, F], which implies that
there is an ho(m, 6) such that

(3.14) [y,(t+h)-y,(t)l<-, m>-l,

whenever 0 < [hl < ho(m, 6), + h [0, T]. Without loss of generality we may assume
that

(3.15)

(3.16)

(3.17)

(3.13) and (3.14) yield

0 < h0(m, 6) < 6 for all 6 > 0 and all m,

ho(m, 6) 0 for m oo, 6 > 0 fixed,

+ ho(m, 6) [0, T].

ly,(t+h)-y(t)l<

whenever m >=no(t, 8) and O<]h[<ho(m, 6). Hence, for such m and h,

(3.18) v,(t+h)eF(t+h, y,(t+h))cF(t+h, U(y(t)))cF(U(t, y(t))).
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For fixed 6 > 0, let h, := ho(m, 6). From standard arguments we can conclude from
(3.18) that

(3.19) 1 _I ’+h"2h,, ..,_hm
V,,(S) ds co F(U(t, y(t))).

From Vm---* V we obtain for m o

v(t) co F(U(t, y(t)) a.e. on [0, T];

hence

v(t) f3 coF(U(t, y(t)).
8>0

Lemma 3.3 proves the assertion. [q

Remark. Theorem 3.4 seems to be of some interest by itself. It should be noted
that the same proof works if we merely assume that {Y}aA converges pointwise,.
instead of weakly, to y.

Combining the results of Corollary 3.2 and Theorem 3.4, we have established the
following result for the set-valued fixed-point equation (3.6).

THEOREM 3.5. Let the set-valued integral equation (3.1) be given, and let

(3.20) the set-valued mapping F :[0, T] n - 2an satisfy (H2), and

(3.21) the operators (3.2) satisfy (HI).

Then (3.1) has a solution in the sense of (3.3).

4. Existence of a solution for the thermostat system. We now discuss the
feedback-system (2.4)-(2.8) which comes from the thermostat problem. We transform
the system into an equivalent set-valued integrodifferential equation.

LEMMA 4.1. For every v L[0, T] the initial-value problem

(4.1) fi(t)+u(t)=v(t), t>0, u(0) 0

has a unique solution u H [0, T] which is given by

(4.2) u(t) -1 e-,/ Io eS/%(s) ds.

The linear, bounded operator $" L[0, T] H [0, T], Sv u is continuous with respect
to the weak-star topologies ofL[0, T] andH [0, T], respectively.
Next we consider the linear operator T which assigns to every u H] [0, T] the
(generalized) solution of the following initial-boundary value problem t x

0
(4.3) 0S y (x, t) Ly (x, t) 0 in G,

(4.4) y(x, 0) 0 in

(4.5) By(, t) g()u(t), (, t) F.

The denotations have the same meaning as in 2.
Now let A,,(4,) denote the eigenvalues (normalized eigenfunctions) of the elliptic
problem

(4.6) Ld/(x) + A(x) O, x
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(4.7)

(4.8)

(4.9)

(4.10)

Let us introduce the Green’s function

(4.11) K(t,x;r, sc): e
m=l

By well-known results stated in Agmon [1, Thm. 14.6, pp. 103ft.] we have

{m} is a complete orthonormal system in L2(’),

hm- +x3, Am c m 2/N,
O(m’) for some ,

’m C(), (4.9) holds for any derivative of ’m.

--m(t--r)ltm (X )ltm ()

for 0-<_r<t-< T, x

To every u C[0, T], the unique solution of (4.3)-(4.5) is given by (see Glashoff-
Weck [3])

(4.12) y(x, t; u): 2 e-"(t-’)Om()g()u(r) drdOm(X).
m=l

By (4.8), (4.9) summation and integration may be interchanged, and we obtain

(4.13) y(x,t;u)=Ir K(t,x;r,)u(r)g(C)drd.

We now define the operator T which assigns to every u L[0, T] the generalized
solution of (4.3)-(4.5) at x "

(Tu)(t) := y(, t; u)= I_ K(t, ; r, )u(r)g() drd

(4.14) Io k(t-r)u(r) d’,

where

k(s) := | K(s, ; O, )g() d.

The maximum principle yields (see [3])

(4.15) k(s) >- O, s [0, T],

16) k (.) L[0, T], Jo k (r) dr <-<_ 1, [0, T].(4.

LEMMA 4.2. T maps L[0, T] into C[0, T].
Proofi Let 0 -<_ s < =< T. Then we have

Tu(t)- ru(s)= Jo (k(t-r)- k(s -r))u(r) dr + J k(t-r)u(r) dr.

Since k (.) L[0, T], the second integral converges to zero as s approaches t. Moreover
we have lim-,t-o k(s-r)=k(t-r) for t>r. Thus by Lebesgue’s theorem, the first
integral also converges to zero for s t. 71

The following lemma shows that the operator TS maps L[0, T] into C1[0, T]:
LEMMA 4.3. (Tit)= Tit, for every u H [0, T] with u(O)= O.
Proof. Let u eH [0, T] with u (0) 0 be given, and let e [0, T] and h > 0 be such
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that + h _-< T. Then we obtain

h-X((Tu)(t + h)-(Tu)(t))
t+h

h-I I k(t + h -r)u(r) dr- h -a | k(t-r)u(r) dr
aO aO

h

h-a Jo k(t+h-r)u(r) dr

t+h

+h-a {f k(t + h -r)u(’) d’- fo k(t-r)u(r)
ah

=:Ja(h)+J2(h).

The first summand Ja(h) converges to zero for h -->0 since u(0) 0 and (4.16)"

lim Ja(h)= k(t)u(O)=O a.e. on [0, T].
h--,0

For the second expression we obtain

k(t-r)
u(r + h)-u(r)

dr.
h

Since u eH [0, T], we have a.e. on [0, T]

lim h-a{u(r + h)- u (r)}
h-0

Equation (4.16) and Lebesgue’s theorem yield

lim Ja(h)= | k(t-r)fi(r) dr.
h-O

The lemma is proved.
Now let us consider the set-valued mapping F" Rz- 2n as defined by (2.2). F induces
the mapping

(4.17) 4" Ca[0, T]-- 2L[0’T]

by

(4.18) v6b(y) iff v(r)F(y(r),p(r)) a.e. on[0, T].

We now define"
DEFINITION. 39(X, t) is called a solution of the thermostat problem (2.4)-(2.8) if and

only if y :=)(Y, .) Ca[0, T] is a solution of y
L[0, T] with (4.18) and y TSv.

The main result of this paper is"
THEOREM 4.4. The thermostat problem has a solution.
Proof. We want to apply Theorem 3.1. The method of the proof is close to that of

Theorem 3.5; we thus may be brief and refer to 3.
Let X be the locally convex topological vector space C[0, T] with the weak

topology. We set M := TS(V), where

V := {v e t[O, r]:
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M is convex by the linearity of both T and S, and Lemmas 4.1-4.3 yield M c X. We
show that A(X) c M, hence in particular A(M) c M. In fact, by definition of F we have
b (X) = V and thus A(X) TSc (X) TS(V) M.

LEMMA 4.5. Let {v,,},, be a bounded sequence in L[0, T] such that v,,---’* v for
some v L[0, T]. Then it follows that Tv, Tv.

Once Lemma 4.5 is proved it follows that M is weakly relatively compact in
Ca[0, T]: If {x}XA is a Moore-Smith sequence in M, we have :x TSvx, with

v V,A A.
The bounded subset {va}x,x of L[0, T] contains a bounded subsequence

such that v,,---’* v for some v L[0, T]. Then it follows that Sv,---’* Sv in HI [0, T],
and Lemmas 4.3 and 4.5 show that ’,, TS v,, TSv in Ca[0, T].

The other assumptions of the fixed-point theorem can be verified as in 3, since F is
obviously upper semicontinuous. Hence with Lemma 4.5 the proof of Theorem 4.4 is
complete. I-1

Proo]’. Let {v,,}, be bounded in L[0, T] and v, *v for some v L[0, T].
We have to show that Tyro-- Tv, i.e., that with w,, := v,, -v, m 1"

T

for every normalized function a of bounded variation on [0, T]. Now, since k(.)
LI[0, T] and w,,---** 0, we have pointwise on [0, T]

Zm(t):= IO k(t--’)Wm(r) dr= I0 k(s)wm(t-s) ds--,O,

for m co. Moreover, we have, with a constant 3’ > 0, IIw lloo % since (vm} is bounded.
(4.15) and (4.16) yield pointwise on [0, T] for every m N

Iz. (t)l <-- IIw. ll [ k(s) as <- y.
.o

We thus can conclude by Lebesgue’s theorem that for every normalized function a of
bounded variation

T

lim Io z, (t) dc (t) 0.
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THE RADIAL WAVE AND EULER-POISSON-DARBOUX EQUATIONS
WITH SINGULAR DATA*

L. R. BRAGGer

Abstract. Representations of generalized dissipative solutions of the radial wave and radial Euler-
Poisson-Darboux equations are obtained corresponding to singular initial data. The data have the structure
6e(r) (r), in which (r) involves a pole or logarithmic singularity at 0 and 4,(r) is entire in 2. Uniqueness
is discussed. Differentiability of solutions in the neighborhood of the characteristic line is also treated.

1. Introduction. Let /z and k be real parameters with/x >-1 and k _-> 0 and let
A, D2 + ((tz 1)It)Dr denote the radial Laplacian operator. We shall be concerned
with the structure of dissipative solutions of the following hyperbolic problems"

02W(r,t)
Otz

=A,W(r,t), r,t>O,

(1.1)
W(r, 0+) O, W(r, O+)=(r), r>O,

and

(1.2)

oZE(r, t) k OE(r, t)
Ot2

+- A,E(r, t), r, > O,
Ot

E(r, 0+) qb(r), Et(r, 0+) O, r > O,

in which the real-valued function (r) has a singularity at r 0. More precisely, (r) has
the form &(r)=Se(r). 4,(r), in which 4,(r) is entire in r2 and 6(r) contains a pole,
logarithmic singularity or both at r 0. The equation in (1.1) is the radial wave
equation while the one in (1.2) is the radial Euler-Poisson-Darboux equation. The
solution of the equation in (1.1) in which W(r, 0+) (r), Wt(r, 0+) 0 is, of course, a
solution of (1.2) corresponding to k 0. In this, a solution, say W" (r, t), will be called
dissipative if, for > 0, limr_.0 W" (r, t) exists and is finite. Closely related to (1.1) and
(1.2) is the radial heat problem

(1.3)

Ou(r, t)
Ot

=A,u(r,t), r,t>O,

u(r,O+)=(r), r>O.

There are a number of reasons for carrying out this study. In [8], [9] the author and
J. W. Dettman developed representations of solutions of (1.1) and (1.2) (and their
generalizations) in terms of Jacobi polynomials under the assumption that (r) is
analytic in rE. Our purpose here is to extend the treatment to handle data containing
singularities. We shall be concerned with (i) determining how a singularity in the data
propagates throughout the hyperbolic solution function and (ii) determining the
differentiability properties of these solutions near the characteristics. A solution here
will be taken in the following generalized sense: continuous and piecewise C2. For
example, if/x 3 and &(r) r-1, then the function W(r, t) t/r for < r and 1 for _-> r is
a generalized solution of (1.1). A singularity of the type considered may be viewed as

* Received by the editors October 4, 1979, and in revised form September 5, 1980.

" Department of Mathematical Sciences, Oakland University, Rochester, Michigan 48063. This work
was supported in part by Oakland University Research Funds.
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introducing an impulse or a point "explosion," and the problem is to determine its effect
on the hyperbolic solution. Such a study could serve to assist in formulating methods for
treating more general types of singular hyperbolic problems. A number of examples of
closed form solutions of (1.1) are given to illustrate some of the typical types of solution
behavior that could be expected.

A study similar to this was carried out by the author in connection with the initial
value problem for the radial heat problem (1.3) [3]. In that case, a solution exists in the
classical sense if + 5(r)r-" dr exists for any finite, positive a. We shall call upon
the results for this heat problem to treat (1.1), (1.2) by the use of the methods of
related partial differential equations [5], [6], [7]. By these means, we can transform
results for (1.3) into corresponding results for (1.1) and (1.2). Differentiability proper-
ties of the solutions of (1.1) and (1.2) will then follow from general results associated
with the Laplace transform. As would be expected, more restrictions are needed for the
existence and smoothness of solutions of (1.1) and (1.2) than are needed for (1.3).

The basic mathematical notions, techniques, and background needed for this study
will be developed in 2. Included in this will be a uniqueness theorem that will make
clear the types of solution functions permitted. A somewhat detailed treatment of a
simple pole will be given in 3. Results for a more general type of pole will be obtained
in 4. Finally, 5 will treat logarithmic and mixed singularities.

The reader is referred to R. W. Carroll [17] for a general background in related
partial differential equations and transmutations. In this, the author treats the Euler-
Poisson-Darboux problem in a function space setting. Also, see [18] for a treatment of
singular equations.

2. Preliminaries. We now summarize the basic ideas, tools, and results that will be
needed in the ensuing development. A solution notation similar to that used in [-3] will
be introduced that will permit us to easily distinguish between the different solutions of
(1.1) and (1.2). We also include (i) a uniqueness result that will make clear the types of
solutions of (1.1) and (1.2) under consideration and (ii) some typical types of cal-
culations involving inverse Laplace transforms that will be called upon later.

As was mentioned, we will need to make use of results for the radial heat problem
(1.3). Throughout this paper, we will denote the "appropriate" solution of this problem
by u" (r, t, 4)) in order to clearly indicate the precise value of the parameter/x and the
underlying data function b(r). Similarly, we denote a solution of (1.1) by W"(r, t,
and a solution of (1.2) by E" (r, t, 4)).

DEFINITION 2.1. An entire function 4) (z) Yq=o aJzl is of growth (p, r) if and only if

(see 1 ]).

THEOREM 2.1. Let 0(r) Y-i=0 air21 be an entire function in r2 ofgrowth (1, o.). Then
there exists a solution u"(r, t, ) of (1.3) of the form q=oaiR+;(r, t) in the time strip
It[ < 1/4o- in which the R’(r, t) denote the radial heat polynomials [2].

THEOREM 2.2. Let,(r) be an entire]unction ofgrowth (1, o-) in rE. Then a solution of
(1.1) with qb(r) replaced by (r) is given by

(2.1) W"(r, t, O)= r .-1 S-3/2UlX r,-S’
s+t2’

and a solution of (1.2) with 4)(r) replaced by O(r) is given by

E(r’t’g/)=tl-kF(k+l)-l{’2 s-(k+l)/2Ut* r, S_S,(1 4")}._,t,,
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in which -1 {. }s_,t2 denotes the inverse Laplace transform with s the variable of the
transform and 2 the variable of inversion (see [6], [7]). The transformations (2.1) and
(2.1’) provide the basic means for obtaining solutions of (1.1) and (1.2) from the
corresponding solution of (1.3). Since O(r) is entire in r2, the functions W (r, t, g,) and
E(r, t, 4’) that correspond to 4(r) exist and are entire for r, >- O. The results in [3] show
that 4,(r) can be replaced by (r) 5t’(r) 6(r) and that solutions of (1.3) can be obtained
for a variety of singularities in 5t’(r). The transformations (2.1) and (2.1’) apply in these
cases as well if 5t’(r) is somewhat restricted (the "smoothing" associated with the heat
problem permits more badly behaved singularities in the data).

We now give a brief discussion of the uniqueness question for solutions of (1.1) and
(1.2) and consider some of its implications. Recall that

DEFINITION 2.2. A solution W" (r, t) of (1.1) orE(r, t) of (1.2) is dissipative if, for
> 0, limr-,o W (r, t) or limr-O E(r, t) exists and is finite [3].

The importance of this definition can be illustrated by the following examples. In
(1.1), select tz =4, (r)= r-z and 4,(r) 1. Then

t

W4(r, t, q)= rz

r-Z[t C(t2 r2) l/a]

for < r,

for >- r,

in which C is an arbitrary real constant. Among these solutions, the only dissipative one
results from the choice C 1. Without a condition of this type, uniqueness fails because
r 0 has been excluded from thedata and solution regions and it is possible to construct
nontrivial solutions of (1.3) that have support at r =0 but which vanish.for r>0, =0.
(The Tychonov and Widder type uniqueness theorems for solutions of the heat problem
require that r 0 be included in the data and solution regions [11], [14], [15].) Similarly,
we note that the function u(r, t) In r + 2t/r2 is a solution of (1.3) for/x 4 and r > 0
that corresponds to (r)= Inr. It fails, however, to have the dissipative property. So
also do its transforms (2.1) and (2.1’). The solution function, in this case, has a more
badly behaved singularity at r 0 than do the initial data. By a slight modification of the
proof of the uniqueness theorem 6.1 of [4], we can establish the following result for
W (r, t) (and E(r, t) for tz + 1 -> k _-> 0).

THEOREM 2.3. Let tz >- 1 and let W"(r, t) C2 and satisfy (1.1) in each of the
regions 0 < r < and 0 < < r. Suppose that

(a) W (r, 0+) Wt(r, 0+) 0 for r > O,
(b) W (r, t) is dissipative, and
(c) W (r, t) is continuous across the line r.

Then W"(r,t)=-O forr>-O, t>0.
The condition (b) replaces the inclusion of the line r 0 in the earlier theorem. As a

consequence of this result, we transform only dissipative solutions of (1.3) and restrict
the choice of singularities so that condition (c) of theorem 2.3 is satisfied.

From (2.1) and (2.1’), we note that

(2.2) w" (r, t, )= tE (r, t, ).

More typically, we will need to carry out inversions of the following type:

5g_l{e-r2eSuX(r/i-, 1/4s, 4,)}S
p s’r’
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in which r > 0, > 0, A => 0. From (2.1’),

..-1 s-i/2uX r ’s’ s_

and, for p > 1/2,

1

1"(1/2)

(2.3) -{S -(p-l/2) e-,,_,
in which [16]

o{o(2.4) (a b)+
(a b)

Using the convolution property, we have

(2.5)

-/2E 1/2z (r/]-, - 0),

(,/. _2 .\p-3/2
--r S)+

F(p- 1/2)

if a <b,
if a >b.

1 f,-e (. r2 0") p-3/2’’-1/2’ 0"1/2,+ o(r/1 :, O)&r,/F(p 1/2) o
for p >1/2. In this, z is usually replaced by 2. Since the inversion (2.5) occurs in
connection with various types of poles, it is clear from (2.4) and (2.5) that special
attention needs to be given to the solutions of (1.1) and (1.2) at r. If p <- 1/2 in (2.3), the
inverse transform will exist in (2.5) in the sense of distributions but will usually fail to
lead to solutions of (1.1) and (1.2) that are continuous at r. Standard results from
Laplace transform theory show that a condition that is sufficient (but not necessary) to
ensure that solutions of (1.1) and (1.2) (that involve the inversion (2.5)) C at r is

(2.6) < p , 0, 1, 2," ’,.

In applying (2.1) and (2.1’) to solutions of (1.3), one must frequently interchange
the order of integrating a function of several variables and computing its inverse
Laplace transform. For the types of data treated here, this can be readily validated using
standard results on the interchange of orders on integration in connection with uniform
convergence. See, for example, [10, p. 497].

3. An elementary pole. In this section, we discuss (1.1) and (1.2) when b (r) has the
form b(r) r-l(r) with (r) entire of growth (1, or) in r2. This case will provide us with
some interesting special cases of wave propagation (for various values of k and/z) and
will furnish a model for treating other types of singularities through use of (2.1) and
(2.1’).

By [3, Theorem 4.3], an elementary change of variables and the definition of a, it
follows that, for > 1,

(3.1) u’(r, t, b)=(4crt)-/2 f -l/2(1--j)(g-3)/2e-r2tj/4tug-l(r/---, t, O) dj.
Jo

An application of (2.1) to (3.I) and references to the remarks in the final paragraph of
2 shows that

(3.2)
W’(r, t, dp)

=lf0:_1,/2( 1 ,)(,_3)/2{ ,]_, [ S
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in which r 2. But, by (2.5) with p 1, the bracketed term in the right member of (3.2)
has the evaluation

1 IO
r2d

(’r-r-0-)7_l/20--1/2E-1 (r4---, 0"1/2, t) do-.

Upon replacing r by 2 and inserting this back into (3.2), we obtain

W"(r,t,$)
(3.3) 1 IE a/2(1=2-7 s-

t2-r2

(t2- r2s 0-)-1/20--1/2E-1 (r/i----, 0-1/2, 0) do’} as,
in which the region of integration E is taken to be the interval [0, 1] if t2_-> r and the
interval [0, t2/r2] if <r. This shows that the form of the solution W"(r, t, 4)) is
dependent upon the position of the point (r, t) in relation to the characteristic line r.
Since E"- (r, t, 0) has the dissipative property, it is readily seen that W (r, t, &) also
has this property. Summarizing, we have

THEOREM 3.1. Let tx > 1 and let O(r) be an entire function ofr2. Then the dissipative
solution of (1.1) corresponding to &(r)= r-lO(r) is given by (3.3).

Similarly, an application of (2.1’) to (3.1) for/x > 1 gives

(3.4)

E(r,t,&)=

,k + 1.,)
_

F
2

Again, by (2.5) with p = k/2, the bracketed term in this becomes, for k > 1,
--1/2 r--t2

7’/" f (-- r2,--0-)(+k-3’/20--1/2E3"-I (r#’i--Q, 0-1,2 {//) do’.

I(k-1)2 .,o

Upon replacing r by 2 and replacing this back into (3.4), we get

E(r, t, O) (k--4rrl)tl-k f01 7-/2(1 :)(tx-3)/2

(3.5) Iot2-r2ti (t2 r2-- 0-)(k’-3)/20--1/2

Ea- (rx/1- :, 0-1/2, d.

When we evaluate this, the bracketed integral vanishes if t2< r2 Using the con-
dition (2.6) and its implications, we see that E (r, t, &) C at r if 21 + 1 < k for
0, 1, 2,.... Summarizing, we have:

THEOREM 3.2. Let tz > 1 and let g,(r) be an entire]unction ofr2. Then the dissipative
solution of (1.2) corresponding to &(r) r-O(r) is given by (3.5) ]’or k > 1. If 21 + 1 < k,
then E(r, t, &)e C at r.

Whether the function W (r, t, &) of Theorem 3.1 or E" (r, t, &) has more than the
minimum number of derivatives at r will depend upon the properties of &(r), i.e.,
whether g,(0)= 0. The following examples will illustrate the possibilities.
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1/2Example 1. Select O(r)= 1. Then for any/x > 1, E-1 (rx/1 :, o" O)= 1, and it
follows that the inside integral in the right-hand side of (3.3) becomes

t2 r2s 0")-/20"-/2 &r,

which has the value zr. Hence,

(3.6) W’ r, t, s) dsc, /z > 1.

If t=>r, the E in (3.6) is the interval [0, 1] and the right side of (3.6) reduces to
B((/x- 1)/2, 2x-). However, if <r, E=[0, t2/r2] and the integral in (3.6) defines the
incomplete beta function 1/2B(1/2, (/z- 1)/2, t2/r2) (see [13, p. 356]). Using the hyper-
geometric series for this last function, we obtain

(3.7) W"(r, t, )
[2F(3-21,_; 2,r

for >-- r,

for < r.

If/z is an odd integer with _-> 3, the series for 2F1 terminates (the choice/z 3 yields
the example given in the introduction). Along the characteristic line t= r, the
incomplete beta function reduces to B((- 1)/2, 1/2) so that W" is continuous there.
Since 0 W"/Ot 0 for > r and 0 W’/Ot # 0 for < r, 0 W’/Ot is discontinuous there.

Remark 1. The function

E" (r, t, r -1) 1 fo s_/2(1_ )0*-3)/2(t2 _r2)gl/2 dsC,

is a "solution" of (1.2) corresponding to k 1. If > 2, E’ is continuous at r. This
shows that condition (2.6) is sufficient but not necessary. E’ is not continuous at r if

4. Other types of poles. We can use the techniques of 3 to obtain representations
of dissipative solutions of (1.1) and (1.2) when the function (r) contains a pole of a
more complicated form that can depend upon certain parameters. We treat solution
representations of two different types corresponding to &(r)= r2-"-2’0(r), a real. In
view of the relation (2.2), our general discussion will pertain to solutions of (1.2).

Case 1. $(r)= r2--2O(r), 0_-<a <1/2, /z >2. With elementary changes in the
variables of integration and the definitions of S, (r, t) and a, it follows from [3, Theorem
4.2] that

(4t)-(/2+-1) Iou" (r, t, b -(-7-d-2-)

An application of (2.1’) to this function u" gives

(4.1)
E(r,t,O)=

F(k+l) -2
F(/x/2 + a 1)

(1 )-""/2+-2K(r, t, )
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in which

(a) K(r, t, ) -l e-rzsu2-2"(r/1-’ 1/4s,O}s (k +3)/2-t/2-a
St

(4.2) ([0, 1 if >_- r,
(b) E =If0’ tZ/r2] if < r.

From (2.4) and (2.5) we find that the function K in (4.2a) is given by

(4.3) K(r, t, )=

0 if z < r2,
1 t2--r2

f (t2 r2 O.)(k-)/2-a
o

1/2 2cr-/EE2o-2 (r4], tr ,0)&r if > r2:.

We have obtained (4.1) and (4.3) on the assumption that 1/2(k + 3-/x)- ce > 1/2. Suppose
4,(0) 0. Using the condition (2.6) here shows that the function in (4.1)e C if
< 1/2(k + 2 -/x) a or 2l 2 +/z + 2a < k. From this and the relationship (2.5), we have"

TI-IEOREM 4.1. Let E(r, t, c) be a dissipative solution o[ (1.2) corresponding to
b(r) r2-"-2a if(r), 0 _-< a < 1/2,/x > 2. ThenE(r, t, cb) is defined by (4.1) with K(r, t, )
given by (4.3). If 4,(0): 0, then the function E(r, t, b)6 C (l 0, 1, 2,...) provided
that 21 2 + Ix + 2a < k.

THEOREM 4.2. Let W’(r, t, qb) be a dissipative solution of (1.1) corresponding to
b(r)=r2-’-2 (r), 0_-<ce<21-, /z>2. Then W"(r,t,b)=tE(r,t,b) with E(r,t, qb)
defined by (4.1) and K(r, t, ) given by (4.3). ff(0) # 0, then W’(r, t, ) is continuous
across r but is not differentiable across this line if tx <-4 and a <-2- 1/2Ix. If Ix > 4 and
4,(0) # 0, W’ (r, t, qb fails to be continuous at r.

1/2Example 2. Suppose that (r) 1 and/x/2 + c < 2. Then E2o-2 (r/ , tr t)
1 and an elementary change of variables gives

K(r, t, $)= ---a
O,

From (2.4) and (2.5), we obtain

)/2-a, 2 > r2,

W’(r, t, cb)= ,/z+-z(1 ’)- (t2 r2s)(3-*)/2-a d:,
2F(/./2 + a 1)r(2 -/,/2 a)

in which E=[0, 1] if t>=r and [0, t2/r2] if t<r. From the integral defining the
hypergeometric function 2Fl(a, b; c; z) (see [13, p.54]), we obtain the evaluations

/r ’
W’(r, t, &)= J r(3/2)F(_l-a)t3-"-: F1 (/x -3 /x

<r,

>=r.
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For the special case #x 3, this simplifies to

(4.4)

1

W3(r, t, )
2(1 2a)r

1
(1-2a)r

[(r + t)-= -(r- t)’-],

[(t + r) 1-2<’ (t- r)l-2<’],

Let h(r,a) denote the value of W3(r,r,)) for a fixed r>0. Then h(r,a)=
(1-2a)-1(2r)-2<’. It is immediate that lim_,(1/2)-h(r,a)=oo. If r<=e/2, h(r,a) is
monotone increasing in a. If r > e/2, it is easy to show, by elementary calculus, that
h (r, a) decreases for 0 -< a -< 1/2(1 1/In 2r) and then increases. The graph of W3 versus
for a fixed value of r (r 3) and various choices of a is given in Fig. 1. The choice a .22
yields the minimum value of h (3, a). If a > 0, there is a vertical cusp in the solution
curve at 3.

W

=7/16

-a .22

FIG.

Example 3. The example given in 2 to illustrate the dissipative property for the
choice C 1 corresponds to the choices #x 4 and a 0 in Theorem 4.2. The graph of
this function W4(r, t, t) (=t/r2 for <r and r-2[t--(t2--r2)1/2] for t>--r) versus for
various choices of r is given in Fig. 2. We again see that, for each r, W is continuous at
t- r but is not differentiable there.

W

/
/ \

.5 2

FIG. 2

r--.5

=r=2

Case 2. &(r) r2-z-2a{fl -+- r2b(r)},/3 real, a < 1. It follows by [3, Theorem 4.1]
that the dissipative solution of (1.3) is given by

/3(4t)-"/2-<’ Io "/2+<-2(1 -)-< e -’2el4, du"(r, t, )
r(tx/2+a 1)

(4.5)
(4t)2-12-<’ Io1/2+,-3(1 :)l-a-r2lff4tu4-2a

F(tx/2 + c 2)
e

(r4i-L--, t, 4’) d:.
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Applying (2.1’), (2.4) and (2.5) with p (k + 5 -/z)/2 a in the second integral in (4.5),
we find that

(4.6)

in which H*(r, t, )= K*(r, t, sc) 0 for t2< r2 and

(4.7)

(t2_r2)(k+l-)/2-
(a) H*(r, t, j)

r(k +3-_c)2

(b)

for 2 > r2sc,

-1/2

K*(r,t,)

F(k +2-/z_c)2

I0
t2-r2

(t2-r2-ce)+2-’}/2-er-1/2E4o-2(rx/l’-, o"/2, O) do’.

We note that the second integral in the right member of (4.6) C for l=
0, 1, 2, , if k is selected so that 2l 4 +/x + 2a < k <_- 2l 2 +/z + 2a and /2 + a > 2.
On the other hand, the first member on the right side of (4.6) defines a hypergeometric
function. By applying the usual differentiation formulas for this, we find that this first
term Ct, for 0, 1, 2, , if k is selected so that 2l 3 +/x + 4a < k and/z/2 + c > 1.
If k 2, as in the case of the wave problem (1.1), this last condition on becomes
21 //x / 4a < 5. From this, we obtain"

THEOREM 4.3. Let E(r, t, c) denote a solution of (1.2) corresponding to c(r)=
r2-tz-Ea (fl / r2O(r)),/3 real and a < 1 as given by (4.6). Depending upon the choice of
and the value of (0), we have

(a) If flO, d/(O)#O and tx/2+a>2, then E(r,t, qb)CI, l=O, 1, 2, ..., if
k > max (2/- 3 +/x + 4a, 2l 4 + / 2a).

(b) If fl O, b(O) # O and lx/2 + a > 2, then E(r, t, c Cl, O, 1, 2, ..., if
k >2/-4+/z +2a.

(c) If fl O, 0(0)=0 and tx/2+a > 1, then E(r, t, qb)6 C, /=0, 1, 2,..., if
k >2/-3+/z +4a.

This theorem applies, of course, to the problem (1.1) when k 2. In particular, if
/3 0 and if(0) 0, (b) shows that W" (r, t, b) CO at r if 2 </x/2 + a < 3 but fails to
be differentiable there. If/3 # 0 and 0(0)= 0, the conditions in (c) becomes 2l +/x +
4a < 5 and/x + 2a > 2. From these we see that W’ (r, t, b) CO at r if + 2a > 2 and
/x + 4a < 5 and W" (r, t, &) C at r if 2 </x + 2a and/z + 4a < 3. In the first case, we
can select/x so that 2 </z < 5 and then choose a positive but sufficiently small so that the
required inequalities are satisfied. To get differentiability at r, we must restrict/. to
the interval 2 </z < 3. This discussion with some typical calculations for the hyper-
geometric function justify:

THEOREM 4.4. Suppose that 2 < tx < 5 in (1.1). Then the most badly behavedpole in
& (r) that will lead to a dissipative solution of (1.1) that is continuous at r has the form
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&(r) r-(+1)/2+e e > O. The solution corresponding to this (r) is

W"(r,t,&)= F F ,5-+
4

2FI{IX 1 _e_ Ix + 1
4 2’ 4

(5-Ix_e Ix+l e 3 )r(,+l)/2_e 2F1 4 ’ 4 2 2’

E Ix
2’2’

At r, the two parts of this have the common value

F(3/2)F(e) r(l_z)/2+

r( ..+ F +
4 4

t>r,

Finally, limt_, W" (r, t, )= 0.
Remark 2. In the case of the radial heat problem (1.3), the data can have a pole of

the form r-’/, e > 0, for a given Ix and give rise to a differentiable solution. This clearly
points out the difference between the smoothing in the heat solution and the wave
solution.

5. Logarithmic singularities. We finally treat (1.1) and (1.2)when &(r)= (r) In r,
in which (r) is entire in r2 or else contains a pole. As in 3 and 4, one can transform
representations of solutions of (1.3) corresponding to such data by means of (2.1) and
(2.1’). While we shall do this when (r)= r2-", it is useful to examine some general
results for logarithmic singularities. We will have occasion to use the following inversion
for Laplace transforms,

{lns1 F(1)(I)rl-x 1 t_
(5.1) - ---j,_.,= (F(/))2 F(/)

r In r,

for > 0.
For Ix > 2, a dissipative solution of (1.3) with the above choice for (r) has the form

(5.2) u "(r, t, 4’)= u " (r, t, )In r + U" (r, t),

in which U(r, t) is a dissipative solution of the nonhomogeneous heat problem

Ut(r, t) A,U(r, t) + f(r, t), r, > O,
(5.3)

U(r, 0+) O,
where

(5.4) f(r, t) 2Ur" (r, t, P) + Ix -2 2..u ’ (r, t, ).

The solution of (5.3) can be expressed in the symbolic form

(5.5) U(r, t)= fo e’-’)af(r’ rl) drl,

with this formula to be interpreted as follows. Treating r/as a parameter, first construct
a dissipative solution u"(r, t, f(r, r/)) of (1.3). Then replace by t-r/and integrate this

resulting function from 0 to t. From (5.4), it is evident that U(r, t) is constructed from a
function involving a pole and this imposes the restriction Ix > 2. The dissipative solution
of (1.2) (and, hence, (1.1)) can be obtained from (5.2) and (5.5) by applying the
transform (2.1’). Thus we have:
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THEOREM 5.1. For/x > 2, let E(r, t, ) be the dissipative solution of (1.2) cor-
responding to &(r)= (r) In r. Then this solution has the form
(5.6) E(r, t, ) E(r, t, ) In r + G(r, t),

in which G(r, t) satisfies the nonhomogeneous problem

(5.7)

Moreover,

k
Gtt(r, t) +-Gt(r, t)= A,G(r, t) + f(r, t),

G(r, 0+) Gt(r, 0+) O, r > O.

G(r, t)=t1-k F(k+2 1)’]-1{ s-

r, t>0,

2(A) (r) entire in r2. If (r) =o aJr2i is entire in r2, then u " (r, t, ) is entire in r
and the function f(r, t) in (5.4) involves, at worst, a pole of the form r-2. One can then
use (5.5) to obtain the corresponding U"(r, t) in (5.2). Since the term ao In r clearly
leads to the most badly behaved portion of the solution (5.2), we construct the solution
of (1.2) (and hence (1.1)) corresponding to the choice of (r)= 1.

If (r)= 1, then u " (r, t, 1)= 1 so that f(r, t)= (/z -2)r-2. By (5.5),

U" (r, t) (/z 2) Jo e(t-n)a"(r-2) dr/.

Using [3, Theorem 2.1] to compute e(t-n)A,(r-2), we obtain after some changes of
variables of integration that

U"(r,t)
2 fol :-11/o4

O
"p’/2-2 e-r2(1-cr)/4t dr d.

If we add this to the term u ’ (r, t, 1) In r In r in (5.2) and apply (2.1’), we obtain

E:(r, t, ln r)
(5.9)

In r + (/z 2)tl-k Iol Iol ( )4 -1"P’/2-2 t2 r2(ltr). do" d.
+

By an application of (2.4), one can obtain the precise regions of integration according as
_-> r or < r namely

(,, o.) [0, 1Ix [0, 1]f’l { (, tr)" tr->max (0, 1 t---) }.
Example 4. Consider (1.1) with q(r)=ln r and =4. Using (2.2) with (5.9) we

obtain, by a partial integration, that

W4(r, t, In r)=

3

tlnr+ 2, t<r,
3r

In r +3r2 3rz
/t

2- d, >- r.

It is easy to see that W4 and 0 W4/Ot are continuous at r.
(B) q(r)= r2-" In r2. We can apply the transform (2.1’) directly to the solution of

(1.3) corresponding to this data as given by [2, formula (7.2)]. Using (5.1) and (2.5) we
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have

E(r, t, r- In r)

fa O.,/E (t2-rEo.)(k+l-/E In (tE-rEo.) do""t- -2
+

’fo (1-o")"/E-2 In o"{t2-r2(1-o")}(k+-">/E do"

F(-I)F(k +’3 /x)
+

2

F(k+..1.)tl_k2

0

O./*/2-2 In o"(t2- r2o") (k+1-)/2 do"

F(’)(/x +. 1) t’-k\ 1)F(k 2 o./2-2(t2 (k+l-,)/2+

(F(/z--1)) 2r(k + 3-2 t*.)
r2o.)+ do".

Example 5. Consider (1.1) with/z 3 and 0(r)= r- In r2. After some involved
calculations, we can show that

t)
2t
-, t<r,

r
W3(r, t, r- In r2)

[(1 +)In (t+r)+(1-) In (t-r)-2, t>r,

and limt-,r W3(r, t, r- In rE) 2 In 2r-2. The graph of this W3 function in the W-t
"plane" for various values of r is given in Fig. 3. In Fig. 3 the dashed curve is the
projection onto the W-t plane of the values W(r, r, r- In rE).

W

r=e/2
r=2
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SERIES OF ORTHOGONAL POLYNOMIALS AS BOUNDARY VALUES*

GILBERT G. WALTERt AND PAUL G. NEVAIt

Abstract. The relations between expansions in orthogonal polynomials of generalized functions on the
real axis and certain holomorphic functions in the upper and lower half planes are studied. The hoiomorphic
functions are given by series of functions of the second kind which satisfy the same recurrence formula as the
polynomials. A space of generalized functions associated with the polynomials is first introduced. Each
element in this space has an analytic representation given by such series whose jump across the real axis is
given by the element. Under certain conditions the singularities of the analytic representation may be related
to singularities of the associated power series.

1. Introduction. Each function or generalized function f (in D’) defined on the
real line has an analytic representation consisting of a pair of holomorphic functions
defined in the upper and lower half plane respectively [1]. The symmetric difference of
these two functions tends to the given f as the real axis is approached.

For many of the classical orthogonal polynomials, such an analytic representation
may be obtained from the second solution qn to the differential equation satisfied by the
polynomials pn [8], [10], [11]. Thus if a function or generalized function f has an
expansion in such orthogonal polynomials, say anpn, then the series a,qn, if it
converges, should supply the analytic representation. This series does converge for
appropriate generalized functions when the pn are Legendre polynomials [9], Hermite
polynomials [10] or standard Laguerre polynomials [12].

This series can then be used to obtain results analogous to some well known
properties of trigonometric series. Indeed a (r)-periodic generalized function (dis-
tribution) on the real axis has a cosine series ’, an cos nx with an O(nP), and its
analytic representation may be given by 1/2 , an e iEz and -1/2 ,, an e -inz which converge
off the real axis. Their difference is a real harmonic function and their sum its conjugate.
As the Im z - 0 the difference approaches the original series and the sum the conjugate
series which also converges to a generalized function.

In this work we shall extend the results for classical orthogonal polynomials to
"arbitrary" ones. Since in this case no differential equation is available, we use the
difference equation satisfied by the polynomials to obtain the functions of the second
kind. We then introduce a space of generalized functions which are appropriate to these
particular polynomials and which is contained in the space of distributions. Elements of
this space have convergent expansions and have an analytic representation given by
series of these functions of the second kind. These series in turn have many of the
properties of trigonometric series.

2. Some basic properties. Let (Pn} be the set of orthogonal polynomials on the
finite or infinite interval (a, b) with respect to the probability measure given by the
monotone function a(x). That is, pn (x) is a polynomial of degree n and

b

(2.1) | p(x)p,(x) da(x) ,n, n, m 0, 1, 2,.

where po(x)=- 1.
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The properties of such polynomials are developed in Szeg6 [8], in particular in
Chapters 2, 3, 7, 12 and 13, as well as in a number of other sources. One such property is
that the difference equation

(2.2)
p,(x) (A,x +B,)p,_x(x)-C,p,-2(x),

p_(x) O, po(x) 1

n=l,2,...,

is satisfied [8, p. 42].
Associated with p, we have the analytic function (function of the second kind) f, (z)

given for z C- [a, b]. It is

1 Iap.(x) da(x) n =0, 1(z.31 L(z) =/ x-z

and satisfies the same recurrence formula (2.2) as p, except that the first two terms are

1 1 I,, 1
da.(2.4) LI(Z)= and fo(z)=i x-z

(See Geronimus [3, p. 57].) These functions of the second kind are related to the second
solution q, of the differential equation satisfied by p, in the classical case. That is, if the
{p,} are Jacobi, Laguerre or Hermite polynomials with weight function w(x), then

(2.5) q,(z)w(z)=f,(z), n=0,1,2,..., Imz 0.

See respectively [8, p. 74], [3, p. 62] and [11].
We next observe that by (2.3) the f,(z) are the expansion coefficients of 1!

2zri(x-z), and hence form a series which converges in L2(da; (a, b)); i.e.,

(2.6) (x-z)-1 2’rri L(z)p,(x), x (a, b), z C-[a, b].
n=O

For Jacobi polynomials this series converges pointwise when x lies inside and z
outside an ellipse with loci at +/-1. The same is true for Laguerre and Hermite
polynomials except that a parabola and a horizontal strip replace the ellipse. Of course
we cannot expect to obtain such results in general, but we do have more restrictive ones.

PROPOSITION 2.1. Let da be an arbitrary measure on the finite interval (a, b) for
which the infinite system {p,} exists. Then

Ef.(z)p.(x)

converges uniformly for x [a, b and [Im z[->_ 1 + b a.
The proof will involve certain functions given by"
DEFINITION 2.1. The Christoffelfunction h,(da, z) is defined by

b

(2.7) h,(da, z)= min f III(t)lz da(t),
rI(z)= aa

where II is an arbitrary polynomial of degree n 1. It also satisfies

n-1

(2.8) a- (da, z) E PZ(da, z);
k=O

see [2, p. 25].
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LEMMA 2.2. Let z C with Im z O. Then

1
(2.9) [L (z)[-< 2rlp (z)[ [Im z["

Proof. We first show that

(2.10) 4zr_lfl.(z)la<a.+l(dz)__Jim z

by calculating that

II(z)p"(t)
da(t)2rif. (z )iI(z z

IablI(z)--Ii(t) fa l-l(t)
p.(t) da(t)+ p.(t) d(t).

t-z t-z

The first integral is zero since p. is orthogonal to all polynomials of degree <n. Hence by
Schwarz’s inequality

4r21f.(z)iI(z)]2 < III(t)]= =
It-l p.(t) da(t)

Io-<_ IrI(t)l=l i.
By taking the minimum over II(t) such that II(z)= 1, we obtain (2.10).

We now apply (2.8) to (2.10) to obtain

(2.11) 47r2[f.(z)]2-<_[ [p2k(Z)[[Imzl2] -1,
k=O

from which the conclusion follows. I-I
Proof of Proposition 2.1. By the lemma it suffices to establish the convergence of

E
Ip.(x)l
Ip(z)---- --y g=xli Iz xl’

where the Xk, denote the zeros of p, (which are real and lie in (a, b)).
Clearly Ix X,k 1< b a and Iz Xnk >- IIm z I; hence

Ip.(x)l<(b-a)"< (b-a)"
]p. (z)[- ]Im z[" (1 + b a)"

Thus the series converges uniformly and the conclusion follows. Iq

In the case of an infinite interval no such simple result holds. Another condition
involving classical weight functions is needed. We specify them more precisely by

DEFINITION 2.2. By a classical weight function we denote the function w(x)=
(x-a) (b-x) for a finite interval (a,b), or w(x)=(x-a)e for a semi-infinite
interval (a, eo), or w(x)= e -xz/2 for (-eo, eo), a _>-0,/3 >-0.

PROPOSITION 2.3. Let a’(x) >-- Iw(x) a.e. on (a, b) where tx > 0 and w is a classical
weight function let {p,} be the associated orthogonal polynomials of dee. Then ]:or each
Xo > 0 there exists a yo > 0 such that, f, (z )p, (t)wl/E(t)
converges uniformly forte (a, b) and z
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Proof. We use the fact that for such w(x), pn(x)wl/2(X) O(n to) for some integer k
and ’,, (z)= O((yo/Z)n) for z in such a strip. The norm of p with respect to w satisfies

b b

p,(x)w(x) dx <-_ tx p,(x) da(x)= Ix

Hence by [8, p. 181]
-1 2Ip.(x)l--< Y It(x)[,

,=0

where/n is the classical orthogonal polynomial associated with ft. Since each of the
three classical types satisfies n(x)wl/2(x)= O(nk), SO does p,(x)wl/2(x). To prove the
other part we use the following.

LEMMA 2.4. Let {p,} be orthogonal polynomials with respect to da on (a, b). Then
foi each Xo>0, there exists yo>0 such thatf,(z) O((yo/z)) uniformly]or z in the strip

So,yo {x + iyl [yl--> yo, Ixl--< Xo}.
The proof is based on (2.3), which may be rewritten as

f,,(z)z" 2rril f,p,,(x)z" da(x-z

(2.12) 11f z"-x" 1 If x"
p,(x) da(x)p.(x) d,(x)+i x z2zri x z

0+r,(z),

since p, is orthogonal to x k for k < n. The last integral r,(z) satisfies r,(0)= 0 and
r,(z)O as IIm zincs.

Hence the maximum of It, (z)l in the strip $xo. occurs at some boundary point Zl.
By taking y0 [zll we observe that

[r,(z)l =<21i 11 Ip.(x)l da(x), z S,o,,o,

from which the inequality follows. 71

3. A space of generalized functions. In this section we study a space of generalized
functions appropriate to a general class of orthogonal polynomials. We assume initially
only that da has a complete system {p,}=o of polynomials.

DEFINITION 3.1. Let f be a function on (a, b) such that nZ[a][<c, where
a,, fp, da. Then L is the operator given by

L(f) L(E a,p,) E
DEFINITION 3.2. Let A consist of all complex-valued functions b(x) on (a, b) such

that for each k 0, 1, 2,. , Lkb L]; i.e.,
b

Remark 3.1. (a) L is self-adjoint with respect to A; i.e.,

I-{L, O} (, LO} for b, 0 e A, where (b, 0} 4t) d.

(b) A is a linear subspace of L.
(c) 0 is a seminorm on A.
(d) All polynomials belong to A.
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(e) The topology generated by the family of seminorms {Pk} is stronger than that
induced by L,]. (See [13, p. 9] for the definition of this topology.)

LEMMA 3.1. A with the topology generated by {Pk} is complete.
Proof. Let {bn} be a Cauchy sequence in A; then {Lk&n} is Cauchy and hence

convergent in L,, for k 0, 1, 2,. .. Let the limits be 0k and denote by

c Y aipj, Ok E bkipi.

Then Lkb, Ok, in L, becomes

E (jkai bk)2- 0 as n -.But jan bi and fa, - jboi; hence jkboi bi or L0o. Hence o A and is the
limit in A of b. [3

LEMMA 3.2. Let the dee satisfy a’(x)>=lxw(x) a.e. in (a, b) for some classical
w, tx > O. Then for each integer k >= 0, there is a p > 0 such that the kth derivative ofp
satisfies

p(x)w/(x) O(n)

uniformly ]:or x (a, b), p p (k).
Proof. Let/, denote the orthogonal polynomials associated with w. Then

(3.1) p.(x)= iii(X),
i=0

and hence by Cauchy’s inequality

(3.2) Ip’ (x)l= <-- I&,l Itl’ (x)l=,
i=0 i=0

But we have
b b

and therefore by Bessel’s inequality

(3.4) 211i =/x

Since the/, are Jacobi, Laguerre or Hermite polynomials, the inequality

(3.5) p(x)w/(x) O(n)
holds uniformly on (a, b), (e.g.,/ 2k + max (a,/3) in the Jacobi case [8, p. 170]). By
substituting (3.5) into (3.2) we obtain the conclusion.

If we are interested in the behavior of p, on bounded intervals only, the hypothesis
may be weakened considerably.

LEMMA 3.3. Let [c, d] supp da and let (’)- L[c, d] for some e > O. Then there
is a p such that

p(g) (x) O(np+2) uniformly on [c, d]

Proof. For such a it follows that for some A > 1
b

HI(x) N nA HI(t) da(t), x [c, d], n 1,

for every H and hence for p (see [5, p. 158]). Thus, for k 0, p may be taken to be
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A/2. By Markov’s inequality,

p’,(x)=O(np+) on [c, d],

and by iterating this expression the conclusion follows.
DEFINITION 3.3. By (f da)C-P) we denote the pth order antiderivative of fda given

by
1

[(t)(x t)-1 da(t)(fda )-P)(x F(p)
for f L.

LEMMA 3.4. Let da satisfy

for some classical weight w. Then for each q > O, them is an integer k such that

(p, dce)-k(x) O(n -q)

uniformly on (a, b ).
Proof. We first observe that the conclusion is true for the classical polynomials

which correspond to the three weight functions given in Definition 2.2. This follows
from Rodrigues’ formulae [8, pp. 67, 101, 106]. Again let ,6n denote the classical
polynomial. We obtain

b b

(3.6) fa Pn dce ffm fa pn dce
ffmw m < n,

since pn is orthogonal to any polynomial of degree <n. Hence the expansion of the
measure p, doll w with respect to the ,6., is of the form

(3.7) ---P"da y,. A,.,,,.
W i=n

But by Schwarz’s inequality

(3.8)

p da w--
W

<- 1" I w-1 da sup //2 (x)w(x) 0(i2r)
a<x<b

for each of the classical cases for some r > 0.
We then multiply (3.7) by w and integrate k times to obtain

(3.9) (P,,da){-k)(x) Z Ai.,,(iW){-k)(x).
i=n

For k sufficiently large the right side will converge uniformly on (a, b) and its terms will
be dominated by terms of the form O(i r-q) independent of n. Hence the conclusion
follows.

THEOREM 3.5. Let da be a measure such that, respectively, (i) for some e > 0
(c’)- Lloc on (a, b), (ii) b W-1 da < for some classical weight function w. Then,
respectively:

(i) A is a subspace orE(a, b) and convergence in A implies convergence in E.
(ii) D(a, b) is a subspace ofA and convergence in D implies convergence in A.
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Here E(a, b) is the space of all C functions on (a, b), while D(a, b) consists of
those with compact support in (a, b). Convergence in E is uniform convergence of the
derivatives (k),, to (k) on compact subsets of (a, b). Convergence in D is the same with
the added condition that all the ,, have a common support.

Proof. Conclusion (i) is clear since, by Lemma 3.3, the series expansion of A
may be differentiated k times to obtain

b(k= y’. anp(k
n=k

which will converge uniformly on compact subsets of (a, b). The same is true for

&,=2a,.,mP,.,.

Since , converges to in the sense of A the sequence {a,,mn In =o converges to
{a,nP/l}_-o in the sense of 12 for each integer p > 0. Hence on compact subsets of (a, b)
we have

(), a,,,p -Y. ap
n=k n=k

<- C E [a,,,, a,[n p <= C la,,, a,,lZn zp+2 [E n

for some constant C.
Thus ) (k uniformly on compact subsets of (a, b).
Conclusion (ii) follows from the fact that for D the expansion coefficients

satisfy

b

--< Ia I<>III(P" d)<-)[l"

By Lemma 3.4 a,- O(n-") and hence & A. The convergence in D which consists
of having each ,, have support in a common closed subinterval of (a, b) and
having its derivatives converge uniformly implies convergence in A by the same
considerations.

We are interested in extending the set of functions which have expansions in terms
of {p,} to a space sufficiently large to include all functions which are potentially
interesting. To do this we consider the dual space A’ of A consisting of all continuous
linear functionals on A. Ordinary functions may be embedded in A’ by using the
convention

(f, &) ( fCda.

That is, the functional whose values are (f, ) is associated with the function f. Since A
is a complete countably normed space, its dual is a space of generalized functions
[13, p. 39] on (a, b).

THEOREM 3.6. Let da be a measure such that for some e >0, (a’) e Lo and
w- da < forsome classical weightfunction w on (a, b). Then the space ofcontinuous

linear functionals A’ ofA satisfies the following"
(i) L a’.
(ii) E’ a’A’ D’.
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(iii) f A’ if and only if Y’. < f, p, > p, converges to f in the sense of A’.
(iv) Y’. b,p, converges in A’ if and only if b, O(n v) for some p > O.

furthermore a’(x) > Ixw (x) for some Ix > O, then
(v) Differentiation is a continuous operation in A and the operation A given by

(Af, )=-(f, ’) is continuous in A’.
Proof of (v). Let &m --> 0 in the sense of A and let

ok,, Z a..qPi.
j--O

Then we have

(3.10) ’ Y’. a.qpi Y’. ai Z AikPk
/=1 j=l k=O

where

Y’. a,q,i p,
k=O ]=

1/2

o(//)

for some r > 0 by Lemma 3.2. Hence the series Y’. A ]2kj-r-2 converges and the coefficients
in (3.1 O) satisfy

(3.11) amiAik k q <= ’. amil AikI q>O.
1= /=k+l /=1

Since the first factor on the right converges to 0 as m --> o and the second is bounded, it
follows that ’,, --> 0 in the sense of A. The proof of the other parts follows from standard
techniques for dual spaces and is similar to classical cases [13, p. 257]. [3

4. Analytic representation of elements A’. In this section we develop some
properties of the analytic representation f of the generalized function f A’ given in
terms of series of functions of the second kind f,.

DEFINITION 4.1. Let f A’, f Y=o a,p, then the analytic representation fof f is
the continuation to the upper and lower open half plane of the function given by

(z E a.L (z ).

Remark 4.1. The series Y’. a,f, converges for z Sxo.yo since by Lemma 2.2 the
f,(z) O((yo/z)) and by Theorem 3.5 a, O(n").

PROPOSITION 4.1. Let da be as in Theorem 3.5, and letf A’. Then there exists an
integer p > 0 and a bounded continuous function F on (a, b) such that:

(i) a’f D"F in D’(a, b).

(ii) f(z)
(x z)+1 dx + p (z)

for Im z 0, p(z) a polynomial in (b-z)-1 of degree <-p.
1

(iii) f(z) -/(f, (.- z)-l), Im z # 0.

Proof. Let f s A’ and be given by f a,p,. Then by Theorem 3.5 there is a q such
that a, O(n). By Lemma 3.3, to this q there corresponds an integer p ->_ 0 such that
(p, da)(-V)(x) O(n -q-z) uniformly for x (a, b). Hence F(x) , a,(p, da)(-P)(x)
converges uniformly on (a, b) to the bounded continuous function F(x).
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Now F, because it is bounded, is also in D’. Hence both F and the series may be
differentiated, and since D is a continuous operator on D’,

DPF anp,a’.

But fA’ corresponds to a’fD’, which is given by the same series; hence
conclusion (i) follows.

For conclusion (ii) we write

(4.1)

"Ia P!Iap b F(x)
dx

2 zri (x-z)+1 (x-z)+1

p! Ia
b (P" da)(-P)(x)

.2= a.i (x z)P+l
1 { (p, da)-P)(b)(p-1)! (p,da)-P+l)(b)(p-2)!

a.-- (b z)=o (b -z)-(p, da)(-2)(b)l! (p, da)(-1)(b) Ia’p.(x)(b z) (b z)
+ da(x)},

by integration by parts. For n >-p, (pn da)(-P)(b) (p, da)(-o+l)(b) (p, da)(-1)(b) =0
since p is orthogonal to polynomials of degree <n. In the case b o the integrated
terms must be interpreted as

(x-t)-1

(p. da)(-P)(b) r (p- 1)!
p.(t) da(t)

(b z)p
=lim j )x--,oo (X Z

which is zero for all values of n. Hence (4.1) becomes

p! f, F(x) .-1
)- .o 1 I,p.(x) do,(x)

27ri (x z)p+l
dx= .E=o a.

i=o
A.i(b-z + a’i (x z)

(4.2)

-p (z) + E a.f (z).
n=O

For z in the strip Sxo.yo,.this latter series converges to )(z).
We next observe that (x z)-I e A for fixed z such that Im z # 0. This follows from

the fact that, for large n,

Ia P Ia’ P da ’ x
(4.3) (x- z)-lp,(x) da(x)

(x- z)0+1
dx O(n ),

as in (4.1) for each integer k ->0. This gives the other expression for f(z), (iii).
LZMMA 4.2. Let e D. Then for ach integer p >- 0

D{(x +iy)-(x-iy)}O(P)(x) asy-0+

uniformly on compact subsets of (a, B), where

1 Iag(X) dx.(4.4) (z) / x-z

Poof. This result is merely a form of Abel’s theorem, since 4, (") has compact
support in (a, b) and the harmonic function D"{(x + iy)-(x-iy)} has 6(") as its
boundary value. Such harmonic functions converge uniformly on compact subsets to
their continuous boundary values [7, p. 65].
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THEOREM 4.3. Let da be as in Proposition 4.1, and let f A’.
Then

(i) (.+iy)-(.-iy)f in the sense olD’ as y0/.
(ii) If f is a Peano derivative of some order at Xo (a, b), then the convergence is

pointwise at Xo.
Proof. Let f(x)=(x + iy)-(x-iy); clearly f D’. Let & D; then

b

)= J fy(t) (t) dt

/ (x t- iy)P+ dx + O(t + iy)

(4.5)
(x + iy)+ dx -O(t- iy) (t) dt

b

(-1)/ I F(x)D{(x-iy)-r(x +iy)} dx

+ i(O(t + iy)-O(t- iy)) (t) dt

b- (-1) I F(x)(x)( dx +0

by Lemma 4.2 and the fact that 0 is analytic inside (a, b). Hence we have

(4.6) {f, {D’F, q for & D.

In order to prove the statement about Peano derivatives, we first observe that
Proposition 4.1 holds for all p greater than the given value. Hence we may assume that
the Peano derivative f(xo) (see [14, II, p. 59] for the definition) has the same order p and
is given by

(F(x)+P(x))p!
(4.7) f(xo) lim

x-,xo (x -Xo)p

where P(x) is a polynomial of degree =<p-1. We define G(x) to be the continuous
bounded function in L2(a, b),

(F(x)+P(x))p!

(4.8) G(x) ----(;c-Xo)p x Xo,

f(xo), x =xo.
Then we have, for Im z # 0,

1 Ia G(t)
(t- Xo) dt + holomorphic function.(4.9) (z) / (t_z)+l

We then need to show that y (Xo) converges to f(xo) G(xo). Since

(t_xo_iy)P+ (t_xo+iy)P+ dt

(4.10)
b

| G(t)Ky(t-Xo) dt,
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we need merely show therefore that Ky(t-Xo) is in a quasi-positive kernel (see
[14, I, p. 86]), i.e., that it satisfies

(4.11)

(a) I_ Ky --> 1 as y --> 0+,

(b) | Igl<-m, y >0,
j_

(c) for each a >0, Ky(t)-->O uniformly for Itl >c as y --)0/.

We integrate by parts p times to deduce that

where P(t)=(1/r)(y/(t+y)), the Poisson kernel. Since K(t)=(1/y)g(t/y), we
need merely to show that IKI < m to deduce that (b) is true. But this is obvious, as is
(c), and hence conclusion (b) follows.
CooA 4.4. Let A’; then the unction given by

u (x, y)= a{f (x + iy f (x iy )}

is harmonic in the upper hal[plane and converges to [ in the sense o[D’(a, b) as y0+.
We may also define a conjugate harmonic function

(4.12) v(x, y) Z ia,{L (x + iy) +L (x iy)}.

Now, however, the limit of v(x, y) as y 0+ is not necessarily in A’. In fact, for the
Hermite polynomials, for example, the space A’ consists of distributions in D’ for
which fe-/2 is a tempered distribution. But even [/0(x +iy)+fo(x-iy)]e-/2 is
O(e/), and hence is not in A’. However, we do have"
Coov 4.5. Let A’; then the harmonic confugate v(x, y) D’ in the

sense o[D’ as y 0+.
5. Singular points. In the case of classical orthogonal polynomials, the location of

singular points of the analytic representation of an expansion can sometimes be related
to singular points of an associated power series (see [9], [4]). However, this seems to
work only in the case of a finite interval (a, b). Hence we shall restrict ourselves to such
an interval, which we take to be (-1, 1).

We shall also place a further restriction on da, or rather on the recurrence formula
(2.1). Since for da considered in 4, A, 2, B, 0, and C 1 as n , [8, p. 310] we
shall assume that each differs from the limit by a polynomial in n -1. That is, we assume

k ai b c(5.1) A=2+ , B= , C=1+ , n=1,2,....
n n n

This gives us the well-known Pollaczek polynomials. Pollaczek [6] shows that the
singularities of the kernel"

(5.2) g(r, x) 2 rp(x),

are located at r 0 and at r x x- 1 [6, p. 13]. The kernel may be extended to
complex values of x with the same conclusion about singularities. In fact, the series
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definingK (r, x) is convergent for x in the interior of an ellipse passing through this point
[8, p. 312].

The same conclusions follow for the kernel

(5.3) /(r, z)

except that it now converges for z outside of the ellipse. This can be used to locate the
singular points of the analytic representation of an element of A’. This was done for
Legendre series in [9] and Gegenbauer series in [12], and makes use of Hadamard’s
"multiplication of singularities" procedure.

THEOREM 5.1. Let da be a measure on [-1, 1] satisfying the conditions of
Proposition 4.1 such that {Pn} satisfies the recurrence formula (2.2) with coefficients
satisfying (5.1); let f e A’ with series expansion

f"Y.ap
and analytic representation

(z)=Ya,f,(z).
Then (z) is singular at the point Xo in (-1, 1) if and only if the function

(w)= Z aw
n-’0

+/-iOhas singular points on the unit circle at e such that cos 00 Xo.
If we make the observation that an O(nP), the proof is exactly that given in 19] for

Legendre polynomials and will be omitted.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF NONLINEAR
VOLTERRA EQUATIONS WITH COMPLETELY POSITIVE KERNELS*

PH. CLtMENTS- AND J. A. NOHELt

Abstract. We consider the nonlinear Volterra equation

(V) u(t)+(b * Au)(t)f(t), 0-< <o

in the general setting b [0, m) R a given kernel, A a nonlinear m-accretive operator on a real Banach space
X, f: [0, m)X a given function and the convolution. We study the existence of positive solutions of (V)
and their asymptotic behavior as m, together with estimates of their rates of decay, under physically
reasonable assumptions on b, A, f motivated by the problem of heat flow in materials with memory. The
concept of complete positivity of the kernel b and its characterization play a crucial role in the analysis.

1. Introduction. In this paper we discuss the positivity of solutions, and their
asymptotic behavior as o, of the nonlinear Volterra equation

(v) u(t)+(b *Au)(t)f(t), 0<_-t<c

in the general setting: b :[0, c)-R is a given kernel, A is a nonlinear (possibly
multivalued) m-accretive operator defined on a real Banach space X, f: [0, o)X
is a given function and denotes the convolution on [0, t]:(b.z)(t)=
ob(t-z)z(") dz; the integral in (V) is understood in the sense of Bochner. The
assumptions which are imposed on b, A, f are motivated by the problem of nonlinear
heat flow in a material with memory discussed in 4, in which the general positivity and
asymptotic theory developed in 2, 3 is applied to this physical problem. A different
application of the general theory is given in Example 3.4 of 3 to a nonlinear
conservation law with memory.

The present study generalizes and complements earlier work of C16ment and
Nohel [3] on positivity and of C16ment 12] on limiting behavior of positive solutions of
(V). The generalization enables us to discuss the physical problem described in 4.
General existence, uniqueness and continuous dependence results of solutions of (V)
which need not be positive have been established by Crandall and Nohel [5] and by
Gripenberg [6]; these will be referred to as needed.

We will motivate the assumptions on the kernel b which will be needed throughout
the analysis by means of a simple linear problem at the end of this section. These
considerations suggest the concept of complete positivity of the kernel b (Definition 1.1
below) which plays an important role in the analysis. Some properties and a useful
characterization of completely positive kernels are obtained in 2.

We shall consider equation (V) in the slightly less general form

(Vg) u(t) + (b * Au)(t) Uo + (b * g)(t), 0 <= < o

We assume throughout the following minimal assumptions:
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(HI) A m-accretive in a real Banach space X;

Uo D(A) and g Lloc (0, c; X).

The motivation for taking f Uo + b g in (V) is given in 3 (see the argument at the
beginning of 3 following (Vg)). The main results of this paper give a rather complete
description of the asymptotic behavior of the positive solutions of the abstract
equation (V) as t- o, including a priori estimates for their rates of decay. The results
are then applied to the physical problem described above.

The additional assumption we shall make on the kernel b in order to insure
positivity of solutions was first introduced in [3]; it is motivated by the following remark.
If b-- 1 then (Vg) reduces to the evolution equation

(DE)
du
--+Au g, u(O) Uo.
dt

It is well known [1-1 that if the resolvent Jx (I + hA)- of A maps a closed convex cone
P of X into itself for every h >0, then u(t)eP for all t>0, provided that uoP and
g(t) P a.e. on [0, c). Let us take, for instance,

X=Iu C[a, b]lu(a)= u(b) 0}

equipped with the supremum norm, D(A)={u X[u C2[a, b] and Ux X} and
Au(x) =-u,,,,(x) for u D(A). It is standard that A is m-accretive in X. Moreover, if
P={uXlu(x)>-Ox[a,b]}, then JxP=P for every h>0; thus, as is classical, the
solution of the heat equation is nonnegative provided that the initial value Uo and the
forcing form g are nonnegative.

We want to consider a class of kernels b under which the solution of (V) (resp. (Vg))
preserves this positivity property. This requirement is useful and natural in the
application to the model of heat flow in a material with memory discussed in 4, and in
Example 3.4 of 3.

Consider (Vg) with Au -u,, with D(A) as in the above example. It is easy to give
necessary conditions to be imposed on b in order that positivity be preserved by (Vg)
whenever u0 and g are positive. Let denote the principal eigenvalue and the
corresponding principal eigenfunction of A, normalized by maxxt, b t7 (X) 1. Clearly
-h =(Tr/(b-a))2 and iT(x) =sin (zr/(b-a))(x-a). If Uo=aa, g(t)=-hfl(t)a with a >_-0

and/3 (t) _-> 0 where/3 s Llo (0, c), then, as can b’e verified directly, the strong solution of
(V) is

(1.1) u(t)=[as(b)(t)+(B * r(b))(t)], 0_-< <o,

where the functions s(b) and r(b)’[O, o)R are respectively solutions of the linear
Volterra equations

(s(b)) s(b)(t)+(b s(b))(t)= 1, 0=< t<,

(r(b)) r(b)(t)+(b r(b))(t)=b(t), 0_-< <.

Recall the standard fact (see, e.g., R. K. Miller [11 ]) that if b Lloc(0, ) the functions
s(b), r(b) are uniquely defined and s(b), r(b) Loc(O, c). Moreover, if F Loc(O, o)
the unique solution of the linear Volterra equation

(1.2) u(t) + (b u)(t) F(t), 0 <= < z
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is given by

(1.3) u(t)=F(t)-(r(b).F)(t), 0_-<t<.

In particular, taking F 1 in (1.2), we have

(1.4) s(b)(t) 1 r(b)(r) dz, 0 <- < c,

so that s(b) is absolutely continuous on [0, c) whenever b Lloc(0, o). The function
s(b) is called the fundamental solution of (1.2), while the function r(b) is called the
resolvent kernel associated with b. The reader should also recall (see [5]) that a strong
solution of the abstract Volterra equation (V) on [0, T] is a function u :[0, T]X such
that u LI(O, T; X), u(t) D(A) a.e. on [0, T] and there exist

v LI(0, T; X), v(t)Au(t)

on [0, T] such that u(t) + (b v)(t)= Uo + (b g)(t) a.e. on [0, T].
Returning to the solution (1.1) of (V) with Au =-uxx, A>0, t7, Uo, g defined

above, we note that iT(x) > 0 for x (a, b). Thus the solution u(t) will be nonnegative for
every a _->0 and for every/3 Loc(0, o), / =>0, only if the functions r(b), s(b) are
nonnegative on [0, c). Moreover, if one imposes the requirement that the solution (1.1)
of (Vg) should be nonnegative and independent of the length of the interval (a, b), it is
clear that both of the functions r(Ab) and s (Ab) must be nonnegative for every A > 0. We
remark that these latter necessary conditions imposed on the kernel b have been shown
to be sufficient to guarantee the preservation of positivity by the solution operator of the
nonlinear equation (V) in the general case of A m-accretive on X (see [3, Thm. 4.5]).

The above considerations suggest the following concept of complete positivity of
the kernel b"

DEFINITION 1.1. We shall say that the kernel b is completely positive on [0, T] if
b L(0, T) and if the functions r(Ab) and s(Ab)= 1-1 r(Ab) are nonnegative on
[0, T] for every A > 0.

Some known sufficient conditions which insure the complete positivity of the
kernel b on [0, T] are"

(i) b L1(0, T) is nonnegative, nonincreasing and log b is convex (see Miller [10],
Levin [8], C16ment and Nohel [3]).

(ii) (special case of (i)).b L(0, T) and b is completely monotonic on (0, T) (see
Miller [10]).

2. Completely positive kernels. In this section we give an alternate and useful
characterization of completely positive kernels (Theorem 2.2) which will be needed for
the development of the asymptotic properties of positive solutions of the abstract
Volterra equation (V). For this purpose we consider the linear scalar Volterra equation
(1.2) in the form

(2.1) u +b u uo+b g,

where b sLI(O, T), uosR, g sLY(O, T) and T>0. Its unique solution (see (1.3), (1.4))
is given by

(2.2) u(t)= Uos(b)(t)+(r(b) . g)(t), O<=t<= T.

In the following proposition we list some elementary properties of completely
positive kernels which are needed in the sequel.
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PROPOSITION 2.1. Assume that b is completely positive on [0, T] for some T > O.
Then

1) b is nonnegative on [0, T] and, for every >0, s(b) is nonnegative and
nonincreasing on [0, T].

2) For every Ix > O, r(lxb is itself completely positive on [0, T].
Next, assume b is completely positive on [0, T] for every T > O. Then:
3) If b e L110, ), then for every lz > 0

lim sOzb)(t) (. 1 + tx d

-1

4) If b L1 (0, ee), then ]’or every t > 0

lim s(lb)(t) O and

5) If bC:Ll(O, oe) and b eAC[O, oe), then for every tx >0, r(lb)e C[0, oo] and
limt_,oo r(tb )(t) O.

Proof. 1) For every I >0, v := -lr(Ib) satisfies

(2.3} vx + Ab * va b.

From the convolution theorem we have

ll  ll ’<o. Ilbll ,eo.  (! + IIv II=,eo. a).

which implies that IIvll’eo, is bounded as a function of A for A e E0, 1/211bll].
Consequently limx-, o Ilvx bllcl0,T)= 0, and b is nonnegative since vx are nonnegative.
The last assertion of 1) is an immediate consequence of (1.4) and the definition of
complete positivity.

2) Let/z > 0. We have to prove

(2.4) r(Ar(tzb))(t) >= O, e [0, T] a.e., A > 0,

(2.5) s(Ar(txb))(t)>-O, te[0, T] a.e., A>0.

Inequality (2.4) is a consequence of the easily verified identity

(2.6) r(Ar(zb)) =, r((lx + A)b)
1 +

and the fact that r(Ab) is nonnegative. Inequality (2.5) is a consequence of the identity

(2.7) s(Ar(lzb)) s((lx + Alx)b)+ lxb * s(tx + A/z)b)

and the fact that b and s(tzb) are nonnegative.
3) and 4). From (1.4) and the fact that b is completely positive on [0, ), it follows

that r(lzb)e LI(O, ) for every/x >0. Hence again for (1.4) limt_, s(lxb)(t) exists. The
first assertion of 3) now follows from the definition of s and the fact that b eLl(0, )
(see for instance [8]). From (1.4) again we have

(2.8) IIr(b)ll"’-- Io r(txb)(’)dr= 1-s(/zb)(),

which proves the last assertion of 3). In order to establish 4) we note that

s(ib)(t) fo b(z) dz <- fo b(t-’)s(ib)(z) d"
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holds since s (/xb) is nonnegative and nonincreasing and b is nonnegative. Thus from the
definition of s we obtain

(2.9) s(i.b)(t) 1 + x bO’) d <- 1, >- O.

If b L(0, oo), it follows that lim,_, s(ixb)(t)= 0, and from (1.4)IIr(xb)llc(o, 1.
5) Since s(lb)eACo[O, c) we can differentiate equation (s). By noting that

s’=-r (see (1.4)) we obtain

r(ib)(t) - sOxb)(t) - (ib * sOxb))(t) xb(O)sOxb)(t) + x - s(ib) (t).

From part 4) we know that sOxb)eC[O,m] and lim_,s(xb)(t)=O. Since be
AC[O, c), db/dteL(O, o), and thus from the above identity we obtain r(xb)e
C[0, oo] and limt_,rOxb)(t)= 0. This completes the proof of Proposition 2.1.

In the next result we give an alternate and useful characterization of completely
positive kernels b. Some arguments used are similar to those of [6].

TFORM 2.2. Let T>0, b L(O, T), bO. Then b is completely positive on
[0, T] if and only if there exist a >-0 and k L(O, T) nonnegative and nonincreasing
satisfying"

(2.10) b(t) + k b(t) 1, e [0, T].
Remarks.
(i) It follows from (2.10) that a > 0 if and only if b e L(0, T). If this is the case,

b -s(-k) and thus b AC[O, T]. Conversely, if b eAC[O, T] then a b(0)- >0. Moreover, observe that if a > 0 then k BV[0, T] (equivalently, k (0/) < oo) if and
only if b’ B V[0, T].

The importance of the remark a > 0, (k BV[0, T]) is that for kernels b satisfying
the type of regularity

(H) b e AC[0, T], b (0) > 0, b’ B V[0, T],

the existence and uniqueness of a generalized solution u C([0, T]; D(A)) of the
abstract Volterra equation (V) has been established by Crandall and Nohel [5, Thm. 4],
whenever the operator A is m-accretive and f(O)D(A), f WI’I(0, T;X). For the
special case X H a real Hilbert space and A 0 we refer to [5, Remarks in, 4].
Recently Gripenberg [6, Thm. 2] has extended this result to the case of kernels
b bl + b2, where bl satisfies the above regularity assumption and where b2 L(0, T),
b2 is positive, nonincreasing and log b2 is convex on (0, T) with A and f as above. This
result with bl =-0 and A linear was established by C16ment and Nohel [3]. These more
general completely positive kernels b correspond to the case a 0. The problem of
existence of generalized solutions of (V) with only the assumption that b is completely
positive is under study and will be treated elsewhere.

For clarity of exposition we recall some basic facts about strong and generalized
solutions of the abstract Volterra equation

(V) u + b Au f, [0, T],

where T > 0 is arbitrary, b 6 La(0, T), f LI(0, T; X) and A is m-accretive on X (for
details see Crandall and Nohel [5], C16ment and Nohel [3]). The Yosida approximation
A of A is defined by

1a - (I-Jx), Jx (I + ha)-1, > 0.
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Evidently, Ax is m-accretive, single-valued and Lipschitz continuous for every h > 0.
The approximating equation

(Vx) u + b * Au f
has a unique strong solution ux on [0, T] (use a standard contraction argument). A
function u LI(0, T;X) is called a generalized solution of (V) on [0, T] if the
"sequence" {ux} of strong solutions of (Vx) converges to u e LI(0, T; X) as h ,I, 0. It is
important to note that in the existence results of Crandall and Nohel [5, Thm. 4] and of
Gripenberg [6, Thm. 2] referred to above, the generalized solution u C([0, T]; X) by
construction.

(ii) It follows from Theorem 2.2 and Remark (i) that if b is completely positive, then
b need not be nonincreasing; it also need not be convex and a fortiori log convex.
Choose a 1 and k(t) 1 for [0, 1] and k(t) 0 for > 1; then b s(k) is completely
positive. But as shown in Levin [8], b’=-r(k) is negative on some interval [0, a) with
a (1, 2) and positive in (a, 2]. Thus b is not nonincreasing on [0, 2]. Moreover, assume
b to be convex on [0, c). Then b is strictly increasing for > a, and moreover,
limt_, b(t)= . But this is impossible, since b(t) -< 1 as seen from (2.10) and the fact
that k, b are nonnegative and a 1. Thus b is not convex.

(iii) If b is completely positive and absolutely continuous on [0, T], then it follows
from (2.10) that b(t) <= b(O) for [0, T].

(iv) It follows from Theorem 2.2 that if b Loc(0, ), b is positive, decreasing,
log b is convex and b(0+) , then the linear Volterra equation of the first kind

(2.11) k b(t)= 1, t>0

possesses a unique solution k Loc(0, ) which is nonnegative and nonincreasing.
However, given k L110, T], k nonnegative and nonincreasing, (2.11) may not have a
solution in La(0, T). (Take k(t)=- 1.) Thus when a =0, (2.10) does not provide a wayto
generate completely positive kernels which are not absolutely continuous on [0, T].

Before giving the proof of Theorem 2.2 we recall a result due to Levin [8] which
will be used repeatedly. If u satisfies u + b u f with b La (0, T), b nonnegative and
nonincreasing, fL(O, T), nonnegative, nondecreasing, then u is nonnegative on
[0, T].

Proofof Theorem 2.2. a) Let b be completely positive on [0, T], b 0. We wish to
show that there exist a =>0, k LX(0, T) nonnegative and nonincreasing such that
(2.10) holds. First, we need the following estimate:

(2.12)
T

supx>0 I0 hs(hb)(’) dr <-
2T

Indeed, define g(hb)(t)=s(hb)(t) for t[0, T] and g(hb)(t)=O for t> T and , >0.
Similarly we define (t)=b(t) for t[0, T] and 0 otherwise. If zx(t)=
g(hb)(t) + (/ g(hb))(t) for t->0 and =0, then it is easily verified that zx(t) 1 for
t[0, T] and z(t)=0 for t>=2T, h >0. For t[T, 2T], using the fact that g(hb) is
nonnegative and nonincreasing and/ is nonnegative, one gets

(g(,b) A)(t)= Io
T

g(Ab)(t-z)h(r) dr

g(hb)(T-r)Ab(r) dr <-_ 1.
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Thus z(t)[0, 1] for te[T, 2T] and h>0, and hence from the convolution
theorem we obtain

and

g(Ab)(r) dr 1 + A/(r) d zx (r) dr

(A Iors(hb)(r) d’)( Iorb(’) d’) <--2T,

which establishes (2.12).
Next, we define

T

(2.13) vx(t)= [ hs(hb)(r) dr,

Since As(Ab) is nonnegative,

A>O, t[0, T].

T

Var [vx [0, T]] Io Xs(hb)(r) dr,

and from (2.12) sup Var[vx; [0, T]]<oo. Note that v;(T)=0. Hence, from Helly’s
theorem [13], there is a v:[0, T] + R, nonnegative and nonincreasing, satisfying

2T
Var [v [0, T]] -<- tw b(r) dr’]o

and there exists a sequence An ’ o as n + o such that

(2.14)
T T

lim Io g(t) dvx. (t)= fo g(t) dv(t)

holds for every g C[0, T]. From (2.9) we get the estimate

1
(2 15) As(Ab)(t) < t>0, X >0.

This implies that, for every e > 0 (e < T), v e lip [e, T] and a fortiori v AC[e, T].
Thus there exist/ NO and h AC[O, T], nonnegative and nonincreasing, such that
v(t) Be(t)+ h(t) for e [0, T] holds, with e(0)= 0 and e(t)= 1 for > 0. From (2.14)
we obtain

T T

(2.16) lim | g(t) dvx. (t)=/g(0) + | g(t)h’(t) dt
o .o

for every g e C[0, T] or, from the definition of
T T

(2.17) !i+rn Io g(t)Ans(Anb)(,)dt=-/3g(0)-Io g(t)h’(,)d,.

If we take g e C[0, T] such that g(0)= 0 in (2.17), then
T T

(2.18) lim | g(t)A,s(Xnb)(t)dt=-| g(t)h’(t)dt.
Jo o

Since Ans(Anb) are nonincreasing, it follows that -h’ is also nonincreasing. Moreover,
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for every w C[0, T], it follows from (2.12) that
T

(2.19) ,lirn Io s(b)(t-z)w(z)dz=0

uniformly on [0, T]. Thus for every w C[0, T] we have (from the definition of s(,b))
T

(2.20) f0 w(’) dz (s(Anb) * w)(t)+ (Ans(Ab) * b * w)(t).

Using (2.19), (2.17), (2.20) and letting n , we obtain
T

(2.21) Io w(z) d" =-(b * w)(t)-(b w * h’)(t), t[0, T].

Finally, since w C[0, T] is arbitrary we have

(2.22) -/3b h’ b 1, [0, T],

and thus (2.10) holds with a =-/3, k =-h’, c _->0, k La(0, T), nonnegative, nonin-
creasing.

b) Let c >_-0, k LX(0, T) nonnegative and nonincreasing, and b L(0, T) such
that (2.10) holds. We have to prove that r(hb)>-_O and s(hb)>-O for every , >0 and

[0, T].
First, we assume a > 0. Then (Remark (i)) b AC[O, T]; from the definition of

s(Ab), A > 0 and (1,4) we obtain Ab(O)s(Ab) + Adb/dt s(Ab) r(Ab). Dividing by Ab(0)
and solving for s(Ab) (using (1.3) with f r(Ab)/Ab(O)) we obtain

(2.23) s(hb)= h_lb(O)_lr(hb)_r(b(O)_l -db) * h -Ib (O)-r(hb)

Differentiating (2.10) with a b-l(0)>0 we deduce that -r(b(O)- db/dt)= b(O)k.
Thus from (2.23) we get

(2.24) s(Ab) h-ab(O)-Xr(Ab)+ k A-Xr(Ab).
Using (1.4) we get

(2.25) r(Ab)+b(O)(k +A), r(Ab)=Ab(O).

Since k + h is positive, nonincreasing and hb (0) is positive, nondecreasing, we conclude
by Levin’s result mentioned above that r(hb) >-_ 0 on [0, T]. From (2.24) and the fact that
k is nonnegative, we have s (hb) >= 0 on [0, T], which establishes the complete positivity
of b in the case a > 0.

Next we assume c 0. For e > 0, define b by

(2.26) eb + k * b 1 on [0, T].

Thus by the proof for the case a > 0 one has r(hb) >- 0 and s (Abe) -> 0 for every h > 0 on
[0, T]. From (2.25) we have

(2.27) eh-ar(hb)+(k +h) h-ar(hb) 1.

From the definition of r(hb) we have

h -Xr(hb) + hb h -Ir(hb) b.

SiJce k b 1 holds for [0, T], we obtain

(2.28) (k + A) h-lr(hb)= 1, t[0, T].
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Next, for every z AC[O, T] such that z(0)= 0 and z _-> 0 we define u A-lr(Ab) z
and ue A -1 r(Abe) * z. We know that ue => 0 and we want to prove that u => 0, which
implies r(Ab)>= O. From (2.28) we obtain the equivalent identity

du
(2.29) eu + (k + A) u 1 z + e * -, [0, T],

and from (2.27) we obtain

(2.30) eue+(k+A).ue=l.z, t [0, T].

Hence e(u-ue)+(k +A) * (u-ue)=e * du/dt. Let we satisfy

(2.31) ewe +(k +) * we=e *

Then we- (u- ue) is the unique solution of

(2.32) ev + (k + 1) v e *

From Levin’s result mentioned above we have w-(u-ue)>-O. Similarly, one shows
that we + (u ue) 0 by considering the equation

(2.33) ev+(k+1).v=e +

Thus [u ul N w holds, and from (2.31), the fact that k + is positive, nonincreasing,
and w is nonnegative we obtain

i0"(2.34) ((T)+) w(t) dt(k +x) w e dt.

Therefore, lim, o w (t) dt 0 and lim, o u u in L(0, T). Consequently, u
1-ar(Ib)*z 0 on [0, T] for every z eAC[O, T], z 0 and z(0)=0. This implies
r(1b) 0 on [0, T] for every > 0.

Finally, we observe that

(2.35) s(Ib) k -ar(1b), e [0, T].

Indeed, k -ar(Ib) satisfies (see (2.28))

k -r(1b) + Ib k -r(Ib) (k + -r(Ib) 1, e [0, T].

Since k and r(1b) are nonnegative, we obtain s(1b) O. This concludes the proof of
Theorem 2.

3. Qalitative properties o[ abstract Volterra equations with completely positive
kernels. In this section we study some properties of generalized solutions, including
positivity and the asymptotic behaviour of positive solutions as m, of the nonlinear
abstract Volterra equation

(Vg) u+b*Auuo+b*g, t>-_O.

Although our results are stated for generalized solutions, it is obvious that the results
hold for strong solutions whenever strong solutions are shown to be generalized
solutions (see Remark (i)).
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The justification for taking f Uo + b g in (V) is as follows. If b satisfies assump-
tion (H) ( 2, Remark (i) following Theorem 2.2), if f W1’1(0, T; X) and if f(0)
D(A), then there exists a unique Uo D(A) and a unique g LI(O, T;X) such that

(3.1) f(t) Uo + (b * g)(t), 0 <- <- T.

Indeed, Uo =f(0) D(A) and g is the unique solution of the linear equation

(3.2) b(O)g(t) + (b’ g)(t) f’(t), 0 <= <= T.

Conversely, if b satisfies assumption (H) and uoD(A), g LI(0, T; X), then f given
by (3.1) satisfies f(O)D(A), f W1’1(0, T; x). We shall make the following general
assumptions"

A is m-accretive in X;

uoD(A);

g Loc (0, c; X);

b is completely positive on [0, ).

The basic pre,liminary result assuming the global existence of solutions of (Vg) under
assumption (H) is known"

THEOREM 3.1. If A, Uo, g and b satisfy assumption () then"
1. Ifu and u2 are the generalized solutions of (Vg) corresponding to the data Uo.i, gi,

1, 2, then the following estimate holds:
(3.3) Ilul(t)-u.(t)ll<-Iluo,-uo,=ll/(b *llgl-g2[l)(t), t>-O a.e.

2. If P is a closed convex cone in X, if Ja (P) C_ P for every h > 0, and if Uo P and
g(t) P a.e. on [0, o], then u(t) P a.e. in [0, o); moreover, if v u P implies
Jv Jau Pfor every h >0, u, v X, and if uo.2 Uo.x P, g2(t) gx (t) P a.e. on [0, o),
then ui, 1, 2, the corresponding generalized solutions of (Vg), satisfy u2(t)- ua(t) P
a.e. on [0, o).

Remarks.
(i) The existence of a generalized solution in the linear case under the assumption

b completely positive was proved in [3]. In the nonlinear case, when b AC[O, T],
b(0)>0 and bBV[0, T], or when bLI(0, T), b is positive, non-
increasing and log b is convex on (0, T), the existence of generalized solutions of (Vg)
follows from results Crandall and Nohel [5] and Gripenberg [6], already discussed in
Remark (i) following Theorem 2.2. Moreover, if more regularity is assumed on b and f,
then (see [5], [6]) the generalized solution is also a strong solution of (V).

(ii) Estimate (3.3) was proved in [2].
(iii) The positivity result in part 2 was proved in [3]. The last assertion of part 2 can

be established in a similar way.
We next obtain some results concerning the asymptotic behavior of solutions of

(Vg) as . We first consider the case b L (0, ).
THEOREM 3.2. Let A, Uo, g, b, satisfy the general assumptions () with b 0 and

b L(O, c).
1. Let g’L(O,;X) and assume there exists gX such that limt_,[Ig(t)-

gll O. Let u be the generalized solution of (Vg) and define u= J(uo + g), where
b(t) dt > O. Then the following estimate, which implies strong convergence of u(t)

to u as t, holds"

(3.4) Ilu(t)- ull <I b(z)_ d-
b Iluo- ull / (b IIg gll)(t), 0 <- <.
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2. In addition, let b L(O, oo) and limt_,o b(t) O. Let g ga + g2 where gl

satisfies the assumptions of g in part 1, and where gzLl(O, oo;X)+L’(O, oo;X),
bg Then thep (1, oo) Let u be the generalized solution of (Vg) and let u J(uo

following estimate, which implies strong convergence of u(t) to u as oo, holds:

flu (t)- u[[ < b(s) ds

(3.5)
/ (b IIg - g7 II)(t) / (b IIg=ll)(t), 0 -< <

where g]O limt_,oo gl(t).
Remark. Part 1 of Theorem 3.2 was proved in Cl6ment [2] and the proof will be

omitted. Part 2 is proved below.
Next we consider the case where b L (0, oe), which is needed for the application in

4. In order to establish the strong convergence of u to u as oo we shall require that
the nonlinear operator A in (V) satisfy a rather strong coercivity condition.

THZORZM 3.3. Let A, Uo, g and b satisfy the general assumptions () with
b

_
L1(0, ) and A is coercive in the sense that there exists oo > 0 for which A- ooi is

accretive in X.
1. Let g be in L(O, oo; X) and let g.Xsuch that limt-,oollg(t) gl[- 0. Let u be

the generalized solution of (Vg) and let u be the unique element in X satisfying
Au gOO. Then the following estimate, which implies strong convergence of u(t) to u as

oo, holds:

(3.6) [lu(t)-ul[<- f, r(oob)(z) dzlluo-ul[+o-a(r(o)b) Ilg-gll)(t), O<-t.<-oe.

2. In addition, let b beAC[0, oo] and g gl + g2, where gl, g2 satisfy the assumptions
of Theorem 3.2, part 2, with g limt_,oo gl(t). Let u be the generalized solution of (Vg),
and let u be the unique element in X satisfying Au gO. Then the following estimate,
which implies strong convergence of u(t) to u as eo, holds:

(3.7) [lu(t)-ull r(ob)()d’l[Uo-ull/o (r(oob)*llgl-gl II)(t)

+ w -l(r(ob) *
Remarks.
(i) Since b is completely positive and b La (0, ), it follows (see Proposition 2.1)

that r(wb) L1(0, m), and therefore, if the assumptions of part 1 hold, (3.6) implies
limt flu (t)- u]] 0.

When b also satisfies b AC[O, ], it follows (see Proposition 2.1) that r(wb)
L(0, )C[0, ) and limtr(wb)(t)=O. Therefore (3.7) implies liml[u(t),-
u][ 0, if the assumptions of part 2 hold.

(ii) As is clear from the proofs, the assumption g L(0, ; X) and there exists g
such that limt[[g(t)-g[[=O in part 1 of Theorem 3.2 can be weakened to g
Loc(0, ;X) and there exists gX such that limt(b ,[[g-g[[)(t)=O. Similar
generalizations can be made in Theorem 3.2, part 2 and in Theorem 3.3.

Proofof Theorem 3.2, part 2. As in the proof of Theorem 3.2, part I in [2], we first
prove the result with A replaced by Ax, h > 0, and then we pass to the limit as h 0. For
h > 0, let ux be the strong solution of the approximating equation

ux +b * Axux uo+b * g, t[O, oo).
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Using the definition of Ax and applying (2.2) we see that ua satisfies the equation

(3.8) u r(A-lb) Ju +s(A-lb)uo+Ar(A-Ib), g

for [0, o). Since A is also m-accretive, there is a unique u’ satisfying the limiting
equation

(3.9) u + Aau Uo + bg.

Using the fact that b eL(O, c) and g=gl+g2 we can rewrite (3.9) in the
equivalent form

ua +b,Axu =uo+b*g+b*(g-gl)-b*gz-w,(3.10)

where

:(t)= b(s) ds and w =Au-g.

Let t "[0, c)R be the unique solution of the linear equation

+h-b, ;
then obviously

-1 W(3.11) w +h b*w , 0t.

Using (3.10), (3.11), (2.2) and the definition of A we obtain

=r(h-a(3.12) u b),Jua +s(h ab)uo+hr(h-b),g+hr(h-Xb),(g1 --gl)

+ hr(h Xb) * g2 wx.

Subtracting (3.12) from (3.8) we obtain

]]u (t) u (r(h -a b []u u [[)(t) + h (r(h -1 b [[g gx[[)(t)
(a.la)

+ [lg ll (t + In l(t llwTll.
It is shown in C16ment [2, see argument following (3.18)] that 0. Thus by using the
same argument as in [2] one gets (take the convolution of (3.13) with h-b)
(3.14) [[u(t)-u[l(t)[]w[[+(b ,][gx-g[D(t)+(b *[]g2[[)(t), 0t<.

The conclusion (3.5) follows from using (3.9) and rewriting

  b(s ds (t llw HUo- II,

and then letting h 0. Note that

u (I + b-A)-a(Uo +/7g7) xolim (I + Aj-’(Uo + gT) ]i,m u.
Proof of Theorem 3.3. We first establish the results with A replaced by A()=

taI + B, 3, > 0, where Ba is the Yosida approximation of B, defined by B A taL Note
that B is m-accretive in X. Let u be the strong solution of the approximation equation
to (Vg) written in the form

-1(3.15) u + tab * u + tab * ta-Bxu Uo + tab * ta g.

Since the kernel b L (0, o), we transform this equation into a form which has the
property that its new kernel will be in L1(0, c) and completely positive. Indeed, if we
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take the convolution of (3.15) by r(tob), subtract the result from (3.15) and use the
definition of r(tob) we get the approximating equation equivalent to (3.15)"

(3.16) u;, + r(tob) * to-lBxu;, Uo + r(tob) (to-lg Uo).

From Proposition 2.1, r(tob) is completely positive and r(tob)eLl(O, co), with

Io r(wb)(6) d6 1.
To prove Theorem 3.3, part 1, we wish to apply Theorem 3.2, part 1, to (3.16). If g

-1satisfies the assumptions of Theorem 3.3, part 1, so does to g- Uo. Thus all assump-
tions of Theorem 3.2, part 1 are satisfied with b replaced by r(tob), A replaced by

-1to-lBa, g replaced by to g-Uo, and u by ux. We obtain (by (3.4))

(3.17) Ilu (t)- uTll<- f, r(tob)(-) dzllUo- Ul[+ to-l(r(tob) . llg- gll)(t),

where u is the unique solution of the limiting equation

to Bxu
OO -1(3.18) ux +

which exists because Bx is m-accretive and to >0. Note that (3.17) is the estimate (3.6)
with u replaced by ux.

If g satisfies the assumptions of Theorem 3.3, part 2, and b AC[0, oo], it follows
from Proposition 2.1 that r(tob)Ll(O, oo)f’lC[O, oo]. Thus with g=gl+g2 we can
apply Theorem 3.2, part 2, to (3.16), and we obtain (from (3.5)) the estimate

(3.19) Ilu(t)-ull r(tob)(-) drllUo-ul[+(o-ar(oob) Ilga-gTll)(t)

+ (to-lr(tob)* 0-<t<c,

where u is the unique solution of the limiting equation

-1BxuOO -1(3.20) uo q.. 60 x to g 1.

Note that (3.19) is the estimate (3.7) with u replaced by ux.
Since B is m-accretive, limxo ux u where in the case of (3.18) u satisfies the

limiting equation
-1(3.21) u +to-lBu to g

or equivalently u satisfies the limiting equation

(3.22) Aug
Similarly, in the case of (3.20) we find that u satisfies the limiting equation

(3.23) AugT.

It remains to prove that lima ,o ua u in LI(0, T; X) for every T>0, where u is
the generalized solution of (Vg). Having done so we see immediately that the estimates
(3.17), (3.19) hold with ux replaced by u, thus obtaining (3.6) and (3.7). We know that
lima ,o Illa.(t)-u(t)ll dt=O, where tTa Loc[0, oo; X] satisfies

(3.24) tx + b Aatx u0 + b g.

Introduce the notation 6 A (1 + Ato)-l. Since A toI + B, one easily checks that

Aa to(1 + toA)-11 + Bs.
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Thus the solution tTx of (3.24) satisfies the equation

(3.25) + b .B uo+ b . (g o l + oah )-lt ),

or, by (3.15),

(3.26) u + b Bu Uo + b (g wu).

Tocomparethe solutions of (3.25) and (3.26) we applythe inequality (3.3) ofTheorem 3.1,
and we obtain (note that Uol Uo2 Uo)

[la ull_-< o,b (1 / Ao,)-alla ul[ / Ao2(1 -t- A(.o)-lb * Ilall,
and hence also the estimate

(3.27)

It follows from (3.27) that for every T > 0
T T

(3.28) fo [la-ull(t)dt<=6oZllbllL’o,7-) (l+llr(-wb)[lLlo,7-)Io Ila(t)ll dt.

Since tTx converge to u in LI(0, T; X), we finally obtain lima ,o Illu,-u[l(t)dr=o,
which proves that ux converge in LI[0, T; X] to the generalized solution u of (Vg)
for every T > 0. This completes the proof of Theorem 3.3.

Example 3.4. A conservation law with memory. As an illustration of Theorems 3.1
and 3.2 we consider the existence and qualitative properties of positive solutions of the
problem

(c) u(t, x) + b(t-s)(u(s, x)) ds uo(x), >- 0, x e R.

We assume that C(R) is a given function. If b =- 1, problem (c) is equivalent to the
nonlinear conservation law in one space dimension,

u, + 4(U)x O, u(O, x) Uo(X), x R.

Although no particular physical significance is claimed for (c), it evidently contains the
usual conservation law as a special case. The latter has been studied extensively from
special points of view. Crandall [4] has shown that if b :R R is a given smooth strictly
increasing function (actually 4’ continuous is sufficient) such that b(0)= 0, then the
operator A defined by Au =b(u)x on the Banach space X =La(R), with D(A)=
{u La(R):(Ux)L(R)} (see [4, Def. 1.1 and Thm. 1.1]), is m-accretive on X, and
D(A)=X. Moreover, one has Jx(0)=0 and Jau<=Jxv(, >0), whenever u<=v, u,
v6L(R).

In (c) assume that b Loc (0, c), b 0 completely positive on [0, oo), and uo
D(A); to be specific take b nonnegative, nonincreasing and log b convex on (0, ).
Then by Gripenberg’s result [6] (see Remark (i) following Theorem 2.2) and by
Theorem 3.1 problem (c) has a unique generalized solution u; u is nonnegative
whenever Uo is nonnegative, and u_-> u2 whenever Uol_-> Uo2. If, in addition, b
La (0, ), then this generalized solution u converges strongly in LI(R) as oo to the
element uoD(A) which is the unique solution of the limit equation

u exists and is uniquely defined since Io b(t) dt > 0 and A is m-accretive.
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4. Nonlinear heat flow in a material with memory. Consider nonlinear heat flow in
a homogeneous bar of unit length of a material with memory. Let u u (t, x) denote the
temperature at time and position x and let the ends of the rod at x --0 and x 1 be
maintained at zero temperature. For simplicity and without loss of generality let the
history of u be prescribed as zero when < 0 and when 0 x 1 (if not this introduces
an additional known forcing term in (4.3) below). The equation satisfied by u is derived
from the assumptions that in such materials the internal energy e and the heat flux q are
functionals of u and of the gradient of u respectively (rather than functions of u and ux).
Specifically, we assume following the theory developed by Coleman, Gurtin, MacCamy
and Nunziato for heat flow in materials for fading memory type (see, e.g., MacCamy
Nunziato [12]) that e and q are taken respectively as the functionals

(4.1) e(t,x)=bou(t,x)+Jo (t-s)u(s,x)ds, t>=O, 0<x<l,

(4.2) q(t, x) -CoO’(Ux(t, x)) + J0 y(t- s)o’(ux(s, x)) ds, >- O, 0 < x < 1;

here b0 > 0, Co > 0 are positive constants and the functions/3, y: [0, co) R are given
sufficiently smooth functions called the internal energy and heat flux relaxation
functions, respectively. The given function r’ R R satisfies the assumption

(tr) o’eC(R), tr(0)=0, tr’(sc)_->p0>0, seeR, for some p0 > 0.

In the physical literature the relaxation functions fl, ), are usually taken as finite linear
combinations of decaying exponentials with positive coefficients. The theory developed
in 3 will be shown to be applicable under the considerably more general and physically
reasonable assumptions of Theorem 4.1 below. We remark that for physical reasons
one should require at least that/3, 3’ L(O, ) and

() bo+ (t) dt>O and (y) Co- y(t) dt>O.

If h h (t, x) represents the external heat supply applied to the rod for >_- 0 and
0 <-_ x < 1, and if u (0, x) Uo(X), 0 < x < 1 represents the initial temperature distribution
in the rod, we apply the law of balance of heat (et -div q + h) to obtain the following
initial-boundary value problem to be satisfied by the temperature u"

O--[bou(t, x)+( * u)(t, x)]= cor(u,(t, x)), -(y * r(Ux),)(t, x)+ h(t, x),
Ot

(4.3) 0<t<o, 0<x<l,

u(t, O) u(t, 1)=-0, >0,

u (0, x) uo(x), 0 < x < 1.

We remark that if the history of u for < 0 is not zero, the integrals in (4.1) and (4.2)
range over the interval (-oe, t) (rather than (0, t)), and the resulting equation cor-
responding to (4.3) would have additional known forcing terms stemming from the
integrals over (-m, 0) in (4.1) and (4.2). We also remark that with proper interpretation
of the differential operator -r(u,)x and suitable boundary conditions, the problem
(4.3) and the theory for it developed below apply equally well in more than one space
dimension.
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We next transform the problem (4.3) to a more convenient and recognizable form.
Define

(4.4) C(t) Co- "r(’) dt, 0 <= <,
(4.5) G(t,x)=bouo(x)+ h(’,x) dt, 0---t<o, 0<x<l.

Noting that

Cor(Ux(t, x)) -(, * r(u))(t, x)=- (C * r(U)x)(t, x),

integrating the equation in (4.3) and using the initial condition, we obtain the Volterra
equation

(Vx) u+.u+C.Au=G, 0_-<t<, 0<x<l;

here we have taken the constant b0 as 1 without loss of generality. The nonlinear
operator A is defined to be Au -(O/Ox)o’(ux), together with the boundary conditions
u(t, O)= u(t, 1)---0. Thus, if X is the Hilbert space L2(0, 1) and

(AI- u eo(0, " -x(ule(0,
it is well known that if assumptions (o’) are satisfied, then A =0q, where q:L(0, 1)-
(-oo, +o],

(4.6) q(y) \dx!(X) dx if y eg (0, 1),

otherwise,

where W(z)=o r(sC)dsC. Thus 0 is convex, 1.s.c. and proper on L2(0, 1) (in fact,
(y)>=0), and A is maximal monotone and hence m-accretive on X=L2(0, 1).
Moreover, by an integration by parts and the Pioncar6 inequality, A satisfies the
coercivity condition

2fol(4.7) (Au, u) >= poTr [u[z dx.

The Volterra equation (V1) may be written in the standard form (Vg) by defining
the resolvent kernel r(/3) of/3 to be the unique solution of the linear equation

(r(/3)) r(/3) +/3 * r(/3) =/3, 0<=t<;

clearly, if/3 e L1(0, ), then r(/3)e Loc(0, ) (at least). Next, define b:[0, )--> R by

(4.8) b C- r(/3) C,

where C is the function defined in (4.4). Then the variation of constants formula shows
that (V1) is equivalent to the Volterra equation

u+b *Au=G-r(B)*G, 0<=t<c;

taking bo 1 in (4.5) one sees that (V1) is equivalent to the equation

(4.9) u + b au Uo + 1 (h r(B) h uor(B)), 0 <= < c.

The heat flow problem (4.3) under study is completely described by (4.9).
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Our objective is to apply the theory developed in 2 and 3 to discuss the global
existence, uniqueness, positivity and decay of solutions of the nonlinear Volterra
equation (4.9) (equivalent to (Va) and to (4.3)), under physically reasonable assump-
tions on the relaxation functions fl, 3’, the external heat supply h and the initial
temperature distribution Uo. Our main result is’

THEOREM 4.1. Let be bounded, nonnegative, nonincreasing and convex on
[0, az). Let 3’ be nonnegative, nonincreasing, log convex and bounded on [0, o). Let
C() Co- 3"(t) dt > O, and let

(4.10) fl’(t)+ (t)<=O a.e. forte[O, o).
o

Let the assumption (or) be satisfied, and let A = Oq, where q is defined in (4.6).
1. If u0L2(0, 1) and if the forcing function hL2oc([O,o)(O, 1)), then the

nonlinear Volterra equation (4.9) (equivalent to the heat flow problem (4.3)) possesses a
unique strong solution u on [0, c), such that x/-t u’ Loc(0, c; L2(0, 1)); ifuo Ho (0, 1),
then u’ L2oc(0, ; L2(0, 1)).

2. I]the data Uo and h satisfy Uo.a(x)<=Uo.z(X) a.e. on [0, 1] and ha(t, x)<-h2(t, x)
a.e. on [0, c) [0, 1], then the corresponding strong solutions ui (i 1,2) satisfy ua(t, x) <=
u2(t,x) a.e. [0, o)x[0, 1]; in particular, if uo(x)>-O and h(t,x)>=O a.e. on [0, 1] and
[0, o) [0, 1) respectively, then u(t,x)>=O a.e. on [0, o) [0, 1].

3. If, in addition, [3 La(O, ), and if h hi + h2 (where ha L(0, o; L2(0, 1))
and there exists h Lz(O, 1) such that limt_[[ha(t)-h[[L2(o.1)=O, and where h2
LP(0, o0; L2(0, 1)) [orsome p >- 1) then the strong solution u of (4.9) converges strongly in
L2(0, 1) as to the element uL2(0, 1); u is the unique solution of the limit
equation Au gl where

(4.11) gl 1 + 3" 3"(t) dt.
Co C(m)

In particular, if h O, then u O.
We pause to comment about the assumptions concerning the relaxation functions/3

and y. Since in the physical literature these functions are taken as linear combinations of
decaying exponentials with positive coefficients (or even only a single such exponential),
it is reasonable to assume that both functions are nonnegative bounded, nonincreasing
and convex on [0, c); while we only require that log y is convex, both functions are log
convex in this physical case. The assumption C(c)= Co- y(t) dt > 0 is motivated as
follows. Suppose that the temperature u(t, x) gt(x) as tc (where tT(x) is the
equilibrium temperature), and for definiteness suppose that dt/dx > 0 at x (0, 1) (i.e.,
the equilibrium gradient of temperature is positive). Then assumptions (or) and y
L1(0, ) applied to (4.2) yield

lim q(t, x)= -C(c)o-(d-x),t--

Thus the assumption C() > 0 insures that the equilibrium flux is negative, and this fact
is essential in order to guarantee "forward" heat flow at equilibrium. Since 3’ is
nonnegative, nonincreasing and bounded on [0, c), the assumption C(az)>0 also
implies that C(t) Co- 3"(r) dr with Co> 0 is strictly positive (as well as nonincreasing
and bounded) on 0 _-< < c; this is essential for "forward" heat flow for all _-> 0. The
reader should recall that even in the linear case the "backward" heat equation does not,
in general, lead to well posed problems. The assumption (4.10), which, together with
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the logarithmic convexity of y, is used to show that the kernel b in (V) defined by (4.8) is

completely positive, is motivated in the remark following the proof of Lemma 4.2
below.

Before giving the proof of Theorem 4 1 we state a lemma which establishes some
properties of the kernel b defined by (4.8).

LEMMA 4.2. Let , 2’, C satisfy the assumptions of Theorem 4.1. Then b defined by
(4.8) is completely positive on [0, oo), b satisfies the assumption (H) (Remark (i) following
Theorem 2.2), and a, k associated with b in Theorem 2.2 satisfy c =c- >0 and
k L (0, oo) with

(4.12) o k() d
1 1

c (> :(l+fl)+

ere=0 () t, =o (). Moreover, (0,) ’(0, ).
Proofi Since the functions fl and C ACo= [0, ) it follows that the functions r(fl)

and b ACloc [0, ) (see definitions (r(B)) and (4.8) respectively). Note that b(0) Co>
0. Define a b(0)- and let k be the solution of the linear Volterra equation

b’
(k) b(0)y+b’.y=

b(0)’
0t<.

Since b’ Loc [0, ), k Loc (0, ), and since

d b’(t)
d (b k)(t)= b(O)k(t)+(b’, k)(t)=-b(O’

one has by integration that k satisfies the linear Volterra equation

(4.13) ab(t)+(k b)(t) 1, 0_<- <oo.

Since b(0)> 0, one also has that k is uniquely defined by (4.13).
In order to show that b is completely positive it suffices, by Theorem 2.2, to show

that k is nonnegative, nonincreasing and bounded on [0, oo). We first observe that the
assumptions made on 3’ imply that C, -C’ are convex and log (-C’) is convex on (0,
This in turn implies that log C is convex on (0, oo); see G. Gripenberg [7]. Since C is
nonnegative, nonincreasing and belongs to Loc (0, oo), C is completely positive on
[0, oo). Moreover C also satisfies assumption (H) (see Remark (i) following Theorem
2.2). It follows from Theorem 2.2 that there exists ac > 0, and kc Lloc (0, oo), non-
negative, nonincreasing and bounded satisfying

(4.14) aC(t) + (k C)(t) 1, 0 <= < c.

-1 -1Note that a- Co b (0)-a. From the definitions of b in (4.8), of r(/3), and from
(1.2) and (1.3) it follows that

(4.15) C(t)=b(t)+(O * b)(t), 0-<_ <c.

Substituting (4.15) into (4.14) yields

ab+(k+ +kc ). b= 1,

and thus (4.13) implies that

k(t)= k(t)+aB(t)+(k 3)(t),(4.16) O-<t<-.
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Since k,: BV(O, ) we have

d Iod--[a +k B](t)=aB’(t)+k(O)(t)+ B(t-z) dk(-)

a.e. on [0, m). Hypothesis (4.10) and the identity (4.14) imply that a’(t) + k(O)(t)=
(1/Co)[B’(t)+((O)/co)B(t)]NO. Moreover, since kc is nonincreasing and B is non-
negative,

oB(t-)dk()NO,

0Nt<m.

Thus k is nonnegative and nonincreasing on [0, m). Therefore, one also has k s
BV[0, m) if k L[0, 1]. But k and are bounded and e L(0, 1) imply k e L[0, 1]
(note that here the assumption B L(0, m) is not needed). From Theorem 2.2 again it
follows that b is completely positive and satisfies assumption (H).

We next establish that bL(O, ). Since C’=- sLY(0, m), and lim C(t)=
C(m) Co-I (s) ds > 0, it follows that C L(0, m). If b L(0, m), it would follow
from (4.15) and the assumption B e L(0, m) that C e L(0, m), a contradiction. Thus
bL(O,m).

We next prove that b’ L(0, m]. Indeed, from (4.8) it follows that

b’(t) C’(t)-C(O)r()(t)-(r() C’)(t).

But C’=-eL(0, m); moreover, r()eL(O,m), since is nonnegative, nonin-
creasing, convex and e L (0, m) (use the Paley-Wiener theorem and the fact that is
positive definite).

Finally, we show that k e L(0, m). From (4.16) and the fact that B e L(0, m), it is
sucient to prove k e L(0, m). From (4.14) and the fact that C is positive, nonin-
creasing, C(m)> 0 and k is nonnegative, we have

C() fo k(r) dNC,kN1, 0Nt<,

which proves that k L(0, m). Formula (4.12) follows easily from (4.16) and the
differentiated form of (4.14). This completes the proof of Lemma 4.2.

Remark. In Lemma 4.2, if fl(t)== be-o"t with b >0 and 0<fl<.. <
B,, then condition (4.10) is satisfied if y(O)/co holds. Indeed, since log B is convex
and nonincreasing, it suces to require

lim
B’(t) < _r(0.

’ B(t) Co

Proof of Theorem 4.1. We begin with the proof of the existence and uniqueness of
strong solutions of the Volterra equation (4.9). Defining f’[0, m) x L(0, 1) L(0, 1)
by

(4.17) f= u0+ 1 (h-r(B) * h-uor(B)),

we have

(4.18) f’=h-r(O)*h-uor(B), 0-< <m, 0<x<l.

It follows from Lemma 4.2 that the kernel b satisfies the assumption

(H) b(0)>0, bAClo[0, oo), b’eBVlo[O, oo),
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and that f Wllc2 (0, 00; L2(0, 1)) whenever h Ll2oc ((0, 0o) [0, 1)). Since under
assumptions (or) A 0q, where q is defined by (4.6), the existence and uniqueness of
strong solutions u with the properties asserted in part I of Theorem 4.1 follows from the
result of Crandall and Nobel [6, Thm. 4 and Remarks in 4].

We next establish the asymptotic results asserted in Theorem 4.1. Since r(B)
L(0, oo) (proved in the demonstration of Lemma 4.2), and since h hi + h2, one has
from (4.18) that

f’=(hl-r() * hl)+(h2-r() * h2)-r()Uo,

where hi- r(fl) hi L(0, oe; L2(0, 1)) and

0_<-t<0, 0<x<l,

Moreover,

(h2- r(/3) h2- r(B)Uo) L1(0, oo; L2(0, 1))+ Lp (0, oo; L2(0, 1)),

with 1 < p < oo.
By using (4.18), the fact that the kernel b defined by (4.8) is by Lemma 4.2

completely positive and Theorem 2.2, we can write the Volterra equation (4.9) in the
equivalent form

(4.19) u + b Au Uo + b (af’ + k f’), 0 <- <

To arrive at (4.19) we use the relation ab + k b= 1 in the right-hand side of (4.17) and
recombine terms making use of (4.18). Thus (4.19) is in the basic form (Vg) of 3 with

(4.20) g af’ + k f’, 0

From Lemma 4.2, k LI(0, c) and g gl + g2, where (with h hi + he in (4.18))

(4.21) gl=a(hl-r()*hl)+k *(hl-r()*hl), 0<-t<,

(4.22) g g, + g:,z, 0 <- <

with

g2.x=-auor(B)-ar(B) . h.+ k (h2-r(B) * h2-uor(B)), g22 ah2.

Clearly g21 L(0, ; L2(0, 1) and g22LP(O, o0; L2(0, 1)). From Lemma 4.2 one has
that b is completely positive on [0, oo), bLl(0, oo), and b’Ll(0, oo). Thus all
assumptions of Theorem 3.3, part 2, are satisfied. We conclude that estimate (3.7)
holds, and therefol;e limt-,oollu(t)= ull- 0, where u A-lg with gO given by (4.11);
note that to evaluate gO use is made of (4.12) and of Proposition 2.1.

Finally, we establish the "comparison" result asserted in Theorem 4.1, part 2. Let
P {u L2(0, 1)’u -> 0}; P is a closed convex cone in L2(0, 1) and v u’e P if and only if
u =< v. Moreover, it is standard that if u-<v then Jxu <=Jv for every , >0, where
Ja (I + hA)-. We shall prove the result for solutions of the Volterra equation (V1)
which is equivalent to (4.9). As usual we shall prove the result for solutions of the
approximating equation (V) of (V1) in which A is replaced by the Yosida approxima-
tion A, h > 0, and then obtain the result by letting h ,l, 0.
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Let Uo,i L2(0, 1), hi La(O, 1), 1, 2, satisfy Uoa <-- U02 and ha(t) <-_ h2(t) a.e. on
[0, T]; let ux,i be the strong solutions of the approximating equation

(VIA) UA,i’-[3 * uA,i-h-lc * uA,i A-1C * Jxux,i + Uo,i + l * hi,

i=1,2, A>O, O<-_t<- T.

It follows by an elementary calculation (which uses the definitions of b, r(A-ab) and the
relation C b +/ b) that

(4.23) ux,i--r(A-lb),Jxux,i+fx,i, i= 1,2, A>0,

where [,i are solutions of the linear Volterra equation

(4.24) fx,i +/ * fx, + A-aC fx,i Uoi + 1 hi, [, 2.

Hence by a familiar calculation one has

fx,1 Uo,iS( -[- h -1 C) + hi * s([3 + h
-a C), 1, 2,

and from (4.23), (4.24) the difference ux,2-ux,1 satisfies the Volterra equation

(4.25) U’z- ux’l r(h-ab) * (Ju’z-Jux’a) + (u’2- U’l)S(B + h-lc)
+(h2-hl) * s(/ +A-1C).

Since/3 + A-1C is positive, nonincreasing, it follows from Levin’s result (see 2) that
s(fl + A-1C)(t) >= O. Thus

zx (Uo,z Uo,a)s(O + A -1C) + (h2 h a) * s(/ + A -a C)

satisfies zx (t) => 0 a.e. on [0, ).
Next, define vx ux,2- ux,a- za using (4.25) we have that vx satisfies

(4.26) vx r(A-ab) * (Jx(vx + ux, + zx)-Jx(ux,x)).

As in [3] one shows that vx lim,_. vx,,, where

(4.27) v,,+l r(A-ab) * (Jx (va,, + ux,1 + z)-Jx (u,a)),

where vx, La(0, T; L2(0, 1)) is arbitrary. Choosing vx,l(t)sP a.e. on [0, T], T>0
arbitrary, one shows easily that vx,, (t) P a.e. on [0, T] for all positive integers n. This
also uses the fact that r(A-ab)=> 0, that Jx is an increasing map with respect to the
ordering -<, and that zx (t) s P a.e. on [0, T]. Thus vx (t) P a.e. on [0, T], and for A > 0

(4.28) ux,2(t)- Ux, l(t) zx (t) + vx (t) => 0 a.e. on [0, T].

Since T > 0 is arbitrary, (4.28) holds on [0, o), and the conclusion follows from letting
A $ 0. This completes the proof of Theorem 4.1.

Acknowledgment. The authors thank the referees for suggesting a more descriptive
title, requesting clarification of the assumptions regarding the functions/ and 3’ in 4
(see paragraph following the statement of Theorem 4.1) and pointing out several
typographical errors.

REFERENCES

[1 PH. BENILAN, Equations d’evolution dans une espace de Banach quelconque et applications, Thse de
Doctorat d’Etat, Universit6 de Paris Sud, 1972.

[2] PH. CLIMENT, On abstract Volterra equations with kernels having a positive resolvent, Israel J. Math., 36
(1980), pp. 193-200.



NONLINEAR VOLTERRA EQUATIONS WITH POSITIVE KERNELS 535

[3] PH. CLIMENT AND J. A. NOHEL, Abstract linear and nonlinear Volterra equations preserving positivity,
this Journal, 10 (1979), pp. 365-388.

[4] M. G. CRAND,LL, The semigroup approach to first order quasilinear equations in several space variables.
Israel J. Math., 12 (1972), pp. 108-132.

[5] M. G. CRANDAII and J. A. NOHEI, An abstract]unctional differential equation and a related nonlinear
Volterra equation, Israel J. Math., 29 (1978), pp. 313-328.

[6] G. GRIPENBERG, An abstract nonlinear Volterra equation, Israel J. Math., to appear.
[7], On positive, nonincreasing resolvents of Volterra equations, J. Differential Equations, 30 (1978),

pp. 380-390.
[8] J.J. LEVIN, Resolvents and bounds]:or linear and nonlinear Volterra equations, Trans. Amer. Math. Soc.,

228 (1977), pp. 207-222.
[9] R. C. MACCAMY, Stability theorems for a class of functional differential equations, SIAM. J. Appl.

Math., 30 (1976), pp. 557-576.
[9a],Approximations ]’or a class offunctional differential equations, SIAM J. Appl. Math., 23 (1970),

pp. 70-83.
[9b], A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math., 35 (1977), pp.

21-33.
[10] R. K. M.LLER, On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal.

Appl., 22 (1968), pp. 319-340.
[11 ., Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, CA, 1971.
[12] J. W. NUNZIATO, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971),

pp. 187-204.
[13] D. V. WIDDER, The Laplace Transform, Princeton, University Press, Princeton, NJ, 1946.



SIAM J. MATH. ANAL.
Vol. 12, No. 4, July 1981

1981 Society for Industrial and Applied Mathematics

0036-1410/81/1204-0004 $01.00/0

MATHEMATICAL STUDY OF THE NONLINEAR SINGULAR INTEGRAL
MAGNETIC FIELD EQUATION. III*

MARK J. FRIEDMAN?

Abstract. We extend the results of Part [SIAM J. Appl. Math., 39 (1980), pp. 14-20] on the spectrum
of the singular integral operator

In M(y)(AM)(x) -zr grad div r dy.

As an application we obtain an estimate of the lower bound of the spectrum of the magnetic field operator
RM hM+AM from LZ(fl) into the subspace J of generalized solenoidal vector-functions from Lz. Here M
is the magnetization vector, hM (M/(tz (M, x)- 1)) (M IMI) is the total field, AM is the induced field, and
fl is a simply connected domain in R3.

7. Introduction. In this paper we keep the notation and the enumeration of Part I
[2] and Part II [3].

In Part I [2] we began the investigation of the spectrum in L2 of the singular integral
operator [2, p. 16]

1 Ia M(y)(2.11) (AM)(x) grad div 0(x) =- r grad div r dy, x f.

We showed there that (i) A is bounded, with IIAII- ; (ii) A is self-adjoint; and (iii) A is
positive semidefinite, with (AM, M) _-> 0. The present paper extends the results of Part I
[2]. The principal result is given by Theorem 8.1, and follows from classical potential
theory, elementary properties of pseudo-differential operators on a compact manifold
without edge, and the decomposition (8.19) of L2 into a direct sum [1].

Theorem 8.1 can have various applications to the investigation of the magnetic
field equation ([3] with notational change)

(6.1) RM= hM+AM= H,

and numerical methods for its solution. As an example we obtain an estimate of the
lower bound of the spectrum of R L2-J, where J is a subspace of generalized
solenoidal vector-functions from L2 (see (8.22) for definition). This choice is natural,
since in applications we always have Ha J. For simplicity we consider the isotropic
case. We denote by I1" I1 ,. and II" Ils,s the norms in Hs= Hs(D,), Hs(S) (see [5] for the
definition of these spaces. We shall also use the notation I1’ II0,. =-I1" II, n-t,

8. The spectrum of A and R. Let us introduce some subspaces of L2 [1].

(8.1)

(8.2)

(8.3)

a {M" M rot F, F Ha, div F 0, F n[s 0},

( {M" M grad 4’, sHa, Ols 0},

U {M’ M grad , 0 sHa, AO 0}.

Here H Ha(ll) is the space of vector-functions F (El, V2, V3), Vi H 1 2, 3

* Received by the editors February 1, 1979, and in revised form October 25, 1979. This work was

performed under the auspices of the U.S. Department of Energy under contract W-7405-ENG-48.
t Center for Applied Mathematics, Cornell University, Ithaca, New York 14853.
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THEOREM 8.1. Let the boundary S of f be twice continuously differentiable. Then
1. Ker A .
2. Ker (A- I)= (.
3. Within the interval (0, 1) the spectrum of A is at most countable" A 1/2 is the

unique limitpoint; each value # 1/2 is regular or has a finite multiplicity; Uis an invariant
subspace o[A, and the eigen[unctions ofA in Uform a complete orthogonal system in U.

We divide the proof into Lemmas 8.1-8.4.
LEMMA 8.1. For any eigenvalue h ofA, the set ofcorresponding eigenfunctions ofA

which are smooth in f is dense in the L2 subspace of corresponding eigenfunctions ofA.
Proof. Let h, M satisfy

(8.4) AM-AM=0.

Setting M(x)--0 for any x R3-l-, we rewrite (8.4) as a convolution in R3:
1

grad div M, (x) A M(x) 0 x s 13,.(8.5)
4zr

Now let p(x) C(R3) be a function such that p(x) has compact support in R3,
-3/9R3 p(X) dx 1. Setting p (x) e (x/e) for e > 0, we have, from the properties of

convolutions,

Ap M p grad div M, grad div (p M),

i.e., the smooth function M p M satisfies (8.4). To end the proof we note that M
converges to M in L2 as e 0.

LEMMA 8.2. Ker A
Proof. Consider A on the linear set D(A) CI(D,) f3 C(I) of vector-functions with

components from CI(f)fqC((). From the proof of [2, Lemma 2.1] we have the
identities

(8.6) M(x) -rot rot O(x + grad div O(x ), x

fn Is M(y)" ny Ia div M(y)
(8.7) div

M(y)
dy dS + dy, x

r r r

Using Green’s formula, we obtain that

1 In M(y)M(x)---- rot rot
r

dy O,

This implies

(8.8) div M(x) O,

Using Green’s formula, we obtain that

(8.9) (M .n, 1)0,s 0.

xf.

1 Is o-(y)
(8.10) grad v(x)---grad r

d$-- O, x ,
where we use the notation cr M n. Taking into account the jump conditions on S for

From (8.7) and (8.8) it follows that for 0, (8.4) can be written as
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the derivatives of the single layer potential when x approaches S from the interior,

s Tcs (n, xi)+-- r(Y)x dSy, i= 1, 2, 3,

we obtain from (8.10)

(8.11) + Tcr---+-- r(y)0- dSy =0, x S.

From (8.9) we see that (or, 1)o.s- 0. We therefore consider (8.11) in the space Co(S)=
(tr C(S), (tr, 1)0.s 0). It is the homogeneous equation for the interior Neumann
problem. The conjugate equation is the equation for the exterior Dirichlet problem. It is
known to have only the trivial solution in Co(S) (see, for example, [6]). By the standard
Fredholm theory (8.11) also has only a trivial solution in Co(S). It follows that

Ker A f3 D(A) {M D(A)" div M 0, M. n]s= 0}.

The inverse inclusion follows immediately from the identity (8.7). By Lemma 8.1 the
closure of Ker A D(A) in L2 is Ker A, and by [1, Theorem 3.2] this closure coincides
with af; thus the lemma is proved.

LEMMA 8.3. Ker (A- 1) (.
Proof. Consider again A on D(A)= CI(fl)f3 C(fI). For 1, (8.4) is written as

1 Ia M(y)(8.12) M(x) +r grad div r dy -0, x f.

This implies rot M 0. Let us set

1 [n M(y)(8.13) (x) --- div
r

dy, x R3.

Then M grad d’ in t). It is easy to verify that d) satisfies the boundary value problem

(8.14) Ab =div M, x f,

(8.15) 6+=6-, xS,

(8.16) Ad, =0, xR3-f,

(8.17) 0b- 0, x S,
On

(8.18) lim b(x) 0 for Ix[--> 00,
where / and denote, respectively, the inner and outer limits on S. Here (8.14), (8.15),
(8.16) and (8.18) follow immediately from (8.7) and the properties of the space
potential and the single layer one. From (8.12) M+.n-Ocb//On =0; together with
O,Tb+/On-orb-Ion M+’n, this gives (8.17). The problem of (8.16)-(8.18) has only the
trivial solution, and therefore by (8.15), &+= 0. It follows that

Ker (A I) (’1D (A)
_
{M D(A)" M grad b, b + 0}.

On the other hand, M grad d, d + 0 imply rot M 0, M+ x n 0 for x 13,. Together
with the identities (8.6),

1 Isn(y)xM(Y)dsy_InrtM(Y)dy(2.7) rot
r r
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this gives the inverse inclusion. From Lemma 8.1, the closure of Ker (A-I) fqD(A) is
Ker (A- I); and from the results in [1] the former is . Thus the lemma is proved.

Let us denote by A0 the minimum eigenvalue of T in Co(S) and by A0 the maximum
one.

LEMMA 8.4. On the interval (0, 1) the spectrum ofA in L2 is at most countable:
1) A0 is the lower bound, Ao is the upper bound, 0 < A0 -< A0 < 1; h 1/2 is the unique

limit point; each value h # 1/2 is regular or has finite multiplicity.
2) Uis an invariant subspace ofA, and the eigenfunctions ofA in Uform a complete

orthogonal system in U.
Proof. By [1],

(8.19) L2 aU(,

and therefore from Lemmas 8.2 and 8.3 it follows that for studying the spectrum of A
on (0, 1) it is sufficient to consider A on U. We now reduce the problem of the
investigation of the spectrum of A on U to that of the investigation of the spectrum of T
on Ha/2 (S) {r H-1/2" (r, 1)u-1/2(s) H1/2(S) 0}

For M U let us define a potential u by setting grad u M, s u dS 0. The norm
in H (f) can be defined [6] as

(8.20) 1,1 dx + u d

For u defined above, we therefore have

(8.21) [full2 Ia (grad u)2 fa1,fl--" dX (M) dx -IIMII=

Now let h be a point of the spectrum of A in U. Then there exists a sequence (M,) U
such that M, grad u,, Au, 0, s u, dS 0, [[Mll- 1, IIAM.- h M,[I- 0 as n - oo. It
follows that

div dy Aun - 0
r 1,

as n --> oo. By [5], for a harmonic function u, the mapping u Ou+/On is continuous from
+Ha(l’l) to H-/2(S). From the proof of Lemma 8.2, for crn M+.n =-Ou,/On it follows

that IIT.- (1/2-h)ll_l/=,s-. 0 as n - c. Thus there is a correspondence between the
spectrum of A on (0, 1) in L2(fl) and a subset of the spectrum of T in H-/2(S) (see, for
example, [8, p. 364]). For each real s T is bounded from Hs(S) into us+l(s). In
particular, T is compact in H (S) for all real s. It follows that all eigenfunctions of T are
smooth. In particular the spectrum of T in H-1/2 (S) coincides with that in Co(S). The
spectrum of T in C(S) is a subset of [-1/2, 1/2) (see, for example, [4]). Now from the proof of
Lemma 8.2 it follows that the spectrum of T in Co(S) belongs to (-1/2, 1/2). Together with
the standard properties of a compact operator, this gives the first statement of the
lemma.

To get the second statement of the lemma, we note that for M U from (2.11),
(8.7), (8.8) it follows that

1 Is M(y). nAM grad
r

dS U,

and that A is self-adjoint in L [2]. As is well known [7], a compact self-adjoint operator
in a Hilbert space gives rise to a complete orthogonal basis of eigenfunctions.
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Let us denote by P1, P2, P3 the orthogonal projectors of L2 onto a, U,
respectively. By [1],

(8.22) Y --- a 0) U {M" M rot F, F s Ha}.
THEOREM 8.2. Let R L2-> J be an operator such that

M(x)
(R M)(x) + (AM)(x), 1 </Zmin_--</Z _--</.*max < OC.

z(M, x)- 1

Then there holds

1 /-Lmin- 1 1 )(8.23) (RM, M)->+
/-/,max-- 1 /-/,max-- 1 /.Lmi --/0(/.Lmin-- 1)Ao [IMII=

Proof. Let us define h const -> 0 by

(8.24)
1
+h= inf (RM, M).
/-/,max 1 IIMll

RMJ

By Theorem 8.1 we have the following chain of equalities and inequalities"

(M )+Ao(llP=ll= / [[P3MII2) M + (AP2M, P2M) + IIP3MII=

(8.25)

(RM, M) (/xM-1 (P2 + Pa)M)
+ (A (P2 + P3)M, (P2 + P3)M)

-<_ +1 II(P=/P3)M
itmin 1

Now (8.23) follows from (8.24), (8.25) and the following inequalities"

Ao inf (IIP2M[I:z
/ IIP3MII:z) ,,

IIMII--
RMJ

1 ( 1 )
/./,max 1

+/ /min1 + 1 IIll=inf (IIP=MII= / [IPII).
RMJ
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UNIQUENESS OF A LIMIT CYCLE FOR A PREDATOR-PREY SYSTEM*

KUO-SHUNG CHENG"

Abstract. The uniqueness of a limit cycle for a predator-prey system is proved in this paper. We assume
that in the absence of predation the prey regenerates by logistic growth and the predator feeds on the prey
with a saturating functional response to prey density. Specifically, we assume that Michaelis-Menten kinetics
describe how feeding rates and birth rates change with increasing prey density.

1. Introduction. S. B. Hsu, S. P. Hubbell and Paul Waltman in [2] and [3]
considered the following competing-predators system"

(Xl(t)S(t) (X2(t)S(t)

a+S(t)-D

.f(2(t)=X2(t)( m2S(t) )az+S(t) -D2

S(O) So > O, Xi(O) Xio > O, 1, 2,

where Xi(t) is the population of the ith predator at time t, S(t) is the population of the
prey at time t, mi is the maximum growth (birth) rate of the ith predator, Di is the death
rate of the ith predator, yi is the yield factor of the ith predator feeding on the prey and ai
is the half-saturation constant of the ith predator, which is the prey density at which the
functional response of the predator is half maximal. The parameters y and K are the
intrinsic rate of increase and the carrying capacity for the prey population, respectively.
S. B. Hsu et al. analyzed solutions of this system of ordinary differential equations and
found out that their behavior depends mainly on the two-dimensional system

(2)

m (x(t)S(t)(t)=yS(t) (1- S_))- ()\ -]’

( )i(t) x(t)\a + S(t)-Do
S(O) So > O, x (0) Xo > O,

where y, K, m, y, a and Do are positive constants.
The results they obtained for system (2) are as follows.
(a) The solutions S(t), x(t) of (2) are positive and bounded.
(b) Let b m/Do and A a/(b- 1) if b > 1.

* Received by the editors June 3, 1980, and in revised form October 28, 1980. This work was partially
supported by the National Science Council of the Republic of China.

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan 300,
Republic of China.
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and
(i) If b <= 1 or K <-A, then the critical point (K, 0) of (2) is asymptotically stable

lim S(t) K, lim x(t) O.

(ii) If A <K -< a + 2A, then the critical point (A, x*), x* (yy/m)(1-A/K)(a + A),
of (2) is asymptotically stable and

lim S(t) A, lim x(t)= x*.

(iii) If K > a + 2A, then (A, x*) is unstable and there exists at least one periodic
orbit in the first quadrant of the S-x plane. If there is just one periodic orbit, it is stable.
If the periodic orbit is not unique, then the outer one is semistable from the outside and
the inner one is semistable from the inside.

S. B. Hsu et al. [3] conjectured that the limit cycle is unique and suggested that this
can be a delicate question.

It is interesting mathematically to prove the uniqueness of the limit cycle for system
(2). If this can be done, then we can better understand the behavior of solutions of (1).
Therefore, the purpose of this paper is to show that the limit cycle of (2) is unique under
the same conditions as in [2]. From now on we shall assume that K > a + 2A.

2. Two lemmas.
LEMMA 1. Let F be a nontrivial closed orbit of system (2). Then

F {(S,x)IO<S <K, O<x}.

Let L, R, H and J be the leftmost, rightmost, highest and lowest points of F
respectively. Then

L {(S, x)lO < S < , x f(S)},

R s {(S, x)lA < S < K, x ]’(S)},

H s {(S, x)lS A, x* < x},

J{(S,x)lS- ,, O<x
where f(S) y(y/m)(1-S/K)(a + S), the curve o[which is symmetric with respect to the
vertical line S (K a)/2, and x* =/(A).

The proof is simple and we omit it.
LEMMA 2. Let F be a nontrivial closed orbit of (2). F meets the vertical line

S (K-a)/2 at the points A and B with x-coordinates xB > XA. (See Fig. 1.) Let the
mirror image of arc BHLJA of F with respect to the "mirror" S=(K-a)/2 be
BH’L’J’"--. Then arc H’L’--’’ intersects arc BR- of F at two points P(Sp, Xp) and
Q(So, xo) with xo >[(So) and Xp < f(Sp). Furthermore, i[ P’(Sp,, Xp,) and Q’(So,, xo,)
are respectively the mirror images ofPand Q with respect to the mirror S (K a)/2, then

(3) 0<

and

So,< So
A So,- So A

Se, Sp
(4) O< <-

A -S,,-S,-A"
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H

J

B

FIG.

S

Proof. Consider the function V(S, x),

m: )S(a+{-Do
(5) V(S’ x)= Ix m

a+"

1 IXrl-x *
d+- dn.y rl

Then

(6)

dV(S(t),x(t))
dt

1[ mS _Do) *].,a; s [f(S)-x

Let the period of F be T. We have

(7)
x(t))

dt
dt =0.

On the other hand,

(8)

"T6v
o !t

dt
mS(t)
a -Do] [f(S(t))-x*] dt
+ S(t)

(R) If(S)- x
Y-r x

Now assume that arc H’L’-Y’ does not intersect arcB of F.
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It is eas.___..ff_y to see that St’ > SR; that is, the region "2 bounded by line S (K a)/2
and arc BRA is properly contained in the region lq bounded by line S (K a)/2 and
arc.From (7) and (8), we have

dV($(t), x(t))
O=

dt
dt - If(S)- x*]

y x

fl+f2

(Green’s theorem)

(9)
f’(

dSdx+- dSdx
y x y x

’1 ’2

1 f’(S) dS dx + dS dx
y x y x

This is a contradiction. Hence arc H’L’J’ does intersect arc BRA. Now assume that
the points Q(So, xo) and P(Sp, Xp) are, respectively, the "highest" and "lowest"
intersection point. If Q(So, xo) P(Sp, Xp), then arc H’L’J’ intersects arc B-----R- only at
a single point. In this case, the arguments leading to the conclusion that the region ’2 is
properly contained in l-l still hold. Yet this contradicts (9). Hence Q(So, xo)#
P(Sp, xp). Assume that xo>f(So). Let (dx/dS)’o and (dx/dS)o be the slopes of
arcs and at point Q respectively. It is obvious that

(10) O> _->
O O

But

and

a+So

y) xo(So Z
=-(m-Do)

so(xo-f(So))’

( ) (y)dx
-(m Do) - So,(xo,- f(So,))

y) xo(a So,)
=-(m-Do) - So’(xo-f(So))"

(Recall that xo xo,, f(So)=f(So,).) Thus from (10) we have

So, So(11) 0<<-
h So,- So h
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Now consider the quadratic function G(S’),

(2) G(S’)=(S-z)(/-S’)
x-S’ S-z’

where S K-a- S’. A straightforward calculation shows that

G(S’) -2S’2 + 2S’(K a)- A (K a).

The two positive roots of G(S’)- 0 are

=+/- -a K a

Hence G(S’) < 0 if S’ < S_ or S’ > S/, and G(S’) > 0 if S_ < S’ < S/. Since So, <
(K a)/2 < S/, from (11) and (12) we conclude that

(13) So,<=S_ or So >=S+.

The arc QR satisfies the following differential equations"

(14)

and QL’ satisfies

y) x(S-X)
=-(m-Do)

S(x-f(S))’
x(So) xo, S>-_So.

(15)

-(m -Do)
S’(x -f(S))’

x (So) xo, S >- So,

where $’ K a $. Since G(S’) < 0 for $’ < $_, we have from (13), (14) and (15) that

(16) 0> - 6" - 6"’.

for the same x and S > So. Hence from a well-known comparison theorem we get

(17) x(S)lb’ > x(S)[6", for So < S < S,.

From (17) we conclude that arcHcan intersect arc B--- at most at one point.
Similarly, we obtain that

Sp, Sp
(18) 0< -<_

I --Sp, Sp-l’

(19) Sp,<-S_ or p>=S+,
and arc can intersect arc A- at most at one point. This completes the proof of the
lemma. 71

3. Uniqueness ot the limit cycle. Now we come to our main result.
THEOREM 1. IfK > a + 2A, then system (2) possesses a unique limit cycle which is

stable.
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Proof. Let F be any nontrivial closed orbit of (2), and let its four extreme points
be L(SL, f(Sz.)), R(Sn, f(Sn)), H(h, xi-i) and J(,, xj). Assume that F, intersects
the line $=(K-a)/2 at points A((K-a)/2, xa) and B((K-a)/2, xB), with
--a)/2)>XA. From Lemma 2, the mirror image of arc--H--) of F,

intersects the arc of F at points P(Se, xe) and 0($o, xo). Let the
mirror images of points P and O with respect to the line $ (K a)/2 be P’(Se,, xe,) and
0’($o,, xo,) respectively. It is obvious that &,, K-a- &, and So, K-a- ,go.

Now consider

m S(f(S) x) x (S h
(20) g(S, x)=- h(S, x)= (m-Do)

y a+S a+S

The divergence of the vector field (g(S, x), h(S, x)) defined by (2) is

(21)

0g Oh
Div (g, h)= +--

Ox

m Sf’(S) m a(f($)-x)
y (a + S) y (a+S)z

From (2) it is easy to see that

+(m -Do)
(s-x)
a+S

(22) r() a r ads
(a + $)2(f(S)-x) dt

$(a + S)

(23) r (m Do)
S
a +5i dt=O.

Hence

(24) r Div (g, h)

Now

(Ie__r_X I) [mS-f-’!s-!]+ d, 5s7 f’(S)
dS +"y a + S _1 f(S) X1 (S) f(S) x2(S)

If" f(s)
(25)

(S)-x(S)
as

dS

s" f’(K a S)
+

,, f(K a S) xl(K a S)
dS

x2(S) X (K a S)f’(S)[(f($)---(-Z-7(K_a_S),] d$.

The notation in (25) is self-evident. From Lemma 2, we know that X2(S) > X (K a $)
for SA < S < Se. Thus we have (recall that f’($)< 0 for Sa <

m S__!S_)] dt < O.(26) (L+ fa--) [ y a+S.I
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Similarly, we have

(27)

m

a + S J
dt

Is[ x(K-a-S)-x,(S)
SB

f’(S)
(x4(S) f(S)l(x3(g a Sl-f(S))

dS < O.

Let be the region bounded by arc and line segment P’(2’, and be the region
bounded by arc and line segment OP. We have

m Sf’(S) dt

-m -1D) Sf’(S) clx]
(28)=(7)(...mm 1DO) [(IO,Lp,+ Ip-=-6,+ IO--) \x(S-a( Sf’(S))) dx]

(m)( 1 )[II-1 (y/K)[2($-a)2+a(K-a-2h)]
7- m-D0 x (S-a)2 dSdx

+ dx (Green’s theorem),,,

()(1) Ix"’ Sx(x)f’(Sl(X))
dx"< m -Do p, X(/ Sl(X))

Similarly, we have

m sf’(s) feno(y a+SI
dt

()( 1 )[II -1 T/K[2(S-h)2+h(K-a-2h)] Ieo Sf’(S)
(29) rn -Do -7-" (S a ) dS dx + x(S_h) dx

< m Do x (Sz(x) a)

where Sx(x) and Sz(x) represent the line segments P’Q’ and PQ respectively. From (28),
(29) and the identity S2(x)= K-a- Sx(x), we have

Sf’(S)] dt(fo,te, + feao) [ y a+Sd

()( )[I fx’ (K-a-Sl(x))f’(Sl(x)) ]1 o, S(x)f’(S(x))
dx dx(o) <

m-Do , x(h-Sx(x)) p, x[K-a-h-Sx(X)]

_()(_ 1 )’f(Sx(X). G(S(x))
dx,

m -Do ., x [ -S(x)][g-a - S(x)]

where the polynomial G is defined in (12).
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From (13) and (19) we have

$1 (x) -< max {Sp,, So,} <= S_, Xp’ <- X <- XQ’

and hence

(31) G(SI(X))<-O for Xp,<-x <-xo,.
From (30) and (31) we finally have

(32) + dt<O.
y a+SJ

From (26), (27) and (32) we get

(33) Div (g, h) dt < O.

This means that the closed orbit F is stable. But two adjacent periodic orbits cannot be
positively stable on the sides facing each other [1, p. 397, Thm. 3.4]. Hence the
uniqueness of the limit cycle of system (2) is proved. I-1

4. Acknowledgments. The author would like to express appreciation to S. B. Hsu,
S. S. Lin and F. S. Tsen for their helpful discu.ssions, and to the referee for useful
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Some ideas of this paper came from Li’s preprint.
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CONVEX APPROXIMATION BY SPLINES*

R. K. BEATSONr

Abstract. Jackson type estimates are obtained for the approximation of convex functions by convex
splines with equally spaced knots. The results are of the same order as the Jackson type estimates for
unconstrained approximation by splines with equally spaced knots.

1. Introduction. The aim of this paper is to obtain Jackson type estimates for
approximating convex functions by convex splines. Let k and N be positive integers and
let S(k, N) denote the space of all splines of order k with simple knots {i/N}=o; i.e.,
s $(k, N) if and only if s (k-2 is continuous on [0, 1] and on each interval [i/N, (i +
1)/N], O, 1, , N- 1, s is a polynomial of degree =< k 1. If A is a collection of
functions defined on [0, 1], then A* will denote the subcollection of functions in A
which are convex (not necessarily strictly convex) on [0, 1]. If f is a convex function on
[0, 1] then we define the error in convex approximation by splines to be

E(f, k) inf {[If- sll s S*(k,

where I1" is the supremum norm on [0, 1]. We will establish the following result.
THEOREM 1. Let k >- 2 be a positive integer. There is a constant C > 0 depending on k

alone such that, iff is convex on [0, 1] and f C[O, 1] for some 0 <- j <- k 1, then

(1.1) E’N(/, k) <-_ CN-ico(f), N-), N 1, 2,....

The analogous theorem for monotone approximation is due to De Vore [5]. De
Vore also proved a similar theorem about monotone approximation by polynomials
which had been a known open problem since the 1968 paper of Lorentz and Zeller [8].
More recently Chui, Smith and Ward [3] have given a different and more transparent
proof of De Vore’s result concerning splines, and also of the analogous Lp result. Some
of the techniques used in this paper are taken from their work.

The proof uses "local techniques" and proceeds in two steps. First the function is
approximated by a convex piecewise polynomial. Then the convex piecewise poly-
nomial is smoothed into a convex spline. The reader is urged to draw his or her own
pictures to bring out the geometric nature of many of the arguments.

2. Convex polynomial interpolation. One possible approach to convex approxi-
mation by splines (perhaps with multiple knots) is to look for an interpolating spline
which is convex. Since f is convex if f’ is increasing, the natural approach is to require the
spline to interpolate to f and f’ at the knots. The Markov type inequality contained in
Lemma 2.1 shows that any such approach must fail. Using it and an elementary
argument one can easily build, for any k, a convex function f ck[o, 1] such that for
each N 2", m 0, 1, , there is no convex function s reducing to a polynomial of
degree =<k-1 in [0, 1/N] which satisfies s(i/N)=f(i/N) and s’(i/N)-f’(i/N) for
i=0, 1.

Lemma 2.1 also has a positive interpretation. This is that a convex polynomial must
satisfy certain strong inequalities and therefore must be easy to approximate. This
viewpoint is crucial in 4 and is embodied in a more convenient form in Lernma 2.2.

* Received by the editors May 14, 1980, and in revised form October 9, 1980.
t Department of Mathematics, University of Texas at Austin, Austin, Texas 78712.
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LEMMA 2.1. Let p be a polynomial of degree <-2n (n >- 1) convex on [-1, 1] with
p(-1) p’(-1) 0 and p’(1) 1. Then

1--Xn,n<--p(1)<--l--xl,n,

where xn,n, x x, are the largest and smallest zeros respectively of the n-th Legendre
polynomial. These bounds are achieved.

Proof. From the hypotheses we have

(2.1)

and

P’()= I_ P"(t) tt

(2.2) p(1)

_
(1- t)p"(t) dt.

Now let -1 < xx,. < < x,n < 1 be the zeros of the nth Legendre polynomial, L., in
ascending order. Let Ai(n) be the weight associated with xi,. in the Gauss-Legendre
quadrature formula with nodes at the zeros of L. Then

p(1) f_ (1- t)p"(t)dt= Ak(n)(1-xk,.)p"(x,n),
k=l

and hence

(2.3)

But

(1-x.,.) A(n)p"(xk,n)<=p(1)<=tl-Xl,.) i A(n)p"(xg,.).
k=l k=l

p’(1) | p"(t) dt Ak(n)p"(x,.).1
d_ k=l

Substituting this into (2.3) we obtain the bounds of the lemma.
It remains to show that these bounds are actually achieved. To see this in the case of

the lower bound, consider

p"(x)= h
(x-x.,n)

where A is a normalizing constant chosen so that p’(1) 1. p"(x) vanishes at all the zeros
of Ln except for x.... Hence, using (2.1) and (2.2), we have

p(1)= a(n)(1-x,.)p"(x..)=A.(n)(1-x.,.)p"(x...)
k=l

(1-x.,.) ak(n)p"(x,.)
k=l

--(1-x...)p’(1)=l-x.,..

Thus the lower bound is achieved. The proof that the upper bound is achieved is
similar.

LEMMA 2.2. Let k >-_ 2 be an integer. There exists a 6k, 0 < 6k < 1 with the following
property. If p is a polynomial of degree <= k convex on [0, 1] with p(O)= p’(O)= O, then

(2.4) (1--6k) min p’(x)>-- max p(x).
[1-6t,,1] [1-k,1]
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Proof. It is sufficient to prove the lemma when k is even, say k 2n. Now if
p(1)-0, then, because of the convexity, p is identically zero and the lemma is true.
Hence we may assume without loss of generality that p(1)> 0, and by homogeneity
that p(1)- 1. Now from the previous lemma (after a change of variable) we have

2 2
(2.5) 1 <-<p’(1)<-

1 xI,n 1 xn,

From Markov’s inequality IIp"ll 4k4. Thus for any x [0, 1]

2
(1-x)p’(1-x)>-(1-x)

1-xl,n
-x4k4] =q(x).

Here q(0)= 2/(1-xl,,)> 1 and q(1) 0. We choose k as the least positive x so that
q(x) 1. With this choice of 6k

(1 6k)p’(1-- 3k)_--> 1 p(1). V]

3. Convex approximation by piecewise polynomials. In this section we prove
Jackson type theorems for approximation of convex functions f by globally convex
piecewise polynomials. 7r(k, N) will denote the collection of all continuous functions on
[0, 1] whose restrictions on each subinterval [i/N, (i + 1)/N], i= 0,..., N-1, are
polynomials of degree _-<k. Hence, rr*(k, N) is the subcollection of functions in rr(k, N)
which are convex on [0, 1]. Let

D*N(f, k) inf {l[f- gll" g r*(k, N)}.
We will prove:

THEOREM 3.1. Let k >-2 be an integer. Then

DN(f, k) <= 2N-iw( N-1)
for all f e Ci*[O, 1], O<=] <- k.

The method of proof is to find convex polynomial approximations for each
subinterval satisfying certain endpoint conditions. The endpoint conditions are chosen
to force the polynomial pieces to join up in a globally convex manner. The most obvious
endpoint conditions are interpolation to f and f’, but as we remarked in the previous
section this approach must fail. Thus we are led to relax the interpolation conditions.

LEMMA 3.2. Let]>--2. For every f 6 Ci*[0, 1], there is a polynomial q rri such that

(3.1) q is convex on [0, 1],

(3.2) q(0)=f(0) and q(1)=f(1),

(3.3) f’(0) --< q’(0) --<_ q’(1) --< f’(1)

and

(3.4) II(f-q)(i)l[<-2oo(f (i), 1) fori=O, 1, j.

Interestingly this degree of approximation result is proven by using properties of
best restricted-range approximations.

Let u and be extended real-valued functions defined on [0, 1] with l(x)<-_ u (x)
throughout [0, 1]. Suppose g 6 C[O, 1] and let

W {p rr," l(x) <- p(x) <- u(x), Vx [0, 1]}.

If W is nonempty we will call p W (= Wn) a best restricted approximation to g if

IIg pll inf {llg qll’ q W}.
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W is clearly a closed finite dimensional set in C[0, 1]. Hence, if W is nonempty, the
existence of a best restricted approximation to g from W follows from a well-known
compactness argument. We will show that any best restricted approximation to a
.smooth g interpolates to g at least n + 1 times. Professor W. W. Hager has kindly
pointed out that the special case of this result, which we use later, appears in his 1974
Ph.D. dissertation and was published in [7]. The interested reader should consult Sippel
[9] for alternation and uniqueness theorems, which hold under stronger hypotheses on
l, u and g.

LEMMA 3.3. Let g Cn[0, 1] satisfy l(x) <- g(x) <- u(x) for all x [0, 1], and let W
be nonempty. Let p be a best approximation to g from W. Then p interpolates to g at least
n + 1 times in a Hermite sense. That is, there exist m points 0 <- Zl Zm 1 and m
positive integers di so that

p(i)(zi) g(i)(zi)

and

j--O,’" ",di-1, i= 1,...,m

dg=n+l.
i=1

Proof. Let D {z [0, 1]" (g-p)(z) 0}. The lemma is certainly true when D has
n + 1 or more distinct members. Hence we may assume D has m, 0 -< m -< n, members. If
m 0 then g-p has a fixed sign on [0, 1] and we may add a constant to p to obtain an
approximation/ W lying strictly between p(x) and g(x) for all x. Then/ is a better
approximation to g than p, a contradiction.

We may now assume 1 <= m <- n. Label the points in D Zl, , z,. For each zi let di
be the largest integer with 1 _-< d _-< n + 1 such that (g-p)()(zg) O, f O, , di- 1. If

i= d >_-- n + 1, then the lemma is true. Assume, on the contrary, that Y.= d -<_ n. Then,
since in particular each di <- n, we have

(g-p)(a’)(zi) O, 1,..., m.

Define q(x) ’= (x zi) a’. Then q 7r has the same zeros as (g -p) on [0, 1] and with
exactly the same multiplicities. Hence we may choose {q,-q} so that (x) has the
same sign as (g- p)(x) throughout [0, 1]. Then

f:t(i)(z) (g-p)((z) O, j 0,. , d 1, 1,. , m
and

sign (Ft(a’)(zi))=sign ((g-p)(a’)(z,)) # O,

A simple compactness argument shows that, for some sufficiently small A > 0,

OAl(x)ll(g-p)(x)l Vx [-O, 1].

It follows that, for each x [0, 1], (p + h)(x) lies between p(x) and g(x), with (p +
hFt)(x)=p(x) only when x D. Hence (p+h) W and IIg-(p/Ac)ll<llg-pl[. This
contradiction establishes the lemma. E

ProofofLemma 3.2. Since we can add a linear function to f and to the approxima-
tion q without changing anything in the statement, we may assume f(0)= f’(0)= 0.

Now let h be a polynomial in zrj-2 satisfying

O<-_h(x)<=f"(x) Vx [0, 1],

which minimizes lift- h [[. Then by Lemma 3.3 h interpolates to f" at least f- 1 times in
a Hermite sense. It follows, by Rolle’s theorem, that there exist points s2, ., s in
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[0, 1] such that

f(i)(ji) h(i-:)(ji), i= 2,"’, ].

Define p ri by

Then with o 0 there exist o," , i in [0, 1] such that

f<i)(i) p(i)(i), O, 1,’" ", j.

Now, for each O, 1, ,j-l,

so that arguing inductively using the fact that p((x) is a constant we find

(3.5) l(-p(l(, 1), i=L]-l, O.

Now consider the equations

f(1)-p’(1) Jo f’(t)-p"(t) dr,

(1)-p(t) Jo (1- t)("(t)-p"(t)) dr.

Since 0N 1-tN1 and ONp"(t)Nf’(t) for t[0, 1], we find

0 (-p( ’(-p’(l.

Hence, since p(0) p’(0) (0) ’(0) 0, the polynomial

q(x p(xl + (( p(lx

has

q(0l =(0 0, q(l =(,

and

0 ’(0 q’(0l q’(l ’(.

The lemma follows since

II(-q)(llll(-p)l+l(1)-q(l)l2(, 1), i=o, 1,...;

by (3.5).
Prooo Theorem 3.1. Since *(], N) c *(k, N) it is sucient to show that

and

(3.7) D(, 1) N2N-((, g-), ] 0, 1.

The last inequality is immediate from the known properties of the polygonal approxi-
mation. To show (3.) we construct a piecewise polynomial using Lemma 3.2. Firstly
blow [0, 1] up to [0, N] by letting (N-x) =(x). Then on each subinterval [i, + 1],
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0, ’’’, N-1, approximate f by the polynomial whose existence is guaranteed by
Lemma 3.2. Finally invert the change of variable to return to [0, 1 ]. The convexity of the
resulting piecewise polynomial, s, is clear. The degree of approximation is also clear
when we note

o(f(D, [0, N], 1)= N-iw(f(i), [0, 1], N-’).
Here we have used an obvious notation to denote the interval over which each modulus
of continuity is defined, lq

4. Convex approximation lay splines. In this section we will prove Theorem 1.
First we will smooth our convex piecewise polynomial approximant to C a. Then this
new approximant will be smoothed to Ck-2. In what follows Ilhll, is the essential
supremum of [h (x)l over L

LEMMA 4.1. Let k >-_ 3 andM >= 2. Letf C*[0, 2M] be a spline oforder k with knots
at O, 2, 4,..., 2M. Then there exists a spline s Ca*[0, 2M] of order k with knots at

O, 1, 2, 3,..., 2M, such that

and

II( -s) qlco,z a max (f’(2i+)-f’(2i-)), 0<_-/_-<k-1
l<=i<=M-1

s(x) f(x) for x [0, 1) LI (2M 1, 2M].

Proof. Let fi(x) f(x- 2i), 1,. , M- 1. Then

/i(x) ni(x)+(fl(O+)-fl(O-))(x)l+,
where ni is convex since fl, although possibly discontinuous, is increasing. Indeed,
ni C*[-2i, 2M- 2i] IN Ca*[-2, 2]. Let

si(x) ni(x)+(fl(o+)-f(o-))

Then si is a convex spline of order k with

Si(+ 1)= fi(+ 1),

and

(x+l)2

sl(+/-l) =fl(+l)

(i) <(4.1) I[f i)
si [It-l.13--fl(0+) fi(0-), Ofk 1

Now define s(x) piecewise by

s(x)=sg(x-2i) forxe[2i-l,2i+l]

for 1 <_- <_-M- 1, and s(x) =f(x) for x otherwise. Then s is a spline of order k, C and
convex on each subinterval (2i 1, 2i + 1). The double interpolation at the odd integers
forces the pieces to join up in a globally C and globally convex manner. Finally, from
(4.1),

max (f’(2i+)-f’(2i-)), /’=0, 1,... ,k-1. F!
<=i<=M-1

Before smoothing to Ck-2 we need some notation and some technical lemmas.
LEMMA 4.2. Letj >--_ 2 be an integer. There exists a positive number 8 8(j) such that

if q is any polynomial of degree <-j with q(0)-q’(0)=0 and Ilqll[o,13-1 there is a
subinterval I of [0, 1] of length 1/(2(j- 1)) on which



CONVEX APPROXIMATION BY SPLINES 555

Proof. Define

0 {a 7ri’ q(O)= q’(O)= 0 and [[a[I 1}.

Consider q Q. q" has at most/"- 2 zeros in [0, 1 ]. Hence q" is nonzero on at least one
open subinterval of length 1/(/-1). Let [a,b] be a closed subinterval of length
1/(2(/’-1)) of this subinterval. Then by continuity and compactness Iq"l is bounded
away from zero on [a, b]. It follows that with/ =[a, a + 1/(2(/’- 1))] and

8(q) sup min Iq"(x)l,
Ia =[0,1] Xela

3(q) > 0 for all q O. Now define

8 inf 6(q).

If 8 0 then there must be a sequence {qk} c Q SO t(qk) O. But then by compactness
of Q,{qk} has a convergent subsequence qk, qo Q. But then q, q uniformly on
[0, 1] so that 6(qo) 0. This contradiction shows 6 > 0.

Let k => 4 be an integer. Let d d(k)> k be an integer to be chosen later. Let
ti}i=-,whereti=ifori[-d-k+l,d+k],ands={si}i=-,whereso Sl

sk-3 0 and si+-3 =/’ for/’ [1, d + 3], be two knot sequences. Let Ni,,t and Ni,,s be the
normalized B-splines of order k corresponding to the knots at and s as indicated by the
third subscript. The normalization is as in the article of de Boor [1]. Denote by z the set
of integers and by Ni,, Ni, k,,.. we note that Ni, Ni,,t for e I-d, d], and that for {Ni, }
two standard normalizations coincide, so that both

and

Z Ni,(t) 1 on [i, i+ 1)
j=i-k+l

i+kI_ Ni’g(t) dt= fi Ni,k(t) dt 1.

Let X be the subspace spanned by the set

A {Ni,k,, }- {Ni,k,s }k-4i--o.

Let Y be the subspace spanned by the set {Ni,g,t}. All the functions in Y are in
ck-2[-d, d], while those in X are in C-2([-d, 0) (0, d]) but may have discontinuities
in their second and higher derivatives at zero. [The number of continuity conditions
satisfied by Ni,k,r at plus the number of knots from {ri, ", ri+} coincident at equals
k.] A well-known basis theorem of Curry and Schoenberg (see, for example, [2, pp.
113-118]) shows that any function [ C[-d, d] whose restriction to (-d, 0), (0, d) are
Ck-2 splines with knots at the integers coincides, on [-d, d], with a function in X.
Following [3] define a "smoothing operator" T mapping X into Y by

T E iNi,k,, + E igi,k,s E iNi,k,,,
i=- i=0

and set E I-T, where I is the identity operator. Note that for any,s X, Es has
support at most [0, k-1]. The following lemma is analogous to [3, Lemma 4.1].
Throughout the rest of the section Co, C1, C2, denote positive constants depending
only on k, unless otherwise stated.
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LEMMA 4.3. There is a positive constant C1 depending only on k >- 4 such thatfor any
sEX

k-2

i=2

for O<-j <-_k-1.

Proof. First, if

k--4

S’- 2 [iNi,k,s--2 aiNi,k,t,
=o

the i satisfy

/.-2
i[g(/.) +)--i,k,s (0 l,i,k,s(O-)]--S

i=0

()(0+)- s()(O-), j=2,... ,k-2.

Hence applying Cramer’s rule to this triangular system we get

k-2

Iil < Co 2 Is(Z)(O+)-
j=2

i=0,... ,k-4.

Now

LEMMA 4.4. For each k >= 4 there exists a positive integer d and a constant C2 with
the following property. For every f E X* whose restrictions to (-d, O) and (0, d) are
(k- 1)st degree polynomials, there is an s E Y* such that s =]:on (-oo, d) and (d, oo) and

k-2

/’=2

Proof. Throughout this proof it will be assumed unless stated otherwise that
E [-d k + 1, d 1]. d will be chosen as the least positive integer with d => 6k2 and

8k-ld >= (3k 5)3k, where 8k-1 is defined in Lemma 2.2.
Let F be the collection of functions f satisfying the hypotheses of the lemma and

2 -/also satisfying f(0)=f’(0)= 0 and /.= If/.)(0+) /.)(0-)l -< 1. It is sufficient to prove
that for every fEF there is an sE Y* such that s(x)=f(x) for all xei[-d,d] and

IIs-fll --< c= for some constant C2 depending only on k. We divide the proof into two
cases, (i)liillt-e,e and (ii)II/11-,> , where a > 0 is to be chosen later.

(i) Suppose fF and I llc- , a Note that f is convex and nonnegative on
(-m, m), increasing on (0, m) and decreasing on (-m, 0). Let

Tf 2 aiNi,k,t.

Tf =f on the complement of [0, k-1]. Since f reduces to a polynomial of degree
-< k 1 on (-d, 0) and (0, d) and (Tf)(/.(x) (A/.ai_/.)Ni, k_/..t (x), ] O, 1,. , k 1,
we find Aai 0 for f-k, 0). Here A denotes the usual forward difference operator. It
follows that there are two (k 1)st degree polynomials ql and q2 so that ql(i) ai for

_>- 0 and q2(i) ai for < 0. Recall that the value of iNg,m.r at a point in [re, re/] is a
convex combination of only m B-spline coefficients, namely fle-,/l, ’, 3e. Using this
and that Tf(x)=f(x) for x[0, k-1], we see that in each segment of length
k {at,’", al/k-} of {ai} where l=>0 there must be indices il, i2, i3 such that

ail =>0, mai2 --->0 and A2ag3 >0.= Furthermore, since ql, ql, q have at most k 1, k-2,
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k 3 sign changes respectively, we find that in any segment of (3k 5)(2k + 1) indices in
[0, d) there exists a subsegment of length 2k + 1, U {/*,..., l*+ 2k} with O 20,
mo 0, m20i 0 for all U. We have chosen d so large that such a segment U can be
found within the set [(1 6k-1)d, d). Similar arguments show that there exists a segment
of 2k+l indices L={/,,...,/,+2k) within the set I-d, --d(1--6k-1) with ci>-0,
Aci <_-- 0, A2ci --> 0 for L.

Now considering the monotony of f and f’ and of the B-spline coefficients with
indices in U, we find

O/*+k-1 0,

Ogl*+k f(l* / 2k)

and

ma/,+k_ >=f’(l*+k)>= min f’(x).
[(1-3k-1)d,d]

From Lemma 2.2 it follows that the linear function p*, with p*(l* + k 1) a/*+k-1 and
p*(l* + k) a l*+k, intercepts the x-axis at some x* _-> 0. Similarly the linear function p,,
with p,(l, + k- 1) Ce/.+k_l and p,(l, + k)=cel.+k, intercepts the x-axis at x, -<0.

We define the spline s via its B-spline coefficients, s [3iNi, k,t, where

oi

p,(i)
i

0

p*(i)

for i[l, + k + 1, l* + k-2],

for l, + k + 1 _-< < x,,

for x, < < x*

for x* < _-< l* + k 2.

Then s"(x) ’(m2[3i_2)Ni,k_2,t, and s is convex on [l, / k 1, 1" / 2k] since the cor-
responding segment of B-spline coefficients is convex. But s(x)= Tf(x)=f(x) on
(-c, l, + k + 1) U (l* + 2k 1, ). Hence s is globally convex.

It remains to show the estimate of II -sll , First, the size of each B-spline
coefficient depends only on the size of the function nearby. More precisely (see de Boor
[2, pp. 154-155]) la/I C31[fllt_,a]_-< C3c, [-d, d- k]. Hence I#/I c3 for e
[-d, d-k] and certainly a on the complement of this set. Hence IITZ-slI  

]ai--fli] []Ni,k,t[] C4a. It follows that IIf-slll- Tfll+llTf-sll C, where C5
depends only on k and a. Here we have used Lemma 4.3.

(ii) Suppose now fF and Let [1, I+2(k-2)] be an interval in
I-d, d](0, k-1) to be chosen later. Now recall that (Tf)(x)=f(x) outside [0, k-1],
and set

s(x)=(Tf)(x)+ Ca E Ni.-2(v)-(yNl,-2(v)+ y2Nl+-z.-2(v)) dvdt
=-k+3

(Tf)(x)+M(x),

where C is the constant introduced in Lemma 4.3 and y l, y2 are to be chosen so that
M(x) vanishes outside of [-d, d]. With such a choice of M(x) s(x) will agree with
[(x) (Tf)(x) for x [-d, d].

The form ofM implies M(x) 0 for x _-< -d and M"(x) 0 for x _-> d. Hence yl and
Y2 are to be chosen so that M(d)=M’(d)=O. Since [._ooNi,k_e(t)dt= 1 and
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-o tNi,k-2(t) dt- + (k- 2)/2, the equations for yl and y2 are

Il 1 1 61 IY121 IC C1(2i 4) )13k- 2 k -2k-2
l+ y i++

2 2 i=-k+3 2

or Ay b. There is always a unique solution since determinant (A)= k- 2. Also the
elements of A and b are bounded by a constant depending only on k. Hence by
Cramer’s rule yl and y2 are bounded by a constant C6 depending only on k, and

It remains to show that if a a(k) is chosen sufficiently large s will be convex.
Recalling our choice of d and using Lemma 4.2, we choose ce so large that if IIllt-,j >
then the set [l, + 2(k 2)] can be chosen so that f"(x) >= C6 everywhere on the set. Then,

k-2
+3Ni,k_2(X 1since [Yrl, lYz[-<- C6, s"(x) is nonnegative on [1, + 2(k 2)]. Since Yi=-k

for x [0, k-1] and [If"-(Tf)"llO.k_la<= C1, s"(x)is also nonnegative on [0, k-1]. But
s"(x) f"(x) for all other x’s. Hence s is convex on R. VI

We are now ready to prove the main result.
Proof of Theorem 1. For k 2 Theorem 1 follows from well-known properties of

the polygonal approximation. Assume in what follows that k -> 3 and f CJ*[0, 1], 0_-<

/" -< k 1. It is sufficient to consider N > 12d, where d is the d defined in Lemma 4.4,
since, for N =< 12d, the spline will follow from the polynomial result of Lemma 3.2.

Set (t) =f(t/N) and let M be the integer part of N/6d so that N-6d < 6Md <=N.
If /’---_2, then by applying Lemma 3.2 on each of the intervals 11 =[0, 6d], I2
[6d, 12d], ...,IM_I=[6d(M-2), 6d(M-1)] and IM=[6d(M-1),N] we find a
convex function whose restriction to each of the intervals 11, , IM is a polynomial
of degree <=f with

(4.2) -<- [0, N], 1),

for 0 -<_ <_- ]. Here we have used that all the intervals Ie have lengths between 6d and 12d
to relate )i)to i), where ]v is the function derived from 1 by the linear change
of variable taking I onto [0, 1]. If ] < 2 then the polygonal approximation , with knots
0, 6d, 12d,. ., 6d(M- 1), N, is convex with f and satisfies

(4.3) -< C9)(f(]), [0,N], 1)

for i=0,]. From (4.2) and (4.3), and since [[()llto.=0, i>e, if is a piecewise
polynomial of degree <_-e we have

k-2

(4.4) Z I,(i)(61d+)-ff,(i)(6ld-)l<-Clo6o((i),[O,N], 1),
i=1

for all 1,. , M- 1.
We proceed to smooth the C*[O,N] approximation to CI*[0, N]. Applying

Lemma 4.1 to on [0, 6dM] we get a C convex function / whose restriction to
each interval Ji=[0, 3d], J:=[3d, 6d],...,J:u_l =[6d(M-1), 6d(M-1)+3d],
and JzM [6d(M 1) + 3d, N], is a polynomial of degree <_-k 1 such that

(4.5)
Cll max (’(6de+)-’(6de-))

l<_e<=M-1

C12o)(f(j) [0, N], 1) O<=i<=k-1.
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Now we are ready to smooth from C1"[0, N] to ck-2*[0, N]. If k_->4, apply
Lemma 4.4 to / on each of the intervals Jl Jl/l, !- 1, 2,..., 2M-1 in turn. This
yields a convex spline of order k, g, with simple knots at the integers such that

2M-1

(4.6) g(x) =/(x), x tO [(3/- 1)d, (3/+ 1)d]
/=1

and

(4.7)

k-2

[Ig- l?tllE(31-1)u,(31+l)a2 <= C?. Y’. I/"(3/d/) (i)(3Zd-)l
i=2

C13(.o (f(]), [0, N], 1),

1-<l -< 2M-1, by (4.4) and (4.5). If k 3, take g =/. Then

by (4.2), (4.3), (4.5), (4.6) and (4.7). Finally, putting s(x)=g(Nx) and noting
o(1(j), [0, N], 1)= N-Jw([ (i), [0, 1], N-a), we obtain Theorem 1. E]

5. Remarks. The concept of building a constrained piecewise polynomial approx-
imation and then smoothing it to a constrained spline approximation is due to Chui,
Smith and Ward [3]. Their ideas, and the techniques used in the present paper, are
applicable to other problems. For example the author has obtained a Jackson type
theorem for approximation of nonnegative functions f by splines s satisfying 0 =< s (x) =<
f(x), x [0, 1], with related methods. Another problem to which such methods may
apply is the problem of approximating f-convex functions (/" > 2) by f-convex splines.

Acknowledgment. I would like to thank Professors C. K. Chui, P. W. Smith and
J. D. Ward for several helpful conversations.
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AN INTEGRODIFFERENTIAL EQUATION FOR
PLANE WAVES PROPAGATING INTO A RANDOM FLUID:

ASYMPTOTIC BEHAVIOR*

M. J. LEITMANf

Abstract. Beran and McCoy [J. Math. Phys., 17(1976), pp. 1186-1189], [J. Acoust. Soc. Amer.,
56(1974), pp. 1667-1672] have developed a mathematical model for the propagation of acoustic waves in
water which incorporates the scattering effect of random microscopic variations in density (sound speed) into
the classical model of geometric optics. This work characterizes the behavior of the acoustic intensity spectral
density as a function of distance from the source.

The problem is formulated as a Cauchy problem in LP-space. It is shown that nonnegative initial profiles
produce nonnegative solution profiles which conserve intensity (area under the nonnegative solution
profile). The scattering effect is shown to cause dispersal (mean-square decay) and consequent loss in
resolution of the wave as it moves away from the source. This loss is expected to occur more slowly than any
exponential, which is the case if there were no scattering (the optical model).

Some comments on the approximation of solutions are included. In particular, the last phenomenon is
lost in most approximations.

Finally the connection between solutions to this problem and spatially inhomogeneous Markov processes
is established. Specifically, the original Cauchy problem constitutes the Kolmogorov equation associated with
the process.

1. Introduction and main results. Beran and McCoy [7], [8], 13] have developed a
mathematical model for the propagation of acoustic waves in water which incorporates
the scattering effect of microscopic variations in density (sound speed) into the classical
model of geometric optics. This work describes the dispersion and consequent loss in
coherence of the wave as a function of distance from the source.

If we let the function/z xt(tz), -o </z < oo, denote the acoustic intensity spectral
density at a distance 0 from the source, then Beran and McCoy [13, eq. (23)] show
that under suitable physical assumptions xt satisfies an initial value problem of the
following form:

dXt()= (, u)(x,(u)-xt()) du, teO,

xo(g (u ), -< <,
where is a kernel determined by the physics of the problem and Y is a prescribed
nonnegative state.

We require the kernel to satisfy the following standing hypotheses "2

(A1) (/z, ,)>0
(A2) (/z, u)= (u,
(A3) (/x, )_<_<oo

def

(A4)

(A5)

(positivity);
(symmetry);
(boundedness);

(sectional integrability
and boundedness);

* Received by the editors March 20, 1979, and in final revised form October 10, 1980.

" Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, 44106.
Computational aspects of this problem and a short treatment of the asymptotics may be found in a

paper by Beran, Leitman and Schwartz [15]. Also, announcement and discussion of some of the results
contained here appear in [16].

All equalities and inequalities between functions of tz hold almost everywhere with respect to Lebesgue
measure. All integrals are Lebesgue integrals over the entire real line, unless specifically stated otherwise.

56O
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Properties (A1)-(A4) arise more or less naturally from the physics of the model;
(A5) is a technical assumption which is satisfied in the cases of interest. From the point
of view of existence, uniqueness and asymptotic stability of solutions to the initial value
problem, some of.these hypotheses are overly restrictive. Satisfactory results obtain
under weaker assumptions.

The initial value problem just described has the form of a transport equation. It is
not unique to the model deduced by Beran and McCoy. Indeed, under the hypotheses
(A1)-(A4), it is a "master" or "kinetic" equation of the type which has been derived by
the statistical treatment of other models in mathematical physics which incorporate
random effects. For example, see the work of Besieris and Tappert [5], Papanicolaou
[4], Papanicolaou and Kohler [6], [9], [10], [14] and Papanicolaou and Keller [3] for
additional discussion of the derivation and validity of equations of this type. The present
context suffices to provide a vehicle to consider the mathematical features of the
problem.

It is important throughout to bear in mind two specific examples. The optical
model, without scattering, has a kernel of convolution type"

I,(, )=/( ).

In this case (A1)-(A4) are equivalent to f ->_ 0, f e L fq L and f even: moreover, (A5) is
a consequence of (A1)-(A4). The acoustic model, with scattering, has a kernel of
nonconvolution form typified by

T(/z, v) [1 + (/z 2- v2)2]-.
Henceforth we suppose that /xe(-oo, oo), tel0,00) and write L" for

L ((-co, co)), 1 <_- p -<_ co. If x e L and y e Lq, where p and q are conjugate, we write

(x, y)= f x(/x)y(/x) d/x.

It is also convenient to define an operator A in the class of functions on (-m, oo) by

(Ax)(/x) f W(/x, v)(x(v)-x(tx)) dr.

In terms of the operator A, the initial value problem has the form of a Cauchy problem"

d-x, Ax,, >- O,

XO"-o
Regarding the solutions of this problem we assert the following:
(T1) Each initial state . Lp determines n unique solution x, T,Y, where Tt

exp tA, >- O, is an analytic semigroup of bounded linear operators in L
(T2) For each >- O, T, is a positive linear operator in Lo, 1 <- p <- oo, so that

x>-O T,x>-_O.

(T3) For each >-_ O, IIT, IIo 1, 1 <-_ p <- oo, and, more specifically,

(i) ifp 1, x >=0, x#O then 0<llT,xll - Ilxll ;
(ii) ifp 2, xO then O<IIT,xII2 <-IIxII2;
(iii)3 /fp=oo, xl* then T,I*= 1".

1" denotes the constant function on (-m, m) with value 1.
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(T4) Forx O, t-> [[Ttxl]2 is strictly decreasing, and

lim Ttx [[2 0 Vx L
t---

(T5) There is at least one L, >-O, such that

d

We thus see that nonnegative initial profiles produce nonnegative solution profiles
(T2), and that intensity (area under nonnegative solution profiles) is conserved (T3(i)).
However, profiles flatten out and coherence is lost in the sense that xt Tt: decreases to
zero in the mean square as oo (T3(ii)), (T4). The most significant assertion, (T5),
implies that the rate at which coherence is lost is expected to be very slow. For if (**)
holds, then every positive initial state lies arbitrarily close to one for which the rate of
decay, in the mean square, is slower than exponential."4

Before proving these assertions we make some additional remarks. If no scattering
is assumed, so that A has a convolution kernel, then (**) holds for every positive initial
state f L2. This is a straightforward consequence of Plancherel’s theorem. We are thus
motivated to make the following

Conjecture. Under the hypotheses (A1)-(A5), solutions to the Cauchy problem (*)
satisfy (**) for every nonnegative initial state f >= 0, f 0 in L2.

The nonnegativity of the initial state seems to be essential here. To see why,
we suppose that A has a nonnegative eigenfunction 2 -> 0 in L2. In the sequel (P2) we
show that A is negative definite and symmetric in L2, consequen.tly the eigenvalue
associated with must be negative. Taking x, we get Tt2 Ate x, so that clearly
violates (**) i.n (T5). Note that _>-0 is also an eigenvector of Tt corresponding to the
eigenvalue e x’. Now we also show in the sequel (T2), (T3) that Tt is positive, symm.etric,
and IIT, II=- 1. m result of Coffman, Duffin and Mizel [12] then guarantees that et= 1
and, hence, t 0. This is impossible, so that A cannot have a nonnegative eigen-
function.5 Of course, this fact alone does not validate the conjecture; but if there is a
counterexample, it cannot be provided by an eigenfunction of A.

2. Proofs of the main assertions. Verification of (T1)-(T5) depends upon es-
tablishing certain properties of the generator A. We do this in a series of four
propositions (P1)-(P4).

It will be convenient to use F to denote the usual integral operator induced by the
kernel W; that is,

(Fx)(lz) 1 W(tz, v)x(v)

Thus, in terms of F, Ax Fx- x,
(P1) (A1)-(A4) A" Lp --> L, 1 <-_ p <- oo, is a bounded linear operator whose

norm satisfies
Ilall <-- 2q3.

Proofof (P1). Since c is bounded (A4), it suffices to show that F: L - L, and that
IIFIl--<, for 1-<p __<c. This result is easily verified in the case where p 1 or

4The condition (**) in (T5) neither implies nor is implied by the assertion’ for e >0 there is a [(e) =>0
such that [Ttf 12 e ->/’(e).

If A has a nonnegative eigenfunction in L thenA f. As will be seen (P3(ii)) (Ax)(ix) dix 0,,so
that Ix(tx)[ dix 0. Thus, f 0. But we will also show (P3(i)), that A 0 ff 0 in L1. Thus A cannot
have a nonnegative eigenfunction in L1 either.
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p o0. When 1 < p < oo we can appeal to the Riesz convexity theorem [2] or proceed
directly as follows. Since F is positive (A1) we need only consider x -> 0 in L". Then, for
q.=p/(p-1),

--<lJ xP(v)(tx’ u)qP/q(tx) dud

x () d.

Thus IIFxll  llxll , and (P1)is proved.
For case p 2, the above result is an integral version of Shur’s theorem for

matrices. More generally we have the following result. If there are positive constants
c, d and positive functions , g such that Ff cgq- and Fg dff-, then F: Lp Lp and
IIFIIo c-d. This follows by the same argument as used in the proof of (P1).

(P2) (A1)-(A4) imply, forA:LLe:
(i) (Ax, y} (x, Ay};

(ii) x 0 (Ax, x) < 0;
(iii) if, in addition, (A5) holds, then

sup (Ax, x) O.
Ilxl12--

Thus (A1)-(A4) imply that A is a symmetric, negative definite linear operator in L2,
which contains the point zero in its continuous spectrum whenever (A5) holds as well.

Proof o] (P2). First we establish a useful formula for (Ax, y ). Using the symmetry
of (A2) an easy calculation yields

(Ax, y)= - W(/x, v)[x(Ix)-x(v)][y(Ix)-y(v)]dvdtx.

Clearly A is symmetric in L2. Setting y x in (Ax, y} we get

<Ax, x> - W(/x, v)[x (/x)- x(v)]2 dv dtx.

Thus (Ax, x) <=0 for every x L2. Furthermore, since is positive (A1), it follows that
(Ax, x)=O if and only if the function (tx, u)[x(t.t)-x(u)] vanishes on (-oo, oo)x
(-oo, oo), in which case the function/z x(/x) is constant on (-oo, oo). Since x L2, this
constant must be zero. Thus A is negative definite in L2.

Finally, suppose that (A5) holds as well as (A1)-(A4). Define xvt in L2 forM > 0 by
XM--(2M)-l/2.[-M.M].6 Then IIx ,ll - , for each M >0, and (A5) guarantees that
limvt-,oo (AxM, xt)= 0. Hence zero is in the continuous spectrum of A. !-1

Since the assumption (A5) plays an important role in (P2), the following comments
are relevant. The typical acoustic kernel given earlier satisfies (A5). Every convolution
(optical) kernel which satisfies (A1)-(A4) also satisfies (A5). And there are kernels

6 [-M,M] denotes the characteristic function of the interval [-M, M] in (-oo, oo).
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which satisfy (A1)-(A4) which do not satisfy (A5). Indeed, if denotes the set
{(/z, t,) [/x +/- 2,[ _-< 1, 12/x +/- ’1--< 1}, then satisfies (A2)-(A4) but not (A5). Just

add R’ to any kernel which satisfies (A1)-(A4) to obtain such an example.
(P3) (A1)-(A4)implies

(i) xL’, 1-<p<oo, Ax=Ox=O;
(ii) x L (Ax)(/x) d/x 0;"

(iii) AI* 0.
Proof of (P3).
(i) First suppose p 1. Now Ax 0 means Cx Fx, and hence qlxl <_-F(Ix[). Since

is bounded (A3), it follows that qx e L, and hence qx e L1. Then

The symmetry of (A2) then yields

If (/x, ,)[Ix (/x )l Ix (/x )l Ix(’)l] dr, d/x <=0

and

f f (, )glx()l=- Ix()l Ix()l] d, d/z =< O.

Adding, we get

f[ *(, ,)glx ()1-Ix()[]= d, d/x _-< O.

As in the proof of (P2) we find that x 0 in L1.
Now suppose x e Lp, (x 0), 1 < p < oo. Then Ax 0 implies

(,,.,.)Ix (,,.,,)1 I *(""’ d,

lip
1/q

This yields lxl < f(Ixl), which is the same inequality as in the case p 1 with Ixl L
replaced by Ixl e LX, Then x 0 in Lp.

(ii) If x e L then x, Fx, and Ax are all in L. The result then follows by Fubini’s
theorem.

(iii) Since FI* =1", we get AI* =0. Thus (P3) is proved.
Incidentally, computations similar to those we have used yield

for 1 N p < m, provided x 0. In particular, if p 2,

Ilexll <-2<ex, x>
as expected.
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(P4)7 (A1)-(A4):::>Ja =-(I-(1/A)A)-I,, >0, is a strictly positive contraction in
Lp, 1 <=p <-: for, >0,

x>-O, xOAx>O, I1[I. <-.
More specifically,

(i) ifp 1, IIJa[ll 1, and x >-OllJxll=llxll;
(ii) /p , IIJ I1 a, and Jx 1" 1"; and
(iii) ifp 2, x 0lI/xl12 <llxll2, and IIJl[2 whenever (A5) also holds.

Finally, (ml)-(ms)llJll 1, a _-<p _-<, for X >0.
Proof of (P4). First we verify the cases p 1, 2, ; the general case 1 <- p -< c will

follow. Note that, for h > 0, x JAy must be a solution of

(***) x-lAx y or equivalently 1 +-o x y +l--Fx.
(i) Case p 1. Since q/(A + q) =< qS/(A + if), it follows that the composition

F(1/(A + o))I is a strict contraction on LI: [IF(1/(A + ))tll <-- qV(; +if)< . Hence Ja
given by

is well defined on L and x JAy solves (***). Since is positive we see that

( +)lxllyl+F(Ix[).

Fubini’s theorem and (A4) then yield

Thus IlJyll IIlla for all y 6 L1, and II1 Ila 1. To see that Ja is strictly positive, note that
F(1/(A + q))I is strictly positive and use the series for Ja. Alternatively, use (P3(ii)) to
get

But y >_-0 and IlJa I1 1 imply

Ix (/x) d/x f y (/x)

I Ix ()1 d _<- I y () "
Hence x =>0. Since and (1 + (1/A)q) are positive, so is x =JAy >0.

To see that IIJll a, it suffices to consider y ->_ 0. Since Ja is positive and

I(JaY)(/X) d/x f y (/x)

we get IlYyllx Ilyllx for y => 0. This means that Jail1 -> 1. Thus IIJlll 1 as claimed.
(ii) Case p c. Since q/(A + q) =< qs/(A + qs), it follows that the composition

1 /(A + q))F is a strict contraction on L: I1(1/(;t / q))Fl[ _-< /(; /) < 1. Then Ja as

Note that the Laplace transform A x of the solution t-- xt corresponding to the initial data is given
in terms of the resolvent Rx of A by :x Rx, where Ja
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given by

is well defined in L and x JAy solves (***).
Again, since is positive, (A4) implies

Equivalently,

1Ix <--I1, I1 + - I-IIx I1 -Ix I1.

This, in turn, yields Ilxll-< Ilyll. Hence IIyll_-< Ilyll, for all y L and Ilffll_-< 1. The
strict positivity of J in L follows from the strict positivity of (1/(h / ))F and the
series for J. Now J 1" 1" from (P3(iii)). Hence IIJlloo_-> 1. Thus IIJll- 1 as claimed.

Observe that a simple inductive argument yields

1 k 1 k 1 I(A l+rp)[F(’ +)1] =[(A +rp)F] (A q
for k 0, 1, 2, . Hence the two series expressions for Jx in L1 and L are (formally)
the same, and agree on L1 f’l L.

(iii) Case p 2. Since (I-(1/A)A) is symmetric and positive definite in L, its
range is dense. Let y Lz be in this range, and let x L: be such that (***) is satisfied.
Then

1
(x,x)=(y,x)+(Ax, x).

From (P2(ii))we have that y 0 implies

(x,x)<(x,),

and y -= 0 if and only if x 0. Hence, either Ilxll < Ilyll or Ilxll Ilyll 0. w conclude
that Jx exists in L2, IIJyll < 11yl12 (y 0) and IIJll=--< 1.

To see that Jx is strictly positive on L:, proceed as follows. Let x L: be written
x=xl+x, where xlLXfqLz and xLf’lL:. Just take x(/x) x(#) if [x(/x)[ > 1,
x (tz) 0 if Ix (/x) < 1, andx x x1. Suppose x => 0 so that x 1, x -> 0. By our previous
arguments Jxxl >=0 in L fqL: and Jxx>-O in L f’)L2. Thus J,x >=0 in L:. If x _->0 and
x 0, then either Jxx > 0 or Jxx > 0 so that Jxx > 0. Hence Jx is strictly positive.
Alternatively, the strict positivity follows from the positivity as in the cases p 1,
due to the strict positivity of F.

To complete this case, assume that (A5) holds as well as (A1)-(A4). Then, for
A>O,

<(1) ) ((1) ) 1
inf I -A x, x 1, sup I - A x, x 1 + -[[A][2.(x,x)= (x,x)=

It then follows that the spectrum of J, as a symmetric operator in L2, lies in the real
interval [1/(1 + (1/A)IIAIIz), 1], and includes both endpoints. Hence, IIJ 112 , (Note that
IIll=- if and only if zero is in the spectrum of A.)
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So far we have verified (P4) for p 1, 2, oo. The conclusion follows for all p,
1 <= p <= oo, by the Riesz convexity theorem. Since we already have IlJalll IIJll- 1 on
L and L, we need only verify that (***) has a measurable solution x for each y Lp,
1 <p <oo. Indeed, write y =y+yoo as before, where yeLlfqLp and yeLfqLp.
Then JAy e L1 and Jayoo L are well defined by our previous results. Now define Ja on
Lp by JAy =Jayl+Jay and observe that x =JAy solves (***); moreover, x =JAY
L1 +LO and is surely measurable. Thus we see that, for 1 < p < oo, Jx is a well-defined
strictly positive operator on Lp, such that IIJ ll -<- a. Finally, since p II1 11 is a convex
function for 1 =< p -< oo and I[Jx [11 -[[Ja [Iv 1, it follows that [[Ja lip 1 for all p if IIJ II0:1
for some/3, 1 </3 < oo. But in part (iii) of this proof we show that this is the case for/3 2
whenever (A5) holds. This completes the proof of (P4). I,1

The results described above for 1-<p-< oo depended upon the Riesz convexity
theorem. Thus (P4) is a sort of "little Riesz theorem" for Lp spaces whose underlying
measure space is not finite (see [11]).

We now turn to the proofs of the main assertions (T1)-(T5).
Proof of (T1). This result is an immediate consequence of (P1) and Hille’s first

exponential formula 1]
g

T, =exp (tA)= E ,_-sA g. [3
k=0 K

Proofof (T2). This result is an immediate consequence of the exponential formula
[1]

Tt lim [J(t/,)

and the positivity of Ja established in (P4). 13
Proof of (T3). The assertions all follow by the exponential formula used in the

proof of (T2). Indeed, Tt inherits directly all the properties of Jx (except the strict
positivity). El

If only (A1)-(A4) are assumed, for > 0 the conclusion IIT, II. 1, 1 <= p <= oo, must
be replaced by IIT,II -1 for p- 1, and IIT, -< x 1 < p < oo. Note that (A5) was
used only to guarantee that zero was in the spectrum of A as an operator in L2.

Proof of (T4). We already have from (T3(ii)) and the semigroup property that
t-, IIT,xll= is decreasing for every x 0. To see that it is strictly decreasing we have, from
the proof of (P2), that for xt Tt, >= O,

d
d-SIIxll 2<Ax,, x,) < O,

provided xtO. Now if Xo---0 for some to> 0, then xt =0 for all t-> to. This cannot
happen since the semigroup is analytic.

Next we show that lim,_,o IIx,l12 0. Here we use the spectral theorem for sym-
metric operators in L2" The operator -A is a positive definite symmetric operator in L2

(P2), and hence posseses a representation in terms of a resolution of the identity

I A dE(A),

where {E(A)" -oo < A < oo} is a family of projections in L2, called the resolution of the
identity for -A. For completeness we include its relevant properties"

(i) A-E(A) is of bounded variation and (normalized) left-continuous on
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(ii))to is an eigenvalue of -A if and only if

E(h0) # lim E(A).
XSXo

(iii) Ao is in the continuous spectrum of -A if and only if A --, E(A) is not constant in
a neighborhood of Ao and

E(ho) lim E(A).

(iv) E(A)=0, A <=0;
E(;t) 1, ;t > Ilall=.

(v) E(A )E(/x) E(A) whenever

In terms of E we have the following well-known formula [1]"

xt Tt, I e-t;’ d[E(h). ], 0.

It then follows that limt_, Tt, exists in L2 and is given by

lim Tt lim E(A),f =- E(0+)x.
t--,oo ;‘$0

But (P2) asserts that h 0 is not an eigenvalue of -A. Hence E(0+) E(0)= 0.
This proves (T4). 71

As noted above, (P2) asserts that (A1)-(A4) impl,y that h 0 is not an eigenvalue of
-A. If, in addition, (A5) holds, then h 0 is in the continuous spectrum of -A but is still
not an eigenvalue. Thus the assumption of (A5) is not necessary for the validity of ’(T4).

Proof of (T5). To establish (TS), we appeal to the spectral formula used in the
proof of (T4). From this formula we get

IIT,:ell@ / e -:z’u d(IIE(A :z)xll=),

which in turn implies, for ,f# 0,

d I Z e -:z’u d(llE(z)llb
-d-- In IIT,II-- I e -2’* d(llE(A).fll)

We need the following result’ There is at least one i _-> 0 in L2 such that [[E(A )3112 > 0 for
all h > 0. Deferring the proof of this assertion, which follows in the form of a lemma,
suppose ->_ 0 has been so chosen. Then, for every e > 0,

d(IIE(A >0;e2(-x)t

moreover, this expression is unbounded as oo. Now by replacing by J’o + ’ in the
above expression for -(a/dt) IIT, II=, we see that

Hence

:z(-;‘)t d(llE(A);llb"

0 -< li--- d
t-,oo

In [ITt- [12 < E.

Since e > 0 was arbitrary, (**) is established, and (T5) is proved.
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This proof depends strongly on the fact that A 0 is in the continuous spectrum of
-A, which was guaranteed by the assumption (AS).

Now if (A5) does not hold, A --0 may not be in the spectrum of -A. Then

inf (-Ax, x) Ao > 0
(x,x)=

and

d

for all L2. This in turn implies that

so that solutions decay exponentially fast for any initial L2. For the acoustic and
optical cases we consider, this situation does not obtain.

LEMMA. Let {E(A)" h > 0} be a family of nonzero projections in L2 such that

a <_-/z ::> E(A )E(/) E(A ).

Then there exists an >-_ 0 in L2 such that

E(A)2#0 for alI A > O.

Proofof the lemma. Assume the result is false; that is, for every x _-> 0 in L2 there is
a a(x)>0 such that E(.(x))x 0. We proceed inductively to obtain a contradiction.

Fix Ao>0 and choose xo_->0 in L2 so that E(ao)Xo# 0. (Such a choice is always
possible since E(ao) # 0 and every function in L2 is the difference of two nonnegative

*(x0) so thatfunctions.) Now E((Xo))Xo 0 and, necessarily, (Xo) < Ao. Define A 2

A1 2 o. Next choose xl _-> 0 in L2 so that E(A 1)xl 0 and IIxll= < 1/211E(Ao)X011=. Define
A= A(xl), so that A=<1/2A1 and E(A2)xl =0.

Continuing inductively we produce a sequence of functions {xn} in L2 and a
sequence of positive numbers {An} such that, for n 0, 1, 2,. .,

(i) Xn >= 0 (Xn 0);
(ii) E(An)Xn O;

(iii) E(An+l)Xn =0;

(v) a,,+ a(x,)<a,.
Define . _-> 0 in t2 by . Yk=O Xk. Using (iv) above, obtain

11,112 <-- Y. IIxl12--< Y. (1/2)11/o11--< 211xoll, so tat , t2,
k =0 k =0

For arbitrary n 0, 1, 2,. , consider E(An). From (ii) and (iii) above,

()= (A.)x= y (A.)x=(A.)x + y (A.)x./,.
k=0 k=n /=1

where E(An)xn 0. But an inductive argument using (iv) implies

2

Hence IIE(X.)ll2 > 0, for every n 0, 1, 2,. .. Finally, since An$0 as n c, it follows
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that E(A)Y0 for all A >0. This contradicts our assumption, and the lemma is
proved. I-1

3. Approximation ot solutions. With a view toward approximating solutions to
the original problem, we replace the kernel by q(t) MMq where MM is the
characteristic function of the square {(ix, )" "lixl, [’l <- M}. The approximate problem
thus obtained possesses all the features of the original problem except that its solution
semigroup {T(tM)" >- 0} satisfies

lim T(tM) p(M),

where p(M) is the positive projection in L2 given by

x(,l a. . e I-M. M].(P(M)X)(IX)= M

x (ix ), IX E-M, M].
For L2 the Trotter-Kato theorem guarantees that

X"rt.,

as M o uniformly for [0, a ], c > 0. Of course, p(M). 0 as M .
Now if it happens that _(M)= infll.ll__<M(M)(ix, ,)>0, as it does in our typical

example, then the decay rate is exponential. Indeed, for every : L,
II(M) p(M). <

Furthermore, if limM.., 2M_(M)= 0, this exponential rate becomes slower as the
degree of approximation improves. This is the case for all convolution (optical) kernels
as well as those for which q L1. Other approximation schemes also exhibit this
phenomenon.

4. Concluding remarks. In view of the fact that the equation arises from a multiple
scattering problem, we might expect a connection between its solution and stochastic
processes. Indeed, for ->_ 0, Ix (-o, c) and any Borel set E (-3, a3), define

t, Ix, E)= TtTE Ix

where E is the characteristic function of the set E. It is not too hard to show that is a
Markov process which is temporally homogeneous and spatially inhomogeneous
(except in the optical case). Our original Cauchy problem thus corresponds to the
Kolmogorov equation associated with the Markov process .

We conclude with a few observations. Our analysis depended in no essential way
upon the boundedness of A. What is essential in our analysis is the averaging property,
namely

f (Ax)(Ix) dIx O.

Furthermore, our analysis used symmetry and spectral theory rather heavily. If the
operators are not symmetric or normal, similar results should be available by exploiting
the positivity of the semigr0up, or by using results like the Weyl-von Neumann
theorem. If the kernel of A is merely nonnegative instead of positive, the nature of
the set on which vanishes becomes critical. Analysis of the asymptotic behavior in this
situation is much more delicate. Finally, generalization to include nonlinear hereditary
effects also seems feasible, say by integrating against the solution semigroup.
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EIGENFUNCTION EXPANSIONS FOR A SINGULAR EIGENVALUE
PROBLEM WITH EIGENPARAMETER IN

THE BOUNDARY CONDITION*

DON HINTON

Abstract. We study the singular boundary value problem

r(u)=-{-(pu’)’+qu}=Au, a<-x < b <co,

-1u(a + Bz(pu’)(a A [i u(a . (pu’)(a )].

Conditions are placed on the coefficients which ensure the spectrum is bounded below and the essential
spectrum is empty. An eigenfunction expansion theory is developed for a class @1 of functions. For this class
the convergence is uniform and absolute on compact intervals. When the eigenvalues are all nonnegative, the
class 91 is shown to be the domain of A 1/1, where A is the self-adjoint operator associated with the boundary
value problem.

We consider here the singular eigenvalue problem

(1) r(u) l-{-(pu’)’ + qu}= Au, a <- x < b,

(2) -[Blu(a)-B2(pu’)(a)]= A[Blu(a)-B;(pu’)(a)],

where we assume throughout that:
(i) The functions r, p and q are real continuous functions on the interval [a, b)

with r and p positive; further, p is assumed to be continuously difterentiable.
(ii) The numbers/31,/32,/3 and/3 are real and satisfy

(3)

The singularity at b may be finite or infinite.
This paper is a continuation of [9], where the regular problem was considered. As

in [9], we obtain a convergence theory, uniform and absolute on compact intervals, for
the eigenfunction expansions associated with (1)-(3). Again when the eigenvalues are
nonnegative, the class of functions considered is the domain of the operator A 1/2, where
A is the self-adjoint operator associated with (1)-(3).

Ultimately, we obtain our convergence theory along the same lines as [9]; however,
it is first necessary to prove some technical lemmas which do not arise in the regular
problem. These lemmas illustrate some of the difficulties associated with eigenfunction
expressions arising from singular problems. When the eigenvalues are nonnegative, the
convergence of the eigenfunction expansion is in the metric IIFIl- (AF, F) IIA /aFIl,
i.e., the energy norm (see Theorem 3). Hence the convergence is somewhat stronger
than indicated above. An alternative calculation of the metric is provided by the
quadratic functional J1.

The eigenvalue problem (1)-(3) arises in a large number of vibrational and heat
conduction problems. The singular case represents a problem in which some physical
dimension is effectively infinite. The case of cooling of a semi-infinite bar when the end
is placed in contact with a finite amount of liquid is considered in [7]. It is assumed in [7]

* Received by the editors June 4, 1980, and in revised form October 17, 1980. This research was
supported in part by the National Science Foundation under grant NSF MCS77-28268.

5" Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
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that heat flows from the bar only into the liquid and is convected from the liquid to a
surrounding medium; Newton’s law of cooling is assumed at the liquid-solid interface.
A numerical analysis of a singular problem with a singularity at 0 may be found in [8]. It
considers the cooling of a cylindrical rod which is dropped into a container containing a
finite amount of liquid. As a final example, consider the longitudinal displacement y (x, t)
of a semi-infinite bar with a mass m attached at x- 0. It is assumed that the cross-
sectional area A of the bar is constant, but that the density 6(x) and modulus of
elasticity E(x) are variable. Then following the analysis of [2, p. 7] and [1, p. 250], the
displacement satisfies

oEy 0 (E(x) Oy)a(x) - a- -x t>O,

and the mass at x -0 gives the condition

mytt(O, t)= AE(O)yx(O, t).

If we assume appropriate initial conditions, then a separation of variables leads to the
eigenvalue problem (the eigenparameter used is -h)

dx
E(x) -x a(x)X, -m-IAE(O)X’(O) AX(0),

which is of the type (1)-(3) with/31 0 2 -AE(O)/m, fl’ 1 and/ 0.
Additional applications, extensive references, and a general discussion of the

literature of boundary value problems with eigenparameter in the boundary condition
may be found in [6], [7], [16].

Recent work of Fulton [7] also treats singular problems of the kind (1)-(3). In [7],
the left endpoint a is assumed to be either regular or singular of limit-circle type; the
right endpoint b is assumed to be either limit circle or limit point type. We consider here
a to be regular and b to be singular in the limit point case. The analysis of [7] is divided
into two cases: b is limit circle and b is limit point. In the first case the spectrum is
necessarily discrete and a detailed eigenfunction expansion theorem is obtained. The
part of this theorem which relates to our work says that if F (F1, F2) is in the domain of
the self-adjoint operator A associated with the eigenvalue problem, then the series for
F1 converges uniformly and absolutely on compact intervals; further, the series for F1
may be termwise differentiated, with uniform and absolute convergence also holding on
compact intervals. In the limit point case of [7], an analogous expansion theorem is
obtained, but the series is replaced by an integral because of the possible presence of a
continuous spectrum. In this case a more prominent role is played by the spectral
function p(h) and Titchmarsh-Weyl m-coefficient re(h).

We consider here only the case where - has an empty essential spectrum and show
that this leads to the absence also of an essential spectrum in (1)-(3). As compared to [7]
we obtain uniform and absolute convergence on compact sets for functions which are in
the domain of A 1/2. The eigenfunction series may be termwise differentiated with the
convergence of the differentiated series being in an 2 space. Thus we obtain uniform
and absolute convergence on compact sets for a larger class of functions than in [7-1, but
with weaker convergence of the differentiated series. Other parts of the expansion
theorems of [7] deal with series or integrals that we do not consider.

For a Hilbert space formulation of (1)-(3), we follow [6], [7], [9], which uses a two
component Hilbert space to realize the operator-theoretic formulation given by Walter
{16].
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We define the domain A of the operator - by

A {f r(a, b):f, pf’ ACloc, (f)r(a, b)}.

ACo denotes locally absolutely continuous, and (a, b) is the complex Hilbert
space of Lebesgue measurable functions f satisfying rlf[ < . In the terminology of
differential operator theory, - is a maximal operator [12, p. 10].

The Hilbert space H is defined by H =r(a, b)OC, where C is the complex
numbers. The inner product in H is given by

((El, F2), (G1, G2)>- rFIGI+-F2O2.
P

Let D(A) be the set of all (F1, F2) H which satisfy
(i) FleA,
(ii) Fa= flFl(a)-fl(pF’ )(a),

and define A’D(A)-->H by

A(V, V2) (’r (El), -[31F(a) + [32(pV )(a)).

Thus F1 s A satisfies (1)-(2) if and only if

F=(FI,’IFI(a)-’(pF)(a))D(A) and AF=AF.

Clearly D(A) is dense in H. The fact that A is a closed operator follows from the closure
of r[12, p. 15], [14, 17.4] (these references consider only weights r(x)= 1; their
arguments apply to general weight functions), and the fact that f-->f and -f,--> zf
imply that {f,} and {f} converge uniformly to f and f’, respectively, on compact
sets [3, p. 1296].

Recall that - is said to be in the limit-point case if

1 =dim {f2r(a, b)’r(f)= hf},

where Im h O. It is a result of Weyl that this dimension is independent of h for
Imh 0.

LEMMA 1. The operator A is symmetric if and only if r is limit-point.
Proof. Defining

<(El, F2), (G1, G2)) rFIGI+-F2d2,
P

we have after some calculation that for F (F1, F:), G (G1, G2) D(A),

(F, AG) -(AF, G) -F,p’I +pF(I[

1
+-[IFa(a)-.(pFi )(a)][-aGl(a)+z(pGi)(a)]
p

1
[-/3Va(a) + z(pF’ )(a)][/3 G(a)- (pG’)(a)]

P
[-Fxp +pF x](x ).

Hence A is symmetric if and only if

(4) lim [-FlpG’I + pF’IG1](x) 0, F1, G1 e A.
xb

However, this is equivalent to r being limit-point [12, p. 19], [14, 18.3, 4].



EIGENFUNCTION EXPANSIONS 575

THEOREM 1. The operator A is self-adfoint if and only if r is limit-point.
Proof. By Lemma 1, we need only show that r being limit-point implies A is

self-adjoint. Since A is already symmetric, the proof will be complete if we show that
each of A + iI, A iI has range H[14, p. 33]. We consider the operator A + i!; a similar
argument applies to A-iL

Let G (G1, G2) H. To solve (A + iI)(F) G, we must show there is an F1 A
such that

(5) "(F1) G1 and k(F1)= G2,

where , r + iI and

k(F1) -fllFl(a) + [32( pF1 )(a + i[’lFl (a . (pF’I )(a )].

Since r is a maximal operator, there is an/1 A such that (/1) G1 [12, p. 15]. Also,
being limit-point implies that there is a 4’ A such that

r(O) =-iO and r[ 1.

Equation (4) ensures that

(6) lim [-p’ +p’](x) O.
b

We assume without loss of generality that ’(a) is real.
For F1=1 +c, we have ,(F1) =-(Pl) G1 and k(F1)=k(ff’l)+ck(); hence if

k()0, (5) will hold for c=[G2-k(l)]/k() and the proof will be complete. If
k() 0, then

(7) qb(a) --x- ii (p’)(a)= /312 + (/3)2
(p’)(a).

From r() =-i and an integration by parts, we have

(8) -i

Taking the imaginary part of (8) and applying (6) and (7), we obtain

b

rllZ=Im[p,](a)=[p(a)’(a)]Zl3 +(13,1)z"

Since p > 0, this is a contradiction and the proof is complete.
Theorem 1 may also be deduced from the results of. [7]. We have included a short

proof for completeness.
To further relate A to r we recall the definition of essential spectrum [3, p. 1393].

A complex number h is said to be in the essential spectrum of a closed operator T if
T-hi does not have closed range. For a symmetric operator T which does not have
eigenvalues of infinite multiplicity, this is equivalent to the condition [3, p. 1435] that
there be a sequence {fn} in the domain of T such that (i)IILII= a; (ii) {fn} does not
contain a convergent subsequence; and (iii)IIT-;LII- 0 as n.

THEOREM 2. The essential spectrum of r equals the essential spectrum ofA.
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Proof. Suppose h is in the essential spectrum of r. Let r0 be the minimal operator
associated with r, i.e., the closure of r in 2(a, b) when restricted to those f A

which have compact support in (a, b). Since the essential spectrum of r equals that of ro
[3, p. 1394], we have then a sequence {/n} in the domain of ro such that [I/nil 1, {/n} has
no convergent subsequence, and (r= h)fn 0 as n o. Since fn(a)=f’,(a)=0 [12, p.
11], the sequence Fn (fn, 0)is in domain A, I]Fn[I II/n[[ 1, {Fn} has no convergence
subsequence, and (A-h)Fn ((r-h)fn, 0)0 as n. Thus h is in the essential
spectrum of A.

Now let h be in the essential spectrum of A andF, (f,, fl’xfn(a)-’2(pf’)(a)) be
a sequence in D(A) with [[Fn[[ 1; {Fn} contains no convergent subsequence, and
(A- h )Fn 0 as n o. From IIF.II 1 we have

(9) [Bf(a)-/3 (pf’,,)(a)] <

and from (A- h )Fn 0 as n we have, as n o,

(10) -- L (a + flz(pf’ )(a h [fl f (a ’ (pf’ )(a )] 0.

If we set

an 8f(a)-fl(pf)(a), bn -flf (a) + fl(pf’n)(a),

we have

-1(pf’,,)(a) -p (anfla + -1f(a) -p (an/3.+ bnfl);

hence (9) and (10) imply that (f(a), (pf’n)(a)) is a bounded sequence. It is sufficient to
suppose it converges. This implies then that {f, } contains no convergent subsequence in
r2 (a, b), since Fn contains no convergent subsequence in H. Thus {f} satisfies ][fll <-- 1,
{fn} contains no convergent subsequence, and (r-h)fn 0. Hence the sequence
{L/IILll} satisfies the requirements for h being in the essential spectrum of .

To develop an eigenfunction expansion theory we consider the following con-
ditions"

(i) There is a number B such that q(x)>-Br(x) for a _-<x <b.
(P) (ii) r is in the limit-point case.

(iii) The spectrum of A is purely discrete.
For many weight functions r, P(ii) is implied by P(i); in particular this is true for

r(x)= 1 and [a, b)=[a, oo) [12, p. 23]. However, since P(i) does not imply P(ii) in
general, we include it as a hypothesis. Also we note that when (ii) holds the operatorA is
self-adjoint; hence P(iii) is equivalent to the essential spectrum of A being empty (note
that eigenvalues of A are of multiplicity at most two). Actually, in the limit-point case,
r(u) hu has at most one linearly independent 2(a, b) solution for each h; hence
eigenvalues of A are then of multiplicity one.

As a consequence of Theorem 2 and Lemma 3 below, it follows that (under
P(i)-P(ii)) a criterion which implies that the spectrum of a self-adjoint extension of ro is
purely discrete and bounded below is also such a criterion for A. One of the best known
such conditions is that of Friedrich [5],

4p(x)h(x)2 o,
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where

l Iab l
if -=oo,

Ph(x)- bl bl
P

Other criteria which imply that the spectrum of self-adjoint extensions of ro is bounded
below and purely discrete may be found in 11 ], 13], 15] and the references contained
therein.

The set is defined as all those (F1, F2) H which satisfy:
b +q(i) F is locally absolutely continuous with [plF [2 iF12]<.

(ii) If B 0, then F2 BF(a), and if B # 0, then F is differentiable at a and
F2 BF(a)-B(pF )(a).

The function J is defined on x by

B =o.
b

J((F,F2), (0, 02)) [F +qF]-F(a)G(a).

0:
J((F1, F), (G1, G))

[plal +qFG]

o

-BB(pF )(a)G(a) + a’2(pF’x )(a)(pG’l )(a)]

Note that P(i) implies that the convergence in (i) above is absolute.
For the singular problem we use certain approximation properties which follow

from [10, Lemma 1]. In the notation of [10], the boundary condition used is y’(a)=0;
hence A 0, A2 1.

LEMMA 2. If p,.q and r are as in (1) and (P)(i)-(ii) hold, then:
(i) D(A) .

(ii) Iff d2 (a, b) is locally absolutely continuous and satisfies
b

(11) I Plf’l=/qlfl<

and g A, then (fpg’)(x) 0 as x b.
(iii) Iff is as in (ii) and e > O, then there is an f, A with compact support such that

f(a)= f(a) and

(12) {plf’-f’, +[Iq]+r]lf-f,]a}<e.

Proof. From [8, Lemma 1], r satisfies the Dirichlet condition; hence D(A)c @.
From [10, Lemma 1, (iii)],

(13) rfr(g)= [pfg’ + qfg]
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for all f satisfying (11) and all gA with g’(a)-0. An integration by parts of the
left-hand side of (13) yields that for such jr and g, (fp’)(x)- 0 as x - b. Since this limit
does not depend on the behavior of g at a, we may conclude that the limit holds for all
g A. Finally, part (iii) above is a restatement of part (iv) of [10, Lemma 1].

We note also that in part (iii) above we may apply a standard argument to see that
le, (a) may be arbitrarily specified as well. It will be convenient to do this below.

LEMMA 3. Assume P(i)-(ii). Then"
(i) J(F, G) (F, AG) for F @ and G D(A).
(ii) A is bounded below.

(iii) For F , J(E F) b(E F) where b is a lower bound for the spectrum of A.
Proof. For F= (F, F2) and G (G1, G2)D(A), an integration by parts and

application of part (ii) of Lemma 2 gives

<F, AG>=(FlpGI)(a)+ [pFIGi + qgldl]

1
+-- [fl Vx(a fl (pg )(a )]I--ill1(a) + fl2(p )(a )]
P
b

J [P1 + qrl]

1
[flfllFa(a)1(a) fl lflFl(a)(p )(a)

P

fllfl (pF )l(a) + flEfl (pFl)(a)(p )(a)]

J(F, ).

To show that A is bounded below, we must prove the existence of a number k such
that for all G (GI, G2) D(A),

(G, AG)= J(G, G) k(G, G)

k rla +-Ila(a)-(pal)(a)l

this inequality may be written as
b

f plGil2+(q-kr)lGll2+lG(a)[2

(4)
+ fl[Gl(a)(p )(a) + l(a)(pG )(a)] + yl(pG )(a )[2 0,

where
1 )2 1 1 )2. =-[-k( -13, =-[k&+&], vv-[-k(#& -#&].
p p p

If fl& 0, then we easily ensure that (14) holds by making a > 0 (fl 0 if fl& 0)
and -k B, where B is as in P(ii). If fl& 0, then we have, for 8>0,

( + o-)v- (- k)[(B&)-&(-&)]o

+[#&(: #lB&)-

If > 0 is chosen so that
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there is a ko such that for k <_- k0
ce + tp -1 > 0 and (a "Jr" tiO-1) i2> 0.

For such k we have then that

( + ,O-)[Gl(a)[: + B[G(a)(pdl )(a) + dl(a)(pGi )(a)]+ ,,,[(pGi )(a)]: >- O.

Then the left-hand side of (14) is bounded below by

(15) plGi +(q-kr)[G1-6p-l[Gl(a)

It only remains to show that (15) is nonnegative for -k sufficiently large. From [7, p. 39]
(we assume without loss of generality that b > a + 1),

[Gl(a)[ [G1 + 2 [G

Now for e > 0, 2]G1[ e GI + e G ]; hence
a+l a+l

[G(a)[ N (1 + [GI[2 + e

b b

N(1 +e-)c rlGl[+ec piGS],
2where cl=max 1/r(x) on [a, a +1] and c=max 1/p(x) on [a,a +1]. Taking e

(0/2)8c and -kB +c(1 +e-)8/p completes the proof that (15) is nonnegative;
hence (14) holds.

To establish (iii), for each e > 0 let B satisfy (12) with f F1 where F (fl, f).
Further let f2 (a) Fi (a) if F1 is differentiable at a and f: (a) 0 otherwise. Define

(15’) F (h, If (a) ’2 (pf’)(a )) e D(A),

and note that, by Lemma 2,

J(F, F)= lim J(F, F) and (F, F)= lim (F, F ).
e0 eO

However, by parts (i) and (ii),

J(F, F,) (F, AF >= b (F, F),

where b is a lower bound for A. Part (iii) now follows by letting e - O. [3
The above proof shows that the boundedness below of A is somewhat more

complicated than for the Sturm-Liouville case. We might expect that A would be
bounded below if ro is; however this is not clear.

When P(i)-P(iii) holds, the spectrum of A consists of eigenvalues h< -2 ...
with corresponding eigenfunctions {F,} with F, (F,, F,2). We use this notation for
the remainder of the paper.

LEMMA 4. Assume P(i)-P(iii). IfF @, then

2 h, I(F, r,)l ](F, F).

Proof. The proof is identical to that of [9, Lemma 2]. [3



580 DON HINTON

We now construct the resolvent kernel for A in the limit-point case. For h not in
the spectrum of A, define Ox and ,t’x to be the solutions of r(u)= hu which satisfy the
conditions

b

xx(a)--fl2+fl2, (pxx)(a)=fll+’h, I&x =1.

The function &x is unique up to multiples c&x with Ic[ 1. The function gx satisfies the
boundary condition (2), and Ox does not satisfy the boundary condition (2) since h is not
an eigenvalue. Hence 2’x and &a are linearly independent. The Wronskian

w(A -Ox (x)(px’)(x)+ (pc/)’)(x)xx (x)

-fbx (a)(a + ’ah + (PO ’ )(a )(Sz + t3 ’2A

is therefore independent of x. To solve ( -A)F (G1, G2) with F (F1, Fz) requires
that

(16) (A -’r)F1-- O1,

(17) h [/3 [Fx (a)-/3. (pS’)(a)]-[-aFx(a) +2(pF )(a)] G2.

The variation-of-constants formula applied to (16) yields

(18) Fl(X)=C&(x)+c2xx(x)+I&;(x)X(t)-X(x)rD(t)w(h)
r(t)G(t)dt.

Calculation of Fx(a)" and F (a) from (18) and substitution into (17) yields that
Cl ---Gz/w(A). Since we are in the limit-point case, (4) implies that

(19) lim [Fl(X)(pO ’ )(x (pF’I )(x )Ox (x )] 0.
xb

Calculation of Fx(x) and F (x) from (18) and substitution into (19) yields that

C2 (t)G(t)r(t) dt.
w()

The above values of c and cz allow us to write (18) in the form
b

(20) Fl(X) G2&x (x) + Ia G(x, t, h )r(t)G(t) dt,
w()

where

6(x)x(t)
w(,

G(x, t,,)
x (x)4), (t)

w(,

Note that when G is, real, (20) can be written as

where

a <-_t<-_x,

a<x<t.

FI(X) (((x, ", A), G),
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In the formula of [9] which corresponds to (20), i.e., [9, (4), p. 34], we inadvertently
omitted the r(t) in the integral and the plus sign before the integral.

The remainder of our analysis proceeds in a manner similar to that of [9]. For a < x,
a short calculation gives 0(x,., A) @; moreover, (A -A)Fn (A -An)Fn implies by
(20) that

(21)

Hence, by Lemma 4,

(22)

where

F,l(X) (h -h,)(G(x,., ,), F), a<=x.

-<Bl(x, A),

e(x, ;) ((x,., ;t), (x,., ;)).

The definition of,/shows that BI(’, A) is uniformly bounded on compact sets of [a, b).
Writing (21) in the form of (20), we see that the form of the function G yields tb

(/ -1 d
,) r,(x) (d(x,., ), r,) (d(x,., ),

where Jx(x,.,A)=(Gx(x,.,A),-Oc’(x)/w(A)). Since (x(x,.,A)eH for
Bessel’s equality gives

(23) , Fn l"(X) 12
: ;-;, =((x,.,;), (x,.,;)).

Defining Bz(X, A) (x(X, ", A), -x(X, ", A)), we see from the definition of 0
B2(’, A is uniformly bounded on compact subsets of [a, b). If F H, then we ado
notation

c(F)=p(a) (F,F,)F’,I(a)
n=l

if the series converges. The set @1 is defined by @1 @ if/3 0, and if/3 0, @
set of all F (F1, Fz) H such that"

(i) F1 is locally absolutely continuous with
ba PlF 12 -- qlFll2 <

(ii) Y’.= I(F, F,)F’I(a) converges andF2 ’IFI(b)-c(F). Define J1 on c
by J1 J if/3 0, and otherwise by"

b

J((F1, F2), (G1, G2)) J. [pF’’ +qFx]

1
[’F(a)G(a

P

c(F)Gl(a)+ 2c(F)c((_-lflzFl(a)c(G)-lZ

It will follow from Theorem 3 that if/3 0, @ c @1 and J1 is an extension of
For F (F1, F2) H, the completeness of the eigenvectors gives

(24) F2= Y (F, F,)[/3F,I(a)-’z(pF’,I)(a)].
n=l
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Thus for /3; s0 the series n__l (F F.)F’.I(a) is convergent if LnC=l (F Fn)F.l(a) is
convergent to Fl(a), in which case

FI(a)-&c(F)= Z (F, F.)[/3F.I(a)-(pF’.I)(a)]=F2
n=l

by (24). Hence (ii) in the definition of @1 for/3& s 0 will follow from establishing

(25) Fl(a)
n=l

LEMMA 5. Assume P(i)-(iii). IfF (F1, F2) @1 and G (G1, G2)ED(A), then
(i) G @1 and JI(F, G)= (F, AG).

(ii) nC=l A.](F, F.)]2 <
Proof. It is only necessary to consider/3 0. First we establish

(26) Gl(a) Z (G, F.)F.I(a), Gi (a)= Z (G, F.)F’.I(a).
n=l n=l

Now G D(A) implies that

(AG, AG)= Y [(AG, F.)[2 Y’. A2I(G 1-’.)12 < cx3.
n=l n=l

The convergence of this series, (22) and (23) and Schwarz’s inequality imply that the
two series

(27) Y (G, r,)r,l(X), Z (G, r,)r’,l(X)
n=l n=l

converge uniformly and absolutely on compact subsets of [a, b). From the completeness
of the eigenvectors, the series =1 (G, F,)F,a converges in (a, ) to G1; hence we
.may conclude that the series in (27) converge to G(x) and G (x) respectively. This
establishes that G @. The proof that <F, AG)= J(F, G) is the same as part (i) of
Lemma 3 but with (pG’)(a) replaced by

c(G) p(a) (G, F.)F’.I(a).
n=l

For the proof of part (ii), let Fg ==1 (F, F.)F.. Then Fk D(A) and, as in
[9, Lemma 2],

k

(28) Jx(F-Vk, F-Vk)= Jl(V, F)- Y [(F, F.)[2.
n=l

It follows from the definition of J1 that

JI(F Fk, F Fk

p[F’ --Fk 12 -[- qlF1--Flk

(29) 1 {X,llFl(a)_Vxk(a)iZ_2l,2p(a)
P

Re [Fl(a)-Fkl(a)]
=k+l =k+l

(F, r.>r’ (a)[2}nl
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From [9, p. 39] we have, for a member f (a, b) which is locally absolutely
continuous (without loss of generality, take b > a + 1),

+1 a+l a+l

]f(a)l2-< f," Ill2+2( f, [f12)1/2( Ia 1/’12)
=c f r[fl2+2(I rill) (f plf’l)

where Cl =max 1/r(x)on[a,a + 1] and ce max 1/p(x)on[a,a + 1]. Using/= F1-FI
and F F1 in L(a, b), we are able to conclude from (29) that

lim inf JI(F Fk, F Fk) >
koo

Using this inequality in (28) completes the proof.
THEOREM 3. Assume P(i)-P(iii). If F (F1, F2) H and

then"
(i) Fl(X)=E=a (F, F,)F,(x), absolutely and uniformly on compact subsets of

[a, b).
(ii) F1 is locally absolutely continuous andF ,oo__ (F, F, )F’ with convergence in

2(a, b ).
(iii) F r and Jl(F, F)= E7=1 anl<F Fn>l 2.
(iv) If ’2 ys 0 and F @, then c(F) (pF’I )(a).
The proof is essentially the same as that of [9, Theorem 1].
For A 1->0, then by the spectral theorem for self-adjoint operators, 1 is the

domain of A 1/2. In the regular case, for r 1 and q locally of bounded variation,
asymptotic formulae made the description of the class @1 somewhat simpler (cf. [9, p.
41 ]). Such formulae do not yet seem to be available in the singular case. However, in any
case, we have @ c @1 (recall @ @1 if fl 0), and @ imposes only a mild condition of
F1 at a (in the fl. 0 case).
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INTEGRABILITY OF RESOLVENTS OF SYSTEMS OF VOLTERRA
EQUATIONS*

GUSTAF GRIPENBERGS

Abstract. The integrability of the resolvents of systems of Volterra integral and integrodifferential
equations is studied. The matrix kernels in the equations need not be integrable, and some of the conditions
used are shown to be both necessary and sufficient.

1. Introduction. The purpose of this paper is to study the integrability of the
resolvents of the systems of Volterra equations

(1.1) X(t)+fo X(t-s)A(s)ds=F(t), + [0, c)

and

(1.2) Y’(t)+ IE Y(t-s) da(s)= G(t),
0,t]

i.e.., the solutions of the equations

t+, Y(0)=Yo,

(1.3) R(t)+ fo R(t-s)A(s) ds=A(t), t+

and

(1.4) O’(t)+| O(t-s) dc(s)=0, ten+, Q(0)=L
0,t]

Here X, F, Y and G are Cn-valued functions (row vectors), A, R and O are n n
matrix-valued functions and a is an n n matrix of Borel measures. The reason for
studying these resolvents is the fact that the solutions of (1.1) and (1.2) are (under fairly
weak assumptions) given by

(1.5) X(t)=V[t)-| F(t-s)R(s) ds, t+

3o
and

(1.6) Y(t) YoO(t)+ fo G(t-s)O(s) ds, +.

The question we will consider here is under what assumptions on A and a we have

fo IIR(t)ll dt < and f0 IIO(t)ll dt <,
where I1"11 is some matrix norm (thus we will not consider weighted spaces); this
problem is easily seen to be related to problems concerning the asymptotic behavior of
the solutions of (1.1), (1.2) and perturbed forms of these equations. If A is integrable,
then it is well known, see [20, p. 60], that R is integrable if and only if det (I + A"(z))
0, Im z -< 0 (here denotes the Fourier or Fourier-Stieltjes transform, and functions or

* Received by the editors March 18, 1980, and in revised form November 3, 1980.
t Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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measures defined on N- are extended as 0 on (-oo, 0), so that the (j, k)-element in
A^(z) is I0 e-iZtaik(t) dt). A similar result holds for (1.2); see [10] or [18]. For this reason
we will consider kernels that are not necessarily integrable, and the approach taken here
follows closely that of [3] (where n 1). For earlier results on the resolvents of integral
and integrodifferential equations, see, e.g., [1] and [3]-[21].

2. Statement of results. First we consider (1.3) and the resolvent R; the results
concerning the resolvent O will follow from an application of the ones concerning R,
(cf. [18]). We will assume that at most one element of each row and each column in the
matrix A is not integrable, and we give some examples below that show the difficulties
encountered if this assumption is dropped. The nonintegrable functions we consider
are, of course, not completely arbitrary, and we will use the following

DEFINITION 1.

S1-- b’N+Clb(t)--bo(t)+ (t-s)k dk(S),
0,t]

N+, b0 s L1 (N+),/3k BM ([+), 0 -< k _-< m < c}.
Here BM (N/) denotes the set of all finite Borel measures supported on N/. Since $1 is
the set of all functions that are the sum of an integrable function, a function of bounded
variation, a function whose derivative is of bounded variation and so on, we see that,
e.g., b(t)=t-p, pc(O, 1), belongs to $1. But note that for example the function
-p cos (t) does not belong to $1 and there is no good reason why such functions should
be excluded from consideration. This is the motivation for the hypothesis (2.3) in
Theorem 1. Observe also that $1 is closed under the convolution product, denoted by.,
since L (N/), BM (I/) and the space of polynomials on N/ are closed under this product.

In the second definition we need, we identify locally absolutely continuous
measures with their density functions.

DEFINITION 2. $2 {1 is a locally finite Borel measure supported on +,
a+eYldfl(t)<oo, y<0, there exists a function fL(), such that f(x)=
limy_,O- 1/13^(x + iy), [xl =xo, where x0>0 and limz-,0.imz<o 1/fl^(z)=f^(O)}.

Unfortunately, it is in general very difficult to determine whether a given function
or measure belongs to $2; some results that are of use for our purposes are given in
Theorems 3 and 4 below. But it is important to realize that (see Theorems 1 and 2
below) this is the central question in the study of the integrability of resolvents of
equations with nonintegrable kernels via transformation methods.

Now we can state our first result.
THEOREM 1. Assume that

(2.1)

(2.2)

(2.3)

A(t) (ai(t)) is an n x n matrix function defined on n >- 1;

there exists a permutation r of {1, , n } such that ai L (+), k or(f), 1 j,

kNn;

there exist N distinct real numbers wa,.",wu such that ai(i)(t)=
e oig where bi S1, 1 k N, 1 j n

(2.4)

Then

(2.5)

R(t)= (ri(t)) is the solution of (1.3).

ri 6 La(+), l <-j, k <=n
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if and only if
(2..6) infy<o [det (I +A ^(x + iy))[ > 0, x ;

(2.7) lim infy_o_ ]det (I +A ^(wk + iy))] I-I+k ]bg(iy)l- >o, where Jk {ill -<_j <=n,
lim infy+o_ [bi(iy)[ +oo}, 1 _-<k -<_N;

(2.8) biS2, f6Y,biLl(+),jc;:Jk, l<=]<-n, l<-k<=N.
Observe that as a consequence of (2.3) the condition (2.7) is always satisfied if n 1

and is a consequence of (2.6) if the set J is empty, but in general (2.7) does not follow
from (2.6). We also remark that (2.6) could be replaced by the stronger condition
infamz<O Idet (I +a (z))] > 0.

Next we state the corresponding result for (1.4); for that purpose we need the
following:

DEFINITION 3. S* {BIB is a locally finite Borel measure supported on + such
that/3([0, t]) Y=o o,,a (t- s)

This set contains $1 and is closed under convolution too.
THEOREM 2. Assume that

(2.9) a (E) (aj (E)) is an n x n matrix of Borel measures supported on +, n >_- 1;

(2.10) there exists a permutation of {1,..., n} such that aik BM (+), k # o’(j),
l<-Lk<=n;

(2.11) there exist N distinct real numbers 001,’’" WN such that ai0.)([0, t])=
J’o,, e d/3. (s) e where i, S*I, 1 <- k <-_ N, 1 <-_ i <- n

(2.12) O(t) (q,(t)) is the solution of (1.4).

Then

(2.13) q. e LI(IR+), 1 _-</’, k =<n

if and only if

(2.14) infy<o Idet ((ix y)I + a ^(x + iy))] > 0, x e R;

(2.15) lim infy_,o-[det ((io& y)I + a ^(wk + iy))l FI,, I// (iY)1-1 > 0,
where J ={j[1 <_-j _-<n, lim inf_,o-[B(iy)[= +oo, 1 <- k <=N;

(2.16) jk S2, i Jk, jk BM (JR+), j &, 1 _-< j _-< n, 1 -<_ k -<_ N.

Clearly these two theorems are not of very much use unless one knows something
about the set $2, and now we proceed to explore this problem. We say that r is the
resolvent associated with the locally integrable function a if (1.3) holds with R and A
replaced by r and a. The function q is said to be the differential resolvent associated with
the locally finite measure a if (1.4) holds with O and I replaced by q and 1.

First we give some general (and quite obvious) results concerning the set $2. For the
proof, (which will be omitted), one should recall that the Fourier-Stieltjes transform of
a finite measure is locally equal to the Fourier transform of an integrable function; see
also [2, p. 29].

THEOaEM 3. The following assertions hold:

(2.17) If B BM (R+) and ^(0) # O, then fl S2.
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(2.18) If[l, /2 S2, then/l:g/2 S2

(2.19) If/31 e S2,/32 BM (R+) and limy_,o- (O)/(iy) -1, then 1 +2 S2.

Note that the improvement of the results in [21] that is achieved in [14] relies in an
essential way on the statement (2.19). The results in Theorem 3 can be combined with
the more concrete and useful criteria that are given in

THeOreM 4. The following assertions hold:

(2.20) Ifb(t)=b(t)+bz(t), t+, where ba Loc(+), b LI([R+) is nonnegative,
nonincreasing and convex on (0, oo), lim,_,oo bl(t) 0, b2 ACoc ((0, oo)) is
such that limt_,o bz(t) 0, b3, b4 e Lloc(R+), lim supt-,o ( b3(s) ds)
(o b(s) ds)-1 < 2-3/2 and lim sup,_,oo ( sb4(s) ds)(’o sb(s) ds)- < oo, where
b3(t) var (b2; It, oo)) and b4(t)= 5o var (b Is, oo)) ds, -, then b S2
and limy_,o- 1/b (iy) 0.

(2.21) If e S* and /3,,,(+)#0, then $2 (m is the number appearing in
Definition 3).

(2.22) If b(t)=bl(t)+(b2* /32)(t), teR+, where eY’bl(t)eLl(R+), y<0,
lim infy_,0- [b’(iy)l oo, the resolvent rl associated with ba belongs to LI(+),
b2 e BV(R+) satisfies lim,_,oo bz(t)= 0, var (b2) It, oo)) o [ra(s)l ds LI(+)
and flzBM (+), then bS2 and limy_,o- lib (iy) 0.

(2.23) If [3--1 + b2 * f12, where is a Borel measure supported on + such that

+ eytl d(t)l < oo, y < 0, lim infy_,o-I/3(iy) oo, the differential resolventqa
associated with belongs to La(+), b26 BV([R+) satisfies limt_,oo bz(t) O,
var(b2;[t, oo))lql(S)ldseLl(R+) and /32BM(+), then S2 and
limy_,o- 1//3^(iy)= 0.

Here AC stands for absolute continuity and BV for bounded variation. Observe
that Theorem 4 with the hypothesis (2.20) is essentially due to Shea and Wainger [21],
and that for real functions b the assumptions in (2.20) can be formulated as follows:
b(t) b(t)-bz(t), where bl and b2 are locally integrable, nonnegative, nonincreasing
and convex and b2 is sufficiently small compared to bl for large values of t. In particular,
this assumption includes the case b2 0 which is the key ingredient of the results in [21].
From (2.21) we see, for example, that if b(t)=b(t)+bz(t), where blLl(+), b2
BV(R+) and limt_,o bz(t) 0, then b e S2. Clearly the usefulness of the conditions
(2.22) and (2.23)is dependent on the existence of estimates for lrl(s)]ds or

o Iql(S) ds for large t. In the theorem below we collect some known results in this
direction.

TeOZM 5. Let b Loc(+), b LI(+) and letr be the resolventassociated with b.
Then the following assertions hold:

(2.24) If b is positive, nonincreasing and log(b) is convex on (0, oo), then
o lr(s)[ ds <_-(1 + Io b(s) ds)-1 +

(2.25) If b is nonnegative, nonincreasing, convex, lim,_,oo b(t) 0 and -b’ is convex
on (0, oo), then o ]r(s)[ ds O(t-1 to s -1 o (1 +o b(v) dr)-1 dlg ds) as t-+ oo.

(2.26) If b satisfies the assumptions of (2.20) and infm<oll+b^(z)[>O, then
--1[r(s)[ds-O(t-l os obl(u)du o(1+o bl(v) dv)-2 duds)ast-.

The assertion (2.24) follows from [3, (1.8)-(1.10)], and (2.25) and (2.26) are
established in [9].

A special case of (2.25) is established in [7].
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Finally we consider some examples that show what can happen if we drop the
assumption (2.2).

Example 1. Let all(t) a21(t) 1, a12(t) a22(t) 0, R/. Then it is easy to see
that rl(t) r2a(t) e -t, r12(t) r22(t) 0, [/, and note that (2.2) is not satisfied.

2-n2Example 2 Let al(t) Y,I 2-"2exp (-2-("4+1+(-1)")t), a2(t)=n=
exp (-2-"40, alz(t)= azz(t) 0, [+. Clearly all and a_ belong to $1 $2 and a2,

azzLl(+). It is straightforward to check that r11, r2, r22fiLl(+) but r2 LI(+),
although sUpImz<0 Ir21(z)l < o, because (1 + 2-(1+(-a)"))-lr2(-i2-"4) 2-1 as n oz.

Example 3. Let all(t) 1, a21(t) (t + 1)-1 sin (t), a12(t) a22(t) 0, R/, p 6

(0, 1). Clearly ala Sx (3S2, a12, a22Ll(R +) but a21 $1, a21 La(R+)US2 (see [21, p.
340] and the proof of Theorem 1 below), but it is easy to check that rll(t)=e -,
r12(t) r22(t) 0 and r2(t)= e-(t-)(ps-X(s + 1)-1 cos (s)-(s + 1)-2 sin (sO)) ds
LI(+).

3. Proofs of Theorems I nd 2. Assume that (2.6)-(2.8) hold. In order to prove
that (2.5) holds, it is by (1.3) sufficient to show that

(3.1) R ^(z) (det (I + A^(z)))-IA^(z) adj (I +A ^(z)), Im z < 0

is a matrix of Ll(+)^-functions (i.e., Fourier transforms of functions in LI(+)
extended as 0 on (-, 0)). From (2.2), (2.3) and (2.6) we see that the function on the
right hand side in (3.1) is well defined and continuous in Im z =< 0, except perhaps at the
points Wl,’ ’, WN on the real axis.

First we are going to show that R^(x) is a matrix of Ll(t)^-functions (i.e., Fourier
transforms of functions in LI(R)). From (2.3) we see that

N

(3.2) a..)(x)= b(x-w), XWk, l<=k<=N, l<--]<-n.
k=l

Moreover, there exists a number M (the maximum+l of the m’s appearing in
Definition 1 associated with the b.’s), such that

(3.3) (ix--iw)M(I+ix--iw)-Mb(X--W)LI(+), l<=k<=N, l<=]<=n.

In addition we observe that if f e LI(+), then

(ix iook )M 1 " ix iWk)-Mr (X) L (+)^, 1 <= k <- N(3.4)

and

(3.5) (k iw, [I (1 + ix io)t)Mn (1 + ix iw, L (+)
=1 k=l k=l

def
Let p0 be an Ll([+)^-function such that p 1- po is identically 0 in a neighborhood of
the points Wl, , w and identically 1 outside another neighborhood of these points,
(for example the transform of a suitable combination of Fejer kernels). Let/’, k, 1 <_-/’,
k -< n be arbitrary and fixed. By (3.1) we can write

N

p(x)r(x)=p(x) I-I ((ix-io,)(l+ix-ko,)-)(A (x)adj(I+A (x))).
m-’l

(3.6) 1 + 1-I (ix ioo, det (I +A (x))
m=l

N N -1

-I’I (l+ix-iw)M") I’I (l+ix-iw,.)-M") x e.
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It is a consequence of (2.2) and (3.2)-(3.5) that the right-hand side of (3.6) can be
rewritten as p(x) dl(X)(l+d(x))-a where da, d2La(+). Since (2.6) implies that
1 + d(x) is nonzero in a neighborhood of the set where p(x) dl(X) is nonzero, it follows
from (3.6) that (see, e.g., [20, pp. 61-63])

(3.7) p(x)ri(x) LI()
Let h, 1 <= h <- N, be arbitrary. We want to show that r. is equal to a function in

La() in a neighborhood of Wh. If we can do this, then it follows from (3.7) and an
appropriate choice of the function p that (3.9) holds. We have by (3.1)

(3.8) rjk(x) I-I (bjk(X-Wh))-l(A (x)adj(I+A (x))).
iJh

--1

h (bih(X O)h))-1 det (I+A (x))

We are going to use a localized version of the Wiener-Lvy theorem (see, e.g., [2, p.
29]), and we must make the following observations. By (2.3) and Definition 1, the
functions b ae, 1 --< d _-< n, 1 --<_ e _--< N are equal to some functions in L1 (N) on any closed
interval not containing 0. From (2.2), (2.3), (2.8) and Definition 2 we therefore
conclude that

l-I (bih(X--Oh))-l(A (x) adj (I+A (x)))

is equal to a function in LI() in a neighborhood of w. By the same reasoning we
deduce, if we take (2.7) into account, that

[-[ (bi(x-w))-a det (I+A (x))

is equal to an La(N)^-function in a neighborhood of (.Oh and this function is nonzero at
Wh. But then the desired conclusion follows from (3.8), and we have established

(3.9) r i2 (x) e Ll(e) ^.
If we can show that

(3.10) ri(z) is bounded and continuous in Im z-< 0,

then we can proceed in the same way as in [20, pp. 61-63] to prove that (3.9) and (3.10)
imply (2.5) (since j, k are arbitrary). But ri(z) is clearly (by (2.2), (2.3), (2.6) and (3.1))
bounded and continuous everywhere in Im z _<-0, except perhaps at the points Oh,

1 --< h =< N. Using (2.2), (2.3), (2.7), (2.8), (3.8) and Definition 2 we can argue in the same
manner as above to deduce the continuity and boundedness of r/(z) in Im z _<-0 at
z wh. This shows that (3.10) holds, and the first part of the proof of Theorem 1 is
completed.

Next we assume that (2.5) holds. Equation (3.1) can be rewritten as

(3.11) (I+A"(z))(I-R"(z))=(I-R^(z))(I+A"(z))=I, Imz <0.

Since R (z) is bounded in Im z -< 0 by (2.5), it follows from (3.11) that (2.6) holds.
Let h, 1 =< h _-< N, be arbitrary and define the set J by

//11 <_-n, lim supJ
z-0,Imz <0

and the n2n matrix D(z)=(di(z)) by dik(z)=gi+ai(z), l<-j, k<=n, d.(z)=
(_,), l<-j, (k-n)<=n. Choose any jSJh, divide the jth row in D(z) by b;h(Z--Ogh)
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(when z is sufficiently close to Wh) and perform row operations on D(z) so that the only
nonzero number in the r(j)th column lies on the jth row, and finally let z Wh, Im z < 0
so that ]bih(Z Oh)] O0. If we invoke (3.11) and the definition of the matrix D(z) and
recall the Gauss-Jordan method for finding the inverse of a matrix, we then conclude
that

(3.12) r,(i(OOh)=6r(i), l<-k<--n, jJh.

From (3.11) we obtain

(3.13)
k=l

Since b.k(z) is continuous in Im z <--0 except at 0, it follows from (2.2), (2.3), (3.2),
(3.12) and (3.13) that

lim ]b;h (Z)[-- oO, j J
z-->O,Imz <O

i.e., we have shown that J Jh. Moreover, since each b.k(x) is locally equal to a

function in LI([) ^, except near 0, we deduce from (2.2), (2.3), (3.2), (3.12) and (3.13)
that bih $2, Jh. To see this we have only to note that by (3.13)

(b;h (Z (-Oh))-1 (Scr(j)j ’o-(j)j(Z ))

1 (6i ri)(z))(80.)+ a(i)(z))
k=l,kCj

-1

(6(,)i r2(i)i(z))(6,(i + aL(i)(z)- b; (z gOh)))
Let E(z) be the (n -[Jhl) (n --]Jh[) matrix one gets from the matrix/+A^(z) by

deleting the jth row and cr (])th column, ] eJh, and let E2(z) be the matrix of the same size
that one gets by deleting the o-(])th row and jth column from I R ^(z), ] Jh. By (3.11)
we then have

(3.14) EI (Z )E2(Z I + ’3(z),

where E3(z) is a matrix of Ll(N+)^-functions (by (2.2) and (2.5)) and E3(O)h)--0 (by
(3.12)). The fact that Ez(z) is bounded shows by (3.14) that Idet (El(z))[ must be
bounded from below in a neighborhood of (.Oh in Im z -< 0 and if we recall the definition
of Ea (z) we see that (2.7) holds. Since JT, Jh we know that det (E(z)) is bounded in a

neighborhood of O)h in Imz--<0, and hence we can deduce from (3.14) that
det (E2((.Oh)) Y 0 or .El(Z) (I 3r- J3(Z))E2(Z)-1 close to Wh. From this fact we see that if
jJh, then bib(Z) is continuous at 0 in Im z--<_0, and bih(X is equal to a function in
L(N)^ at least in a neighborhood of 0, but also, as is easily seen (use (2.3) and Definition
1), on the whole real axis. But then we can conclude that b.h is in L(N+) (we use the
facts that it is bounded and continuous in Im z NO); cf. [20, pp. 61-63]. This implies,
since h was arbitrary, that we have completed the proof of Theorem 1.

Now we proceed to the proof of Theorem 2. Let B(t)= e-tL Then we see that
satisfies the equation

O(t)+ In O(t-s)A(s) ds B(t),
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where A(t)=I[o.t]B(t-s) da(s)-B(t), ten+. Since now I+A^(z)
(l+iz)-l(izI+a^(z)) we see that if (2.9)-(2.11)and (2.14)-(2.16) hold, then (2.1)-
(2.3) and (2.6)-(2.8) hold too, and we obtain (2.13) from (2.5) since

Q(t)=B(t)-Jo B(t-s)R(s) ds, teR+.

The converse can be established in essentially the same way as in the proof of
Theorem 1. It turns out to be sufficient to prove (2.6)-(2.8) with A as above and the only
difference is that instead of (3.11) we now have

(I +A^(z))O^(z)= O^(z)(I +A ^(z)) B ^(z),

but this fact will not cause any difficulties. This completes the proof of Theorem 2.

4. Proof of Theorem 4. Let the assumptions in (2.20) hold. Since we can conclude
from the results below that limy_,o-Ib^(iy)l c, we may by (2.19) add a nonnegative,
nonincreasing, convex and integrable function to bl and hence we can without loss of
generality assume that

o(4.1) Io b3(s) ds <= Cl bl(S) ds, R+, Cl < 2-3/2

and

(4.2) Io Sb4(s) ds <-C2 Io Sbl(s) ds,

Next we will show that (4.4) holds. From results in [21, p. 320] we have (using the
convexity of bl)

r/12xl

Ibl(x + iy)l >- 2-/: Io cos (xt) eytbl(t) dt

/12xl

(4.3) 2-1/2 fo (x sin (xt)-y cos (xt))eYtfo bl(S)ds dt,

y-<_0, x0.

Applying [21, (1.6)] we obtain after some integrations by parts

Ib:(x / iy)[ <-Ix1-1 Io e-iXtl et] yb2(t) + b’ (t)l dt

f
rr/]2x, d-<--21xl-

.,o
Isin (xt)l (eytb3(t)) dt- 2Ix[- I.xl - (eytb3(t)) dt

r/12xl rt
2 Jo (x sin (xt)- y cos (xt)) e’Jo b3(s) ds dt, y <= 0, x 0.

This inequality combined with (4.1) and (4.3) yields

(4.4) Ib’(z)l<-e123/2[b(z)l, Imz-<_0, z 0.

Since Re bl(z) >-0, Im z =<0, (see [21, p. 320]), we have from (4.4)

(4.5) II+b(z)+b(z)l>=(1-e23/2)max{1,1b(z)l}, Imz<=0;
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from the proof of [21, (1.5)] and (4.2) we obtain when we recall the definition of b4
(’=d/dx),

(4.6) Ibm(x)’]-<_40c2 Io tbx(t) dt, x # O.

If we use (4.5) and (4.6), then we can deduce in the same way as in [21 that the resolvent
associated with b is in La(+) and the desired assertion follows from Theorem 1, (2.8),
(with n 1). This completes the proof of the statement (2.20).

To establish (2.21) it suffices to observe that (iz)’(1 + iz)-’B^(z) is the Fourier-
Stieltjes transform of a finite Borel measure; since /3,,(+) # 0 it follows that this
transform is #0 when z 0, and then it follows easily that B $2.

Now let the assumptions in (2.22) hold. First we are going to shw that (4.8) and
(4.9) hold. Define g(t)= [r(s) Ms and b(t)=var (bz; It, )) and note that since
lim infyo-]b(iy)]= it follows that r(0) =o ra(s)ds 1. This fact combined with
Fubini’s theorem yields, for an arbitrary T > 0,

T

(4.7) Io lbz(t)- fo be(t-s)rl(s) ds dt

T T T

Io bD(t)g(t)dt+ Io Ir(s)l Is Ib2(t)-b2(t-s)l dt ds.

Since Ib2(t)-b2(t-s)l bD(t-s)-bD(t) we deduce with the aid of an integration by
parts that

T T T

Io lrl(s)lls Ibz(t)-b2(t-s)ldtdSIo g(t)bD(t)d,,

and this inequality combined with (4.7) and the assumption in (2.22) gives

(4.8) b2 b2 * rl L (R/).

Since we clearly have
T T

limSUPT_oo Io (b2(t) (b2 * rl)(t)) dt _--<limSUPT_oo fo bD(T- s)g(s) ds =0,

because b3 and g are nonincreasing and bD(t)g(t)6Li(O+), we see that

(4.9) Jo (b2(t)-(b2 * ra)(t)) dt O.

From the definition of rl we have b(z)(1- r(z))= r(z), so that

( ^(z))- (,(z) + b(z)t(z))-=(1-r(z))(r(z)+b(z)(1-r(z))(z))- Imz <0;

since/32 BM (+), (4.8) and (4.9) hold, ra gX(+) and r(0) 1, wesee that b 6 $2 and
that limy_.o- 1/b^(iy)=0. This completes the proof of (2.22).

Finally we let the assumptions in (2.23) hold. In the same manner as above we can
now show that

(4.10) b * ql e/_,([+) and (b2 * ql)(t) dt O.
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(In this case we use the fact that lim infy_,o-[fl(iy)[ oo implies that q(0)= Io ql(t) dt
0.) Now we have q(z)- (iz +/3(z))-, so that

([^(z))- (t(z) + b(z)t(z))-=q(z)(1-izq(z)+b(z)ql(Z)(z))-1, Imz <0,

and it is straightforward to check, using the facts that fl2eBM (R+), (4.10) holds,
qleLl(R+) and q(0)=0, that /eS2 and limy_.o-1/"(iy)=O. This completes the
proof of Theorem 4. [-]
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ASYMPTOTIC SOLUTIONS OF SOME NONLINEAR VOLTERRA
INTEGRAL EQUATIONS*

GUSTAF GRIPENBERGS"

Abstract. The asymptotic behavior of solutions of three nonlinear Volterra integral equations of the
form

u(t) + J0 A(t- s)g(u(s)) ds 0

is studied. These equations arise from certain diffusion problems, in dimensions 1, 2 or 3, with nonlinear
boundary conditions.

1. Introduction and statement of results. The purpose of this paper is to study the
asymptotic behavior of the solutions of the equations

IWu(t)+ An(t-s)g(u(s)) ds =0, t =[0, c), n 1, 2,3,(1.1)

where

(1.2) An(t)= 2zr-ZR -1 I0 e-tSs-l(Jn/2(Rs1/2)2+ Yn/2(Rs1/2)2)-1 ds,

t>0, n 1,2,3.

Here R > 0 and J and Y are the Bessel functions of the first and second kind. We note
that of course we can also write Al(t)= (’n’t) -1/2 and A3(t)= (zrt)-l/2-R- exp (R-Zt)
erfc (R -ltl/), > O.

These equations arise from the following diffusion problem. Let w(t,r) be the
solution of the heat equation (with a symmetry assumption if n 2 or 3),

wt(t,r)=wrr(t,r)+(n-1)r-lwr(t,r), r>R, t>0,

w(0, r)=0, r>R, limw(t,r)=0, t>0,

Wr(t,R)=g(w(t,R)), t>0.

If the solution of this equation is expressed in terms of g(w(t, R)) with the aid of an
appropriate Green’s function, then one obtains (1.1) with u(t)= w(t, R).

Equation (1.1) with n 1 and related equations (i.e., containing forcing terms)
have been studied in, e.g., [2], [4]-[6] and [8]-[11], mainly in connection with heat
conduction problems but also for other kinds of diffusion processes, (see, e.g., 10]). In
most of these papers it is assumed that g(0) 0, (thus, this paper does not have a direct
bearing on those results); then forcing terms are needed if one would like to have a
nontrivial solution. Here it is assumed (as in [10]) that u(t)=-O is not a solution of (1.1),
that is, g(0) 0; we want to know what value the solution approaches as o and,
more important, to find the rate of convergence. Observe also that our asymptotic
solutions are not derived from formal expansions but we give proofs for all our results.
Thus, for example, we obtain the asymptotic estimates (for large t) that were formally
derived in [10].

We also remark that the methods used in this paper are, except for certain details
concerning the asymptotic estimates, not restricted to the kernels An considered here,

* Received by the editors June 11, 1980, and in revised form November 3, 1980.

" Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.

595



596 GUSTAF GRIPENBERG

but can in fact be applied to a much larger class of problems. Hence (1.1) with n 1, 2 or
3 can be considered to be a model problem.

We state our results on the asymptotic behavior of the solutions of (1.1) in the
following

THZOREM. Assume that R > O, n 1, 2 or 3, and that

(1.3)

(1.4)

(1.5)

g is a continuous and nondecreasing function on (0, U0] where Uo > 0 and
g(Uo)= o;

if n 1 or 2, then g(x)=-Fo(Uo-x) +.O((Uo-x)) as x --> Uo-, Fo>O,
a >-_ l and fl > a

if n 3, then g(x)= g(Ug)-Fg(U-x)+O((U-x)) as x U-,
F=>O, fl> 1 and Un (O, Uo) satisfies Rg(U) + Ug =0.

Then there exists a unique, nonnegative and continuous solution u of (1.1) such that
[g(u(s))[ ds < c, u is nondecreasing and

(1.6)

(1.7)

(1.8)

u(t) Uo-(Uo/Po)l/(zrt)-l/(2) + O(t-v) for any 3’ (1/(2a),
min {l/a, (3-a + 1)/(2a)}) as toc/fn 1;

u(t) Uo-(2Uo)I/(FoR In (t))-/ + O((ln (t))-v) for any 3’ (3/(2a),
min {2/a, (3-a + 1)/a}) as tc tfn 2;

u(t) UR URR (1 + FnR)-(rt)-/2 + O(t-v), min {/3/2, 3/2} as
/fn =3.

Note that if g were defined on (-c, 0) and positive there, then there could exist
other, negative, solutions of (1.1).

If a 1, then the results in (1.6) and (1.7) can be slightly improved by applying an
argument similar to the one used in the proof of (1.8).

Observe also that if g is continuous and nondecreasing on [U0, 0), Uo<0,
g(Uo) 0, then one can replace u by -u and g by g*(x) -g(-x) in (1.1) and apply the
theorem.

Finally we remark that we do not assume that g is continuous at 0; see, e.g., [10]
where a model for gas absorption in a liquid is considered in which g(x) x -x-v, y > O.

2. Proof of the theorem. First we establish the existence of a solution of (1.1) with
the desired qualitative properties, and then we proceed to the quantitative parts of the
assertion. This existence result is a very small variation on known theorems; in order to
treat all three cases at the same time we state it as a lemma.

LEMMA. Assume that a Loc(R+) is positive, nonincreasing and In (a is convex on
(0, c) and that (1.3) holds. Then there exists a unique, continuous solution u of.

[]+(2.1) u(t)+ a(t-s)g(u(s)) ds=O, t

+such that u(t)[0, Uo], u is nondecreasing and g(u(t))Loc(g ). If go is another
function satisfying (1.3) and go(x) >= g(x) on (0, Uo], then the corresponding solution Uo of
(2.1) satisfies Uo(t) <-_ u(t), /.

Proof. We let g(x) O, x > Uo, and if limx_,o/ g(x) is finite, then we let g(x) be that
finite value when x (-, 0)), (otherwise g is left undefined on (-c, 0)). We define the
functions j and g,h >0, by ](x)+hg(f(x))=x and g(x)=g(f(x)), x(-o, c),
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(gx is the Yosida approximation of g). We let bx be the solution of the equation

(2.2) b(t)+A-1 fo a(t-s)ba(s)ds=A-la(t)’ tR+"

It follows from the assumptions on a that bx is nonnegative and bx (t) dt <= 1; see, e.g.,
[7, Chap. IV]. Since ]x is Lipschitz continuous, there certainly exists a solution of the
equation

(2.3) ux (t) | bx (t- s)fx (ux (s)) ds, +
Jo

for every A > 0. Since, moreover, fx (x)_-> 0 if x -> 0 and ] is nondecreasing, a standard
argument (using the nonnegativity of bx) shows that ux is continuous, nonnegative and
nondecreasing. Since also/’ (x) _-< Uo if x -< U0, we get u (t) -< U0 (as b (t) dt <= 1). If
we apply (2.2), then we can rewrite (2.3) as

(2.4) ux (t) + Io a (t s)gx (ux (s)) ds O, +,

and if we invoke the results in [1, Thm. 2], then we conclude that the functions ux
converge uniformly on compact subsets of N+ as 0 to a function u, (that must then
also be nonnegative, nondecreasing and bounded by Uo). That this limit function is a
solution of (2.1) such that g(u(t))eLloc(N+) is clear once we observe that we have, by
(1.3) and (2.4), sup(o,1) o Iga (ux (s))lds <, +. The uniqueness of this solution is
established in the same way as in [1].

If the function/’o,x is defined by fo,x(x)+Ago(fo,x(x))= x, then we clearly have
/’o, (x)-<_/’x (x), and hence a standard comparison argument (see [7, II 6]) applied to
(2.3) shows that Uo.x (t) <= u(t), -, (Uo,x is the solution of (2.3) when/’x is replaced by
/’0,). Since this is true for arbitrary A >0, it follows that Uo(t)<=u(t), tN+. This
completes the proof of the lemma. 71

The fact that the kernels An satisfy the hypothesis of the lemma is shown in [7,
IV7].
Now we proceed to prove that (1.6) and (1.7) hold (the proof of (1.8) involves

some slightly different ideas). It follows from the last statement in the lemma that we
may without loss of generality assume the existence of a positive number c such that

(2.5) the function x-cg(x) is a nondecreasing function of x on [U0-e, U0] for
some e > 0.

(At this point it is essential to assume that a _-> 1.) Let the functions B and B2 be the
solutions of

(2.6) Bn(t)+c-a Io An(t-s)B"(s)ds=c-aAn(t)’ t+, n=l, 2.

It is straightforward to check, using the inversion formula for the Stieltjes transform
(note that A(z)= z-/2 and A(z)= zl/2Ko(RZl/2)/Kl(RZ 1/2) are the Laplace trans-
forms of A and A2 where Ko andK are modified Bessel functions of the second kind),
that

(2.7) B(t)=(cTr)-a Io e-tSs1/2(s+c-2)-I ds, t>0
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and

(2.8)
Bz(t) 2(cR )-I -2 J0 -ts (Rs q- c-1Jo(RS7r e ((s1/ZJ1 1/2) 1/2))2

+(s 1/2 YI(Rsl/2)+ c -1Yo(Rsl/2))2)-1 ds, t>0.

(For similar results and calculations, see, e.g., [3].) What we really need to know about
these two functions is the following"

(2.9)

(2.10)

and

(2.11)

Bn(t)=>0, t>0, fo B,(s) ds=l, n=1,2,

Bl(t) C2-1 -1/2t-3/2 (t-5/2)7r +O as too

B2(t)=2cR-lt-l(ln (t))-2+O(t-l(ln (t))-3) as too.

These assertions can be derived from (2.7), (2.8), the properties of the Bessel functions
and the fact that BA(o)=(c(AA(o))-I+ 1)-1= 1

Using (2.6) we can rewrite (1.1) as

v(t)= Uo(1-Io B,(s) ds) + Io Bn(t- s)(v(s) + cg(Uo- v(s))) ds,

(2.12)
t+, n=1,2,

where

(2.13) v(t) Uo- u(t), +.
Since o An(s) ds when n 1 or 2 and u is nondecreasing, it follows from (1.1),
(1.3) and (1.4) that lim/_. u(t)= Uo in these cases, and therefore we can by (2.13)
choose to so large that

(2.14) 0 <= v(t) < e if => to.

Let now n 1 and define the function Vo by

(2.15) Iv(t)iDo(t ( Uo
1-o

-o
6 [0, to],

-t-V-hi(t), t>to,

where T ((2a)-1, min{ce -1, (/3-a+ 1)/(2a)}) is arbitrary and hi is a nonnegative,
piecewise continuous function that will be specified later. Suppose that we are able to
show that when n 1

(2.16)
vl(t) Uo 1- B.(s) ds + B,(t-s)(vo(s)+cg(Uo-vo(s))) ds

>-_ Vo(t), +.

Then it would follow from (2.5), (2.9), (2.12)-(2.15) and a standard comparison
argument. (see [7, II 6]), that v(t)>= Vo(t), +.
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In order to establish (2.16) with n 1 we need the following observations. If
hi(t)>-O, then it follows from (1.3) and (1.4) that

g go- (7rt)-l/(2)+ -v + hl(t

(2.17) >- Uo(zrt)-1/2 + Ulo-1/ F)/’lr(a-)/(z)t(1-)/(2)-v

+ O(t-/(2) + -a/2+l/-zv) as t-

Using Laplace transforms one verifies without difficulty that

(2.18) 1-Io Ba(s) ds=c lo Bl(t--s)(Trs)-1/2 ds,

From (2.9), (2.10) and some mechanical calculations one obtains
t/2

ft Bl(t-s)s-ds=t--t-It Bl(S) ds+ f ((t-s)--t-)Bl(s)ds
--to "tO

t-t

(2.19) + ((t- s)- t-)Ba(s) ds
at

=t-+O(t--a/2) as toe, 6(0,1),

since (t-s)--t- <-62t--as if s[O,t/2]. If we combine (2.17)-(2.19) with the
definition of v a, then we see that

(Trt)-1/(2)- -v- Bl(t- s)ha(s) ds

(2.20) + c Uo(-2oo ) -X/ayr(1-a)/(2a) t(1-a)/(2a)-
q- O(t-t3/(2) + -a/(2)-1/2) as

Next we are going to choose the function hi. Let the function k be defined by

0 if [0, to) or (tl, t2),

(2.21) kl(t)- ca if [to,

-C2Bl(t-to) if ->rE,

where tl, t2 and c1 are certain positive constants and c2 Cl(tl to)(1 -to Bl(S) ds)-1.
Let hi be the solution of the equation

R+.(2.22) ha(t)- Bl(t-s)ha(s) ds kl(t)

Clearly ha is nonnegative when [to, t2). If => t2, then we have, by (2.6), (2.21), (2.22)
and the definition of c2,

hi(t)= ka(t)+c -a fo Al(t-s)ka(s) ds

(2.23) --c--lcl (Al(t-s)-Al(t-to)) ds

+c-ac2 (Al(t-s)-Aa(t-to))B(s-to) ds, t>=t2,
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so that hi(t) >-0 and h(t) O(t-3/2) as . By choosing Cl, tl and t2 sufficiently large
(observe that B(t) (1 - Bl(S) ds)- O(t-) as ), we see from (2.20)-(2.22) that
(2.16) holds. As we already noted above, this implies that v(t)>=Vo(t), R+’, since
h(t)- O(t-3/2) as X3, this implies that

(2.24) v(t)>=(-o)I/(Trt)-a/E)+O(t-v) as tc.

By almost exactly the same argument as the one used in deriving (2.24) one
deduces that

(Trt)-/(2 + O(t-) as c,

and if this result is combined with (2.24), then one obtains (1.6).
Now we proceed to consider the case n 2. The idea of the proof is the same as in

the case n 1. We define the function C by

(2.25) C(t) 2R-aTr-2 fo e-tSs-(J(Rsl/2)2 + Y(Rs/2)2)-a ds, > O.

The reason for introducing this function is that

fot fot(2.26) 1 Bg(S) ds c B2(t- s)C(s)

To see this, use the fact that ca(z)= z-1/2KI(Rz/Z)/Ko(Rz 1/2) to derive (2.26) and
then the inversion formula for the Stieltjes transform to derive (2.25). What we really
need to know about the function C is that

(2.27) C(t)= 2R-a(ln (t))- + O((ln (t))-2) as t,

a fact that is seen to be a consequence of (2.25). Now we define the function v0 by

(2.28) Vo(/) I/C(t)/-(ln (t))-V-h2(t) if t> to,

-1where y(3/(2a),min{2c (/3-c+1)/c}) is arbitrary and h2 is a nonnegative
function that will be specified later. Instead of (2.17) we have in this case

C(t)/ + (ln (t))-" + h.(t)

(2.29) _-> UoC(t) + U-/F/C(t)-/(ln (t))-" + O((ln (t))-/

+(In (t))-+2/-) as t.

Using (2.9), (2.11), (2.25) and (2.27) we deduce after some straightforward calculations
(cf. (2.29) and assume that to > 1) that

(2.30) ft B2(t- s)(ln (s))- ds (In (t))- + O((ln (t))--a) as c, 6 > 0

and

(2.31) It B2(t-s)C(s)a/ds=C(t)/+O((ln(t))-I/-) ast.
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If we now combine the definition of Vl, (take n 2 in (2.16)), with (2.28)-(2.31), then
we clearly obtain

Vl(t)>.(--O)
1/a

ftC(t)1/-(ln (t))-- BE(t--S)hE(S) ds

(2.32) +c ro/(ln (t))

+ O((ln (t))

We choose the function hE in the same way as hi; the only difference is that in
(2.21)-(2.23) A1 and B1 are replaced by A. and BE respectively, and since BE(t)
(1 - BE(s) ds)- O(t-l(ln (t))-1) as -oo we can pick the constants cl, tl and tE to be
such that (2.16) holds. Thus we are able (by the same argument as in the case n 1), to
conclude that v(t) >-_ Vo(t), e N+, and since by (2.23) hE(t) O(t-1) as oo (note that
A.(t) O(t-1) by (1.2)), we obtain from (2.27) and (2.28) that

(2.33) v(t)>-(2Uo)l-(roR In (t))-1/ +O((ln (t))-’) as t.

By a similar argument we get

v(t)<=(2Uo)l/(FoR In (t))-/ +O((ln (t))-v) as t,

and this result together with (2.33) gives (1.7).
Finally we consider the ease n=3. Since A(2;)=z -1/2 and A3A(z)

(z 1/2 + R-)-, we see that

A3(t)+R-a Io A3(t-s)Al(s) ds=Al(t), t+,

and therefore (1.1) with n 3 can be rewritten as

u(t)+ A(t-s)gl(u(s))ds=O, t

where gl(x) R-Ix + g(x). If we apply the first part of the theorem, then we conclude
that

(2.34) u(t)=U-UR(l+rR)-l(rt)-l/+O(t-’), y(1/2, min{1,/2}) ast-oo.

It remains for us to show that we can actually take y min {3/2, /2}. To do this we
take c -R(1 +FR)- in (2.6), and we get (2.12) and (2.13) with Uo replaced by U
and g by gl. (Now (2.5) need not hold but that is not a problem.) If we use the definition
of gl, (1.5), (2.9), (2.10), (2.12), (2.13) and (2.34) then we see after some mechanical
calculations that (1.9) holds. (We use the fact that if fi Lloc(+) satisfy fi(t) O(t-’) as
tc, =1, 2, 0< 6 <-62, 62>1, then ’ofl(t-s)f2(s)ds=O(t-1) as t.) This
completes the proof of the theorem. !-1
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COMPARISON AND STABILITY THEOREMS FOR
REACTION-DIFFUSION SYSTEMS*

ROBERT A. GARDNERS"

Abstract. This paper extends a comparison technique of Conway and Smoller [Comm. Part. Diff. Eqns.,
2 (1977) pp. 679-697] for systems of n reaction-diffusion equations. By altering the definition of the
comparison system we obtain 2 (rather than two) spatially homogeneous comparison vectors. The existence
of additional comparison vectors is useful in obtaining a more precise description of the asymptotic behavior
of solutions. In particular, we study a few examples in which the above extension enables us to give a
description of (1), the domains of attraction of rest points of a system arising in mathematical ecology, and (2),
a threshold effect for a system arising in chemical reactor theory.

The second part of this paper relates the (diffusion-independent) domains of attraction (R) of constant
rest states (P) which are obtained via the above comparison technique, to the diffusion-dependent stability
results obtainable by energy estimates, for the Neumann problem on a bounded domain. In particular,
suppose that A is the measure of the set of values of x for which the initial data lie outside R, and that d is the
minimum diffusion rate; if the space average of the initial data lies in R, and if (roughly) Ad-4 < K, where K is
a positive constant, then the solution of the reaction-diffusion system must tend uniformly to P as
approaches infinity. Applications to mathematical ecology and mathematical neurophysiology are discussed.

1. Introduction. In this paper we extend a comparison technique for systems of
reaction-diffusion equations which was introduced by Conway and Smoller in [6]. This
technique consists of finding a maximal and minimal comparison system, the solutions
of which provide spatially homogeneous lower and upper bonds, V+/-(t), for the
solution U(x, t) of the original reaction-diffusion system; that is,

V-(t) <- U(x, t) <= V/(t).
(We say that A-<_B where A and B are two vectors, if the inequality holds
componentwise.) By introducing a simple mo/:lification in the definition of the
comparison system, we obtain a comparison vector V(t), the components of which
satisfy either vi(t)>= ui(x, t) or v(t)<= ui(x, t) depending on the value of i; ui and vg are
the components of U and V, respectively. In this manner, we obtain 2 distinct
comparison vectors; when the same inequality holds in each component, 1 <-i =< n, we
recover the vectors V+/-(t) obtained by Conway and Smoller. The existence of additional
comparison vectors allows us, in certain cases, to obtain more detailed information
about the asymptotic behavior of solutions than would otherwise be possible with only
the two vectors, V+/-(t). Applications to mathematical ecology and to chemical reactor
theory are discussed.

The above comparison theorem is useful in studying the stability of equilibria and
their domains of attraction. Through the application of this theorem, it is sometimes
possible to find a (rectangular) region R in the phase plane containing a constant
equilibrium P with the property that if the initial data have values in R, then the solution
U(x, t) must tend uniformly to P as approaches infinity. Such results are independent
of the diffusion rates, and, for tlie Neumann problem on a bounded domain, of the
volume of the domain in x-space. In a different paper, [5], Conway, Hoff, and Smoller
showed for the Neumann problem, by choosing the diffusion rates sufficiently large,
(while keeping other parameters fixed), that the solution U(x, t) tends uniformly to its
space average, O(t)= II)l-lla U(x, t) dx; here, Ifll is the volume of f. Moreover, with

* Received by the editors December 4, 1979, and in revised form September 16, 1980. This work was
supported by a grant from the Science Research Council of Great Britain.

" Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003.
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notation as above, their results imply that if ][V(x)U( , 0)]]Loo is small, then U(x, t) tends
uniformly to p provided that U(0)e R and that diffusion is sufficiently strong. In this
paper, we show that the restriction on the gradient of the initial data can be replaced
with a much weaker condition. This condition provides a continuous transition between
the uniform, diffusion-independent stability of p with respect to R, (obtained by
maximum principle techniques) and the diffusion-dependent stability obtained by
energy estimates. More precisely, let d be the minimum diffusion rate and let h be the
measure of the set of values of x for which U(0, x) has values outside of a slightly
smaller rectangle, R, where P RR. We find a continuous function p(h, d) => 0 such
that if (roughly) U eR and if O(A, d)< K, where K is a positive constant independent
of d and A, then U(x, t) approaches P as t- o. The function p has the property that
O (0, d) p (A, m) 0, and is roughly of the form Ad-. We give applications to systems
arising in mathematical ecology and mathematical neurophysiology.

Related results have been obtained for the Cauchy problem for a single equation
by Aronson and Weinberger [2] and by Chafee [3]. Gardner [11], has proved a related
result for the Dirichlet problem on a bounded domain.

The plan for the remainder of the paper is as follows. In 2 we prove the
comparison theorem, and we apply it in 3 to a few examples; 4 contains the stability
theorem, and finally, 5 gives a few more applications.

2. The comparison theorem. We shall consider systems of the form

(1) Ut=LU+F(U,x,t), (x, t) e [I x N/,

where D Rm, U= (ul, , u.), LU (Lxu, ", L.u.), with

and

k (x, t)Ux,x, + .,b (x, t)Ux,LkU Y a ii
i,j

F(U, x, t)= ffl(U, x, t),’’’, f(U, x, t)).

We shall assume that the coefficients of L are bounded and continuous, and that each Lk
is uniformly elliptic. The components of F are assumed to be at least bounded and
continuous, with bounded continuous derivatives, on E lq R+. The set l’l is either ,n
or a bounded domain in with Ck boundary, where k- 2[m/4]+ 2. If lq-m we
prescribe continuous Cauchy data

(2a) U(x, O)= U(x),
and if 1 is a bounded domain we suppose in addition to (2a) that

(2b) OU/On n. V(x)U O, (x, t) c3f x I+,

where n is the outward unit normal to 012.
We shall assume that the interactive term F possesses a bounded invariant set ,E of

the form

fi [ai, bi],
i=1

where ai < bi, that is if U(x) Z for all x s fl, then U(x, t) s Z for all x s 12 and >= 0 for
which U(x, t) is defined. This will be the case if

(3) F(U, x, t). u(U) =< 0
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for all U 0E, where v(U) is an outward pointing normal to 0E. Under these hypotheses
it follows that there exists a unique, smooth solution of (1), (2) with values in E, defined
for all >_-0; (cf. [9, Chapt. 5]).

All function space norms are taken with respect to II. To simplify notation, we
shall, for example, denote [[. I1=( simply by

We shall now define our comparison system. Suppose that
{1, 2,..., n} and that , f-IM . Put

(4) f (U) sup (fi(l, ", :i-1, Ui, i+1," ", n, X, t)" x e f, -> O, a. -< :i -< u.

if j, f : i, and uj<= j<-bi if i Ym, j i},

(5) f7 (U)=inf {fi(i, i-l, Ui, i+l, n,x, t)’ x 6II, t>-O, ai <=i <=ui

if/" e M, j i, and uj <- <- b if j ,,, j i}.

Now let H(V)=(hl(V),...,h,,(V)), where hi(V)=f[(V) if iM and hi(V)
f- (V) if ,,. Our comparison vector V(x, t) is defined to be the solution of

(6) Vt=LV+H(V), V(x, o) v? (x), v . (x)),
where v ,9 (x) _-< u ? (x) if R,,, and v,. (x) _-> u o (x) if e t. For example, let v ? be the
supremum or infimum of u o (x); in this case LV 0 so that V satisfies an autonomous
ordinary differential equation (o.d.e.).

THEOREM 1. Let U(x, t) be the solution of (1), (2) with values in , and let V(x, t) be
the solution of (6) (resp. (6), (2b)) if 1 is all of N (resp. a bounded domain). Then

Ui(X, t) Ui(X, t) if s RM,

Vi(X, t) <= bli(X, t) if e t,,

for all x I) and >-_ O.
The proof follows, with minor modifications, from that of [6, Thm. 1]. Indeed, set

W (wx," ", w.) and G (gl,. ’, g.), where

(ui vi, fi(u, x, t) hi(V))
(Wi, gi)

(Vi Ui, hi(V) -fi(U, x, t))

We then have that

(7) Wt=LW+G(W,x,t) W(x,O)<-O,

and that { W-< 0} is invariant under the flow of (7).

3. Examples.
A. Mathematical ecology. Let u and v be the population densities of two

competing species. We assume that u and v will satisfy a system of the form

U dlAuM(u, v),
(8)

Vt d2Av + vN(u, v),

together with (2); M andN are the local per-capita growth rates of u and v respectively,
where M and N have the qualitative properties shown in Fig. 1 (see [7]); in particular,
My < 0 and M, < 0. The comparison theorem does not yield any useful information if
M ; if, (cf. [7]), it can be seen that lim sup u (x, t) <- b and lim sup v (x, t) -<

d. If u={1} then H=(f-(,f)=(uM, vN). Suppose that the data (inf u(x, 0),
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FIG.

sup v(x, 0)) of the comparison system lie beneath the separatrices connecting (a, 0), P,
W, and for the flow indicated in Fig. 1; that is, the data of (8) have values in the
rectangle R indicated in Fig. 1. It follows that liminfu(x,t)>=b and that
lim sup v(x, t) 0. Thus the rest point (b, 0) is stable with respect to any data which lie in
R; similar remarks apply to the rest point (0, d).

B. Establishment of a chemical process. Gel’fand, in [12, 16], has considered the
following system:

at DAa lag + 2kah, a (0, x) ao(x ),

(9) gt e 1Ag lag, g(O, x) go(x),

ht=e2Ah+lag-kah, h(O,x)=O,

where l, k, and D are positive constants, ei => 0, 1, 2, and fl R". Our remarks also
apply to the case where fl is a bounded domain. In this case, the boundary conditions
(2b) are now prescribed for the variables which diffuse; that is, if e e2 0, then (2b) is
only appropriate for the variable a. Here, a is the concentration of atomic hydrogen, g
is the concentration of oxygen, and h is the concentration of an autocatalyst. Over a
certain range of temperatures, g and h diffuse more slowly than does a, so that it is of
interest to study (9) when e e2 0. The catalyst is produced as a product of the
combustion of oxygen with atomic hydrogen, and it in turn induces a reaction which
liberates more atomic hydrogen.

The following threshold effect can be observed. If ao(x) is sufficiently small, the
reaction damps out; that is, a(x, o)=0 whereas g(x, )> g0>0 for all x fl. The
reaction creates a burned out "crater" in the oxygen. For larger ao(x), the reaction is
induced throughout fl; in this case the oxygen burns out completely, so that g(x, o) =_ O.

Let the nonlinear terms in (9) be f, f2, and f3. We shall consider the comparison
system with nonlinear terms f-, f, and f-, defined with respect to the invariant set
for (9) found in [4], namely,

E {(a, g, h):a>-_O,O<-g<-_B,O<-h<-C},
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where C > lB/k. A simple computation shows that

f- (a, g, h) lag + 2kah,

f (a, g, h)= -lag,

lab kahf- (a, g, h)
0

if IB kh > O,
if lb kh <-0,

so that even though ,E is not bounded, it is still possible to define a comparison system in
the case t {1, 3}, , {2}. Let (a+, g_, h+) be the solution of

+a + fl (a+, g_, h+), a/(0) a0 sup ao(x),

(10) g’_ f (a+, g_, h+), g_(O) go= inf go(x),

h+ f- (a+, g_, h+), h+(O) O.

Since Y.. is not bounded (in a), it is not immediately clear that global solutions exist to
either (9) or (10). However, g and h, (resp. g_ and h/) are bounded for all x and =< T for
which the solution of (9), (resp. (10)), exists, so that, for example, a satisfies a linear
equation of the form

at DAa + b (x, t)a,

where b is bounded on fl [0, T]. This in turn implies that a is bounded on f [0, T],
where the bound may grow exponentially with T; thus solutions exist for all -> 0. (For
brevity, we shall not include the details of the above argument.) In the case ei >0,

1, 2, our comparison theorem may be applied on lq[0, T], where T>0 is
arbitrary; the comparison will therefore be valid on fix +. If el-" ez--0, then the
solution of (9) on I) [0, T] may be recovered as the limit of solutions of (9) with ei > O,

1, 2, as e 1, e2 approach zero. (The continuous dependence of the solution on the ei’s
is proven in [17, Thm. 2.5].)

We shall now give a condition on ao and go which implies that limt_,oo a+(t) 0 and
that limt_, g_(t)> gl >0, so that the reaction in this case is inhibited. Let F(u)-
go(e -tu- 1)+ lkBu2; the graph of F is indicated in Fig. 2. F has a negative minimum
at a value of u u, (a simple computation shows that u,> go/(2kB + lgo)). We will
show that damping occurs if a0 <-F(u,). The technique is in part borrowed from
Gel’fand 11].

FIG. 2
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-lu
The second equation in (10) can be explicitly integrated to obtain g_ go e

where u(t)= a/(s)ds. The third equation in (10) can also be integrated, to obtain

h+(t) fo h’+ (s) ds <-_ Io la+(s)B ds lBu,

which, when substituted into the first equation in (10), yields

u ’’<- Igou’ e -lu + 2klBuu’ (go e -l" + klBu2)’,

so that

(11) u’ <-ao+F(u), u(O) =0.

From our choice of ao we see that there exists a unique u l, 0< u < U: such that
ao + F(u 0 if u <> ui. The differential inequality (11) implies that u (t) _-< u for all _-> 0,
so that limt_, a/(t) 0 and limt_,oo g_(t) >’- go e -1"1.

4. Domains of attraction. We shall now study the domains of attraction of a
constant equilibrium solution P of (1), (2), where f is a bounded domain and
homogeneous Neumann boundary conditions (NBC’s) are prescribed. In order to
simplify the discussion, we shall assume that Lk dk A, where dk is a positive constant,
and that F depends only on U, although our arguments easily extend to the case where
--Lk is a self-adjoint uniformly elliptic operator with coefficients depending only on x,
and whose smallest eigenvalue is zero. Suppose that there exists a rectangle R

__
5; of the

form R lq’=[c, d] such that if U(x)R for all x I), then limt_,o U(x, t)=P. (It
should be noted that R need not be an invariant set itself; e.g., in Fig. 1, R and P (b, 0)
meet the above requirements. However, if we choose the initial data equal to the upper
left hand vertex of R, we see that the solution leaves R for a brief period.) There are
many examples of systems which admit such rest points. Examples arising in mathema-
tical ecology and neurophysiology are presented in 5.

THEOREM 2. Suppose that U(x) ]:or all x fl and that ifo is the space average
of U, then o is in the interior ofR where R and P are as above. Let e dist( OR)
and let

(12) p(t$,d)=L(exp(-Ald 1-1/k tS/k)+d(-k+)/2t-i/2)t
+ K(t/21Cd-/21c + /d-/’);

here, L (cf. (14)) depends only on 12 and m; K depends only on the supremum of
over , m, f, and Of, Ai is the smallest positive eigenvalue of-A on 12 with NBC’s,
k=2[m/4]+2, and d=min (d). Suppose that IIU- t?lk==, where and d are
chosen such that

(13) O(, d) <=min (e/2, 1/2).

Then lim_,l U(x, t)-P] O, uniformly for x
Remark. The expression O in 13 is O(d-I/g81/2k) as approaches zero and as d

approaches infinity, so that (13) is satisfied by the set of (d, ) which lie beneath some
hyperbola d-2 constant. It is important to note that there is no restriction on Vu so
that it is possible to choose very rough initial data.

Proof. The main idea is to show that diffusion smooths out rough peaks in the data
before the nonlinear effects become significant, so that by the time the nonlinearity
becomes the dominant term, the solution has values uniformly in R.
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To simplify notation we shall omit subscripts; for example, ui will be denoted by u.
The variable u satisfies a scalar equation of the form

ut dAu + g(x, t), u(O, x) u(x), NBC’s,

where g(x, t)= f(U(x, t)). We now let a and b be the solutions of

at dAa, a(x, O)= u(x), NBC’s,

bt dab + g(x, t), b(x, 0)--0, NBC’s.

Let 0-Ao<A--<_Aa... be the eigenvalues of -A on I-I with NBC’s, and let
Oo, O," be a corresponding set of orthonormal eigenfunctions (with one exception:
we let &o IIll-). We may express a as

a (x, t) Y e-aXktUkCk,
k>--O

where Uk (&k, uO)L2. Thus t7= Uo, and

)2] -2dAkTbllidAa(T)ll- E (dA e
k=>l

_< (sup/2 e-2lT)llU-- all=
l=>0

so that if a(t) I1- L a(x, t) dx, then a(t) =- t7, and

/q)22A; (a ti)(T)ll= <-- (dT)Zi
where y(/’)> 0 is a positive constant. We also have that

I[(a a)(T)[[--< a e-:ldT

so that if Ilvll- [Ivll= / IIA;vll we have that

r0.) h
1/:

l[(a a)(T)ll --< (e -zx’ar + (dT)Zq

Now A is an elliptic operator of order 2], so by the estimates of Agmon, Douglis, and
Nirenberg [1, Thm. 15.2], there exists a constant M depending only on 12 (where f is
of class 2]) and m, such that

Ilvllu=,<)-<-M(llvll/ll;vll=)/=- Mllv
By the Sobolev embedding theorem, there exists a constant J > 0, depending only on 12
and m, such that

provided that j > m/4. Thus if j [m/4]+ 1, we have that

(14) I[(a a)(T)llL <-- L(e -axlT + (dT)-j)6,

where L MJ max (1, 3’(/’)).
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We now show that

(15) Ib(x, T)I <--K[(T/d)/ + T]

as T approaches zero; here K>0 depends only on f,l), and m. Let F(x, t)=
(47r dt)/ exp (-[x[/4td). Then from [10, chapt. 5, (3.5), (3.6), and (3.8)] we have that

(16) b(x, t)-| | F(x-, t-s)&(, s)dds+ | [F(x-s, t-s)g(, s)d ds.
o o

The density & is defined on 0II x / and is the solution of

f r(x6(x, t) 2 . . sc, t-s)& (, s) d ds + 2G(x, t)
f Ortx.1o

where

G(X, t)-- Iot f 0F(X
JaOnx ’ t- s)g(, s) d ds, x Of

and where nx is the inward unit normal to 013. at x. If gl sup {Ifi(g)l" g }, we have
that

--< K17rm/2d-1/2fdo Into S-1/2[ r/]e --[’r112 dn

1/2

2

when K2 depends only on KI and m, and where rl (x- )/2(sd)1/2. We claim that &
satisfies a similar inequality. Suppose that 0D, is at least C2, so that there exists a
constant K3 depending only on f such that

Inx (x s)l < Ks[x el2
for all x, : 0. Let

(t) sup {[& (x, s)l" x II, 0 -<_ s _<- t};

(by [10, Chapt. 5, Thm. 2], & is bounded and continuous). Then, if Gt.
(x 01").) / (4 dt) I/z, we have that

1,/, (x, t)l--< *(t)K3 Ix l(2sd)-F(x , s) dr( ds + 2[G(x, t)[

fotfG [2-’nl2(4"rrsd)-lIe ()
1/2

--< (t)K3 1,7 e do’(n)ds + 2K).

where &r(e and do’(n are surface measure on 012 and Gt, respectively. It is easily seen
that there exists a constant K4 > 0 depending only on m and 012 such that

for all s > 0 and for all x e 0D.. For example, if we fix x, we may select a system of local
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coordinates for 0f such that x is contained in exactly one coordinate patch Po. If the
remaining patches are P1, , Pr, and if Pi, is the image of Pi under the transformation
:- r/, we have that

I, 12 I KIn ir [2 e-I,l= dr/1 dr/,_, i= 0,
lim Ir/ e-1"12do’(n)
s0

" 0, i>0,

where K depends only on 012. We therefore have that

]b (x, t)l--< (t)Ks()
1/2 1/2

where K5 depends only on m and II. Since the right-hand side of this inequality is
increasing in t, we have that

(t) -<_ (t)K5 + 2K

Now suppose that

(this will be the case if <-(6/d) a/k and if (13) holds). We then have that
1/2

By an argument similar to the above and by (17), we have that

(19) IoloaF(x-’t-s) d’ds<-K6’

where K6 depends only on m and .
Finally, we note that

tinr(x-,, t-s)g(/j,s)d’ds<--K’rr-’/2fjo e -In12 drl ds

so that from (16), (18), (19), and the above, we obtain (15).
We now evaluate (14) and (15) at To (8/d)/k, where k 2. Since u a + b

(a-ti)+ g+b, by the definition (12) of p(8, d), by hypothesis (13), and by (14) and
(15), we have that

II(u ao)(To)l[ < II(a ao)(To)lk + lib(
E

-<o(, d)__<;
hence U(x, To) R for all x e l). [3

The hypothesis of Theorem 2 which requires IIU0-Cr011= to be small is quite
restrictive. This hypothesis can be substantially weakened; to do so, we make use of the
comparison functions discussed earlier. To begin with, we assume that some vertex Q of
the rectangle R coincides with a vertex of , so that the components q of Q are equal
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to either ai or bi. Let ,,, be the set of indices such that qi- bi, and let M--
{1," , n}\,. Let Re be the rectangle VIi=l [ei, fi], where [ei, fi] [ci + e, bi] if Y/,,
and [ei, fi]=[ai, di-e] if M (see Fig. 3). As before, we assume that R contains a
rest point P with the property that if U(x) R then the solution of (1), (2) tends to P.

FIG. 3

d2

d2- E

Q

THEOREM 3. Suppose thatP andR are as above and that U(x Z for all x I). Let
h be the measure of the set of values of x l) for which U(x) . R. Suppose that

(20)

where : max (max {Ci ai + g" Ylm}, max {hi- di + e: ’M}), and that 6
2 2a]1/2[(K + eK/ If in addition, d and a are chosen such that

(21) p 6, d < min (1/4 )
then limt_, U(x, t) P, uniformly for x f.

Remarks. (i) If, for example, ’M) (20) implies that

/,/i- di- <= <e;

hence this condition implies that U Re (ii) Condition (21) holds for all (A, d) which
lie beneath some hyperbola, Ad-4= constant.

Proof. Let H(V) be the vector field constructed in 2 with the partition of indices,,,M as in Theorem 3. The solution V(x, t) of our comparison system will therefore
satisfy

(22) Vt=DAV+H(V), V(x, 0) Z(x), NBC’s,

where D diag (dl, d,), H is as in (6), and zi(x) > u i (x) if M, Zi(X) < U i (X) if,,. Suppose that

O’)i--
{X [’" u(x)di-8},
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and define

ci+e ifxD.\toi andi,,

zi(x)= di-e ifx\toi andi

ui (x) ifx

Note that Z is Lipschitz continuous and has values in .E; this is sufficient for obtaining
the existence of a solution of (22). We have that A is the measure of I..J ’=lto;. We will
show that by choosing A sufficiently small, the data Z(x) can be made to satisfy the
hypotheses of Theorem 2.

If 3i is the space average of zi, we have that

di > i > Ix l /(A + di + e,
(23)

ci < Y.i < II)I-1/(A + ci e, lVt,

so that if (20) holds, we see that s Re and in fact, dist (, gR \0.E) > e/2. Moreover,
for x s fl\toi, we have that [zi(x)-3i(x)l < II-ll-1/(A, so that

Thus if X is chosen so that (21) holds we may apply Theorem 2 to the system (22); this
yields a time To (t/d) l/k with the property that

E

Ci-[--< l)i(X, To),

E
Ui(X, To) < di --so that V(x, To) R for all x s D.. Since .E is an invariant set, we have that

Vi(X, To) ui(x, To) bi,

ai <= Ui(X, To) vi(x, To),

thus U(x, To) R for all x.
COROLLARY 4. Suppose that R is contained in the interior of E, and that Re

VI=x[ci+e, di-e]. With notation and hypotheses as in Theorem 3, we have
limt_.oo U(x, t) P, uniformly for x

Proof. Let , {1, ., n }, t and let ’m ’M ,. If V- and V/

are the solutions of the corresponding comparison systems with data constructed as in
the proof of Theorem 3, we have that

V-(x, t)<- U(x, t)<-_ V/(x, t)

for all x s D,, and that at time To (i/d) l/k, V-(x, To) and V/(x, To) both lie in R for all
xsf. 71
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We remark that Theorem 3 is applicable if P lies on the boundary of R, whereas
Corollary 4 is applicable if P lies in the interior of R. In the former case, it is important
that the vertex Q be chosen so that P lies on a face of R which meets Q, since the bulk of
the data lies in R. If Q is not chosen in this manner, then P will not lie in R, and our
theorem would not apply to data which was chosen uniformly close to P. In such cases, it
may be preferable to use one of the additional comparison systems obtained in 2
rather than V/ or V-.

5. Examples.
A. Mathematical ecology. We have already observed in 3A in the case of

competing species that the rest points (0, 0), (b, 0), and (0, d) are stable with respect to
data which lie in certain rectangles (see Fig. 1), so that Theorem 3 can be applied. In the
case of the origin, we choose Q (0, 0), so that the nonlinearity of the comparison
system of Theorem 3 is (uM/, vN/), whereas for the rest point (b, 0) we choose
Q (b, 0) where B > b, so that the appropriate comparison system has (uM-, vN/) as
its nonlinear term.

Other ecological interactions can be described by systems such as (8). For example,
the qualitative properties of the field (uM, vN) for the interactions of predation and
symbiosis are given in Figs.4a and 4b respectively. (See [6] and [7] for a discussion of

N=0

0 / M=0

(a) (b)

FIG. 4

these interactions.) The stability of O with respect to R in the first case and the stability
of O and P with respect to the appropriate R in the second is proved in [8] and [7]
respectively. Hence, Theorem 3 is applicable and shows that these rest points are stable
with respect to data which on the average have values in the appropriate R.

B. Neurophysiology. A mathematical model for the propagation of a nerve pulse
along an axon as proposed by Hodgkin and Huxley [13]. Fitzhugh and Nagumo [12]
have proposed a simpler model whose solutions exhibit behavior which is qualitatively
similar to the Hodgkin-Huxley model, namely

(24)
v (x, O) Vo(x),

u (x, O) uo(x);

NBC’s,
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here o- and y are positive constants and e _-> 0. If e > 0, then we prescribe NBC’s for u as
well. The function f(v)= -v(a-v)(b-v); the phase plane is as in Fig. 5. If -f’(0) >
o/y, Rauch and Smoller [16] have proved the existence of arbitrarily large and
arbitrarily small invariant sets containing the origin, E and R respectively. Moreover,

FIG. 5

they have proved the stability of the origin with respect to data which lie in R. (They
have also proved stability of the origin with respect to data with small Hs-norm with
s > 1/2. However, such functions are also uniformly small, so this is still a local result.) If
e > 0, we may clearly apply Corollary 4 to (24) to obtain the stability of 0 with respect to
more general data.

It is actually correct, however, to let e 0. In this case, Corollary 4 is not directly
applicable; however, we can still salvage something. In particular, suppose that
R (a, b) (c, d), and that the data for u satisfy

c d
-<Uo(X)<-
2 2

for all x efl. If the data (Vo(X), Uo(X)) Y-, for all x fl, there exists T1 > 0 depending only
on c, d, and

max {[try yu[: (v, u) ,E},

such that u (x, t) (c, d) for all
We construct comparison functions (v-, u-), (v +, u+), with data as in the proof of

Theorem 3. We may now apply the techniques of the proofs of Theorems 2 and 3 to the
first components v- and v + of these systems. At time To x/ where is chosen in
accordance with (20) and (21), we will therefore have that

a <= v-(x, To) <- v(x, To) <-_ v+(x, To) <- b

for all x D,. If 6 is also chosen such that To =< T1, the solution (v, u) will have values
uniformly in R at To. Thus in this case we may perturb the data for the first
component to conclude that the origin is stable with respect to certain data with values
in the horizontal strip containing R.
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A similar argument can be applied to the "fast-slow" system arising in chemical
reactor theory, considered in 3 with the following minor modification. If we perturb
the data for a above the value a0 found in 3b, we no longer have time independent
bounds for a however, we do know that a -<_ c e

g"
for some c, k > 0. Thus, the estimate

(15) will now be of the form
1/2

Ib(x, T)[-<_ Kek’l 7) + T;
\ tTl /

hence, we must replace p(6, d) with ek(’/d)l/2p(6, d).
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KILLING TENSORS AND NONORTHOGONAL VARIABLE
SEPARATION FOR HAMILTON-JACOBI EQUATIONS*

E. G. KALNINSt AND WILLARD MILLER, JR.:

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation on a Riemannian
manifold V, corresponds to a family of n- Killing tensors in involution, but the converse is false. For
general n we find a practical characterization of those involutive families of Killing tensors that correspond to
variable separation, orthogonal or not.

1. Introduction. We study the separation of variables problem for the Hamilton-
Jacobi equation

(1.1) gij Ox, WOxJW E, gij gi, 1 < i, ] < n

(n _--> 2) and the relation between variable separation and second order Killing tensors
on the (local) manifold Vn with metric tensor {gi} in the local coordinates {xi}. (We
allow all coordinates and tensors to be complex and adopt the tensor notation in
Eisenhart’s book 1 ].)

In this paper we treat the general separation problem for (1.1), with emphasis on
nonorthogonal separable coordinates. An analogous study for the more restricted
orthogonal separation problem was presented in [2], and we assume familiarity with the
basic definitions and results of that paper. Since every (multiplicative) separable system
for the Helmholtz equation

1
(1.2) --gOX,(/ggiOx,) Eq, g det(gi)

is an (additively) separable system for (1.1), our treatment has direct applicability to the
Helmholtz equation and the important families of special functions that arise as the
separable solutions of this equation. (See [2] for a discussion of the relationship between
these two equations together with additional references. The passage from (1.1) to (1.2)
is closely analogous to the passage from classical mechanics to quantum mechanics.)

It is easily verified that to every separable coordinate system for (1.1), orthogonal
or not, there corresponds a family of n- 1 Killing tensors in involution. (The precise
correspondence can be found in 2.) However, not every such involutive family is
associated with variable separation. In this paper we provide a solution to one of the
fundamental problems in the theory of variable separation. We develop a decision
procedure to determine precisely which families of Killing tensors are associated with
separation, and for Killing tensors so associated we show how to construct the
separable coordinates. Our procedure involves the determination of the eigenvaiues
and eigenforms of the Killing tensors, and is easy to implement for n 3, though less so
for n > 4.

It is important for many reasons to be able to compute separable coordinates
directly from Killing tensors. Indeed, for flat spaces and spaces of constant curvature all
second order Killing tensors can be expressed as second order polynomials in the Killing
vectors, so for such spaces the possible involutive families of Killing tensors can be
constructed explicitly through the use of Lie algebra techniques and then tested for

* Received by the editors May 2, 1980.
f Mathematics Department, University of Waikato, Hamilton, New Zealand.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. The work of this

author was supported in part by the National Science Foundation under grant MCS 78-26216.
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variable separation. Furthermore, in the Lie theory treatment of special functions
which arise through separation of variables in the Helmholtz equation [3] it is the
symmetry operators, not the separable coordinates, that are fundamental.

Nonorthogonal separable coordinates, though considered from the earliest days in
the classical literature (see, for example [4]), have received relatively little attention in
comparison with orthogonal coordinates. However, nonorthogonal separable coor-
dinates are of very frequent occurrence for the equations of mathematical physics, in
particular for the real Klein-Gordon, wave, heat and time-dependent Schr6dinger
equations and their Hamilton-Jacobi counterparts. The special definition of non-
orthogonal separation given in 2 is due to the authors [5], [6] and clearly exhibits the
nature of the separation. (Levi-Civita’s classical definition in its original form [4] is,
though intuitively appealing, very inconvenient for a detailed analysis of separable
coordinate types.) Independently, Benenti [7] has arrived at our same classification of
coordinates, which he calls "normal separable coordinates". He proves, roughly
speaking, that all separable coordinates in the sense of Levi-Civita are equivalent to
normal separable coordinates. (See [7], [8] for a more detailed discussion of the classical
literature.)

In 2 we discuss our definition of variable separation for the Hamilton-Jacobi
equation in some detail, and show how to construct the involutive family of Killing
tensors associated with a given separable system. In 3 we show how to check if a given
coordinate system {x j} permits variable separation in (1.1). Our results extend the
well-known test for Stckel form in the special case of orthogonal coordinates [1 ]. In 4
we present our principal result" necessary and sufficient conditions that a given
involutive family of Killing tensors determines a separable coordinate system. Our
Theorem 4 is much stronger than earlier such results which have appeared in the
literature 1 ], [8], because we have explicitly proved, rather than assumed, that the basis
of differential forms which appears naturally in this problem is normalizable. (Hainzl [9]
has studied variable separation for linear partial differential equations of arbitrary
order through use of the Stickel method and has obtained interesting partial analogues
of our Theorems 2 and 3. However, when specialized to the Helmholtz equation his
definition of separability omits the possibility of type 2 and nonorthogonal ignorable
coordinates.) In 5 we present a nontrivial example of the application of our Theorem 4
to three-dimensional Minkowski space.

2. Nonorthogonal separation. Our definition of separation of variables for the
H-J equation (1.1) is identical with that presented in [5i, [6], [10] and is based on a
division of the separable coordinates into three classes’ ignorable, essential of type 1
and essential of type 2. Let {x ,. , x } be a coordinate system on the manifold with
metric (g’) such that the n coordinates x a, 1 <-a-< n l, are essential of type 1, the n2
coordinates x r, nl + 1 <-r<=nl + n2, are essential of type 2, and the n3 coordinates x,
n + n2 + 1-<_a -< n + n2 + n3 n, are ignorable. (In the following, indices a, b, c range
from 1 to n l, indices r, s, range from n + 1 to n + n2, indices a,/, y range from
nl + n2 + 1 to n, and indices i, j, k range from 1 to n.) This means that the metric (g’),
expressed in terms of coordinates {x k}, is independent of the x o and that the separation
equations take the form

a=nl+n2+l

(2.2)

a,/3 =nl+n2+l

2B’ (x r) WrW, + C’’ (X W W
a,/3 =n+n2+l

OOr(X; A 1, ", A ,+,), n + 1 <-- r <-- n + n2,
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(2.3) Wa =ha, nx+nz+l<-a<-n.
Here A’( A’a), BT, C7’ (= C’a) and i are defined and analytic in a neighbor-
hood N $

_
C"1+n2 C,1+,2, where N is a neighborhood of (x, ., x1+"2) and S is

a neighborhood of (0, , 0) in the Euclidean space with coordinates
The parameters ha are arbitrary. Furthermore, the complex parameters 1, ’, .n1+,2
are independent; i.e. the Jacobian

(2.4) (O(X A1,’" A,l+,)=det( 0r
\ OAf’ --i]

is nonzero in N $.

We say that the coordinates {x} are separable for the H-J equation if there exist
analytic functions A, B, C, above and functions Ua (xi), Vr(xg), analytic in N, such that
the H-J equation

(2.5)

can be written in the form

(2.6) , Ha (xi)tffa " E gr(xi)(r E

W(x)(identically in the parameters A1 E, A z, A,), where W i=a
OiW :OfW(i).

Comparison of (2.5) and (2.6) determines the functions U, Vr uniquely.
Furthermore, differentiating (2.6) with respect to At, we have

and this leads to the usual Stckel form
al rl

(a.7) U.(x’) Vr(X’)

where i is the (/m)-cofactor of the matrix (2.4). The nonzero components of the
contravariant matric tensor are thus

g g g B7 (xr),

al rl

(2.8) g" E aT’O(x) +E C7" (x r)

al rl

g =2A +2Cr

The generality of the functions l is illusory, due to the restrictive conditions (2.7)
ll/which require that the functions are independent of A x, ., A,+,:. Indeed,

setting Ol(X l) Ol(X l, 0)/0A, 1 < l, m <= nl + n2 and O(x i) (x,i 0), where 0
(0,.. , 0) s S, we have

OX 0rl

(2.9) U= 0, Vr=O.
Furthermore, since 0 0 in N there exist functions Gl(X, k), analytic in N + S, such that

nl+n
(2.10) (I)p(XP, k) Z G,(x,k)O,,,(x"), l<-p<-nl+n2.

m=l
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Substituting (2.9) and (2.10) in (2.6) we find Gl(X,h.)-E=hl. Furthermore,
OxmGl(X, O) ml and, from the fact that the minors 0al, 0r are nonzero in a neighbor-
hood of Xo, GiG(x, It)=-0 for 1,. , n + n2, 2,. , n + n2. Thus, GI(X, k)=---
Gt(2k) and, in terms of the new parameters Et Gl(Jk), 1,. nl + n2, E ha,
a nx + n2 + 1, ., n, the functions p assume the standard form

tll+n
(2.11) ,(x, k) (x p, E) Y’. ElOp(xt)).

/=1

The separation equations (2.1)-(2.3) become

(2.12) W2 + A’’(x’)E,Eo Y. EG(xa),
a,/3 =nx+n2+l /=1

(2.14)

These expressions are the master equations for separation of variables in the Hamilton-
Jacobi equation (2.5).

Remarks.
1) Since the metric tensor (g’) is nonsingular, n3 -> n2.
2) From (2.11) we have

01
---:--dPl=Em, m 1, n+n2.

/=1

Thus,

(2.15) A,. (x. ) Era, m 1, ., nl + n2,

L(x, p) E,,, ce hi+n2+1, n,

where

A,(x, p)= . ai’)PiPi, L(x, p)= p,
(2.16) i.i=l

Pi =Ox,W

and the nonzero terms of the symmetric quadratic form (a (,)) are given by

ab
a() a() Br,

(2 17) 1/2a
0

0 0
a() =a

(Note that A E is the original Hamilton-Jacobi equation.)
nl+n3) By definition, the quadratic form H=l= H2p is in StKckel form if

H O/ 0t, where

is a Stckel matrix, 0 det O and 0 is the (l, 1) minor of O. It is well known [1] that
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necessary and sufficient conditions that H be in Stfickel form are

2
OxJ,,k In H2i -OxJ In H Oxk In H/2 + 0xJ In H2i Ox In H(2.18)

+0xk In H2 0x, In H, 0,

4) IfH is in Stickel form as in 3), theexpressions Ol"/O =- p m)0 ll / 0 p I’)H-{2 are
characterized by the equations

(2.19)
O,,kp (p, -pt) 0x(ln H}-2 ), k 1,

Oxlpl =0;

see [1]. In particular, (2.18) constitute the integrability conditions for the system (2.19),
and this system admits an (nl + nz)-dimensional space of vector-valued solutions

") =-1 there corresponds a(px, ",P,1+,2). To any basis of solutions (pi with
Stiickel matrix 19 with ol’/O p l’)H-f2.

5) To understand the significance of the quadratic forms A,, and linear forms L
(2.16), we use the natural symplectic structure on the cotangent bundle Qn of the
Riemannian manifold Vn. Corresponding to local coordinates {x} on Vn we have
coordinates {x i, pj} on Qn. If {k (X’)} is another local coordinate system on V, then it
corresponds to {k,/3} where/3 =plOx/O; k. The Poisson bracket of two functions
F(xi, Pi), G(xi, PJ) on , is the function

(2.20) IF, G] O,,,FO,,G

(We are employing the summation convention for variables that range from 1 to n.)
It is straightforward, though tedious, to verify the relations

(2.21) [Al, A.,] 0, [L,, Al] 0, [La, Lt3] 0.

(For n -< 4 these relations were already noted in [5] and [6]. We will give an explicit
proof for general n in 3.) Thus, the A, for m => 2 are second order Killing tensors
and the L are Killing vectors (first order Killing tensors) for the manifold V,.
Moreover, the family of n- 1 Killing tensors {A,,(m-> 2), L} is in involution.

The relations (2.21) associating separable coordinates on V, with an involutive
family of Killing tensors are not difficult to prove. Much more difficult is the charac-
terization of exactly those involutive families of Killing tensors that define variable
separation and the development of a constructive procedure to determine the coor-
dinates from a knowledge of the Killing tensors. For orthogonal separable coordinate
systems this problem was given an elegant solution in [2]. For the more general case in
which the coordinates may not be orthogonal, we provide a (less elegant) solution in the
following two sections.

3. Generalized Stiickei form. Here, we are given a Riemannian manifold V and
the contravariant metric tensor gi on V,, expressed in terms of the local coordinates
x , x We wish to determine necessary and sufficient conditions on the g’ in order
that the Hamilton-Jacobi equation (1.1) permit separation in these local coordinates.

If gi HT,z6i, i.e., if the coordinates {x} are orthogonal, then the necessary and
sufficient condition for separation is that H g’ppi be in Stickel form [1, App. 13]. In
other words, the relations (2.18) must be satisfied.

For nonorthogonal coordinates the conditions are somewhat more complicated.
To derive these conditions we need some preliminary lemmas related to Stfickel form.
Let ds2 h2 (dxi)2 gii dY dY be a metric that is in Stickel form with respect to the
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local coordinates y l, yS., i.e., there exists an N N Stfickel matrix 19 such that
h 2 O/0 il, where 0 det (R) and 0 il is the (i 1) minor of 0. A scalar valued function )(y) is
a Stiickel multiplier (for ds 2) if the metric dg fds fh )2(dy is also in Stackel form.

LEMMA 1. f is a Stackel multiplier for ds 2 if and only if it satisfies the relations

(3.1) f+f In h +f In h 0, j k.

Proof. These relations follow directly from the fact that (2.18) must hold for
H h and also for H fh if f is a Stfickel multiplier.

LEMMA 2. f is a Stdckel multiplier for ds g and only g there exist local analytic
functions l /(Y/) such that

N

(3.2) f(Y) E l(yl)h2.
/=1

Proof. Suppose [ is a Stfickel multiplier for ds. Then there exists a St5ckel matrix
such that fh &Ol. But h 0/0 l, so fO/= oll/ll, a function independent of yl.

Since the preceding relation holds for all we have fO/ ol/l { C and, without
loss of generality, we can renormalize so that 1. Thus,

and we obtain (3.2) with
Conversely, if f can be expressed in the f6rm (3.2), where h 0/011 is in Sthckel

form, then it follows directly from (2.18) withH h that relations (3.1) are satisfied.
Hence, f is a Stfickel multiplier.

Note that (3.2) is the general solution of (3.1).
Let (gi) be a given contravariant metric in the coordinates x , x ". We wish to

determine if these coordinates permit separation for the Hamilton-Jacobi equation. It
is convenient to reorder the coordinates in a standard form. Let n3 be the number of
ignorable variables x (recall that x is ignorable if Oxg =0 for all i, ). Of the
remaining n- n3 variables, suppose n2 variables x have the property grr= 0 and the
remaining n variables x satisfy g
n+ lrn+n2, and n+n2+1n+n2+n3=n.

THEOREM 1. Suppose (g) is in smndardform with respect to the variables {xi}. The
Hamilton-Jacobi equation (1.1) is separable for this system if and only if:

1) The contravariant metric assumes the form

(g") 0

n3

0 nl

H-2B n2

gal3
where B B= (X r)

2) The metric

nl hi+n2
r2dff2 ., HI (dx’*):z + , H (dx

a=l r=nx+l

is in Stiickel form i.e., relations (2.18) hold ]’or 1 <= i, ], k <-_ nx + n2.
3) Each g(x) is a Stiickel multiplier ]:or the metric d2.
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Proof. The theorem follows immediately from expressions (2.8) and Lemmas 1
and 2.

Note that Theorem 1 reduces the problem of determining whether the Hamilton-
Jacobi equation is separable in given coordinates to the verification of two systems of
partial differential equations. If the coordinates are orthogonal, then nz 0 and the
separation requirement is simply that the metric be in St/ickel form.

Let A a i] (x)pip], B b i (x)pipi be symmetric quadratic functions on lT"n. It follows
from (2.20) that these functions are in involution with respect to the Poisson bracket if
and only if

(3.3) a[g’iOib=b[’]Oia, l<-i,k,l<=n,

where

a[i,ic3ib ,l aii oib kl q_ alic3]b ik q_ akiOib li.

A scalar-valued function p(x) is a root of the form a ij(x) if

(3.4) det (aii(x)-p(x)gii(x)) 0

in a coordinate neighborhood, where (gi]) is the metric on Vn. A form O Ai(x) dx such
that

(a ij ij-pg )hi=0, O0
in the same coordinate neighborhood is an eigenform corresponding to the root p.

THEOREM 2. Let (gii) be the contravariant metric tensor on Vn in the coordinates
{xi}. If the Hamilton-Jacobi equation is separable in these coordinates, then there exists a
Q-dimensional vector space of second order Killing tensors on V, such that

(1) [A, B 0 for each A, B
(2) For each of the n essential coordinates of type 2, x , the form dx is a

Asimultaneous eigenform for every A , with root p
(3.5) (3) For each of the nz essential coordinates of type 1, x r, the form dx is a

simultaneous eigenform for every A sg, with root pA. The root p,A has
multiplicity 2 but corresponds to only one eigenform.

(4) c3i(aat3)--piAOigt3 -0, i= 1,..., nl+n2 for all A e g, and all n3 ignorable
variables a, fl n + n2 + 1,. , n.

(5) [A, L] 0 for each A eg and L p, a n + n2 + 1,..., n.
(6) Q rt + n3(n3-1)/2.

This theorem is easily obtained from the proof of the following deeper result. Let
{x i} be a coordinate system on V, with coordinates divided into three classes, containing
nl, n2, and n3 variables respectively (n nl + n2+n3). (We will call them essential
variables of type 1, essential variables of type 2 and ignorable variables, respectively,
even though at this point they have nothing to do with separation.) Let H g’lpipi.

THEOREM 3. Suppose there exists a Q-dimensional vector space g of second order
Killing tensors on V, such that H 1 and conditions (1)-(6) in (3.5), are satisfied.
Furthermore, suppose gab__ 0 if 1 <--a < b <= n and gar._ g grS 0 for 1 <--a <= nl,

n + 1 <= r, s <= n + n2, n + n2 + 1 <= ce <--_ n. Then the Hamilton-Jacobi equation (1.1) is
separable in the coordinates {xi}. The Killing tensors A,, m 1, ., nl + n2, (2.16), and
LL pp, n + n2 + 1 <- <- <- n, form a basis for

Proof. From conditions (2), (3) and our assumptions on the vanishing of certain
matrix elements of (gJ), we see that the matrix corresponding to any A takes the
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form

nl t2 n3

(3.6) (a") 0

If (p) (p) for A, B e , it follows from (3.6) and condition (4) that A -B is a linear
combination of the n(n + 1)/2 Killing tensors LL pp, a ft. It follows that for
each x the set of (n + n2)-tuples {(p (x)), A } spans C"+".

The relation [H, A] 0 is equivalent to

(3.7) g[i,i

Setting (i, k, l) (a, b, c) in (3.7) and utilizing (3.6) we obtain

(3.8) Opb (p Pb)O (InH2 ), Op O.

Setting (i, k, l)= (a, r, a) in (3.7) we find

(3.9) Opr (p pr)O In gr if gr O.

For (i, j, k) (r, a, fl) we obtain

(3.10) gSgOsPr+grgOsPr=(p--pr)gOsgr +(ps--Pr)gSOsgr (sumons).

The case (i, j, k) (a, a, a) leads to

(3.11) Orp (Pr--p)Or In H22.
The cases (i, j, k)= (a, a, fl), (a, fl, y) are satisfied as a consequence of condition (4),
and all remaining cases are satisfied identically.

Multiplying both sides of (3.10) by gRgS, (n + 1 R, S n + hE), and summing
on a and fl we find

(3.12) 8OSPR + 8ORPS (PS --Pr)gROSg + (PR --Pr)gs,ORgr.
Setting R =r, S s in (3.12), solving for OsPR, substituting this result in (3.10) and
equating coefficients of ps, s r, we find after some manipulation

(3.13) 0(ln gS) 0r(ln g) gOr(gS), r S

for all a, y such that gSg 0.
Since (g) is nonsingular, for each s, n + 1 Sn+ hE, there is at least one

a a(s) such that g 0. We defineH2 g(S)S. It follows from (3.9) and (3.13) that
there exist functions B (x r) such that

gV g* HE (x)B (x n + l < r < n + n2,

Thus, expressions (3.8), (3.9), (3.11) and (3.12) reduce to

(3.14) Oip (pi- p)0(lnH2 ), 1 i, ] n + hE.

The integrability conditions for the system (3.14) are precisely (2.18); i.e., the metric
nl+n2 2 i)2dy2== Hi (dx must be in Stfickel form. Similarly, the integrability require-

ments OOa OOia for condition (4) are (through use of (3.14)) simply that eachg
be a Stfickel multiplier for the metric d2. Thus the contravariant metric (g) takes the
form (2.8); hence the Hamilton-Jacobi equation separates in the coordinates x. The
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stated relation between the A M and the quadratic forms A, of 2 is provided by
(2.17) and (2.19). In particular, expressions (2.17) for the a satisfy conditions (4) and
are determined by these conditions to within additive constants.

The role of condition (4) needs clarification. It is not difficult to construct examples
of Killing tensors that satisfy conditions (2), (3) and (5) but violate condition (4).
However, we have

COROLLARY 1. Let (gij) be the metric for Vn in the separable coordinates {xi}, the
coordinates ordered as in Theorems 2 and 3, and letM be the space ofsecond orderKilling
tensors described in Theorem 2. Suppose C is a second order Killing tensor satisfying
conditions (2), (3) and (5) of Theorem 2 and such that [C, A] 0 for all A M. Then
C ; i.e., C satisfies condition (4).

Proof. Let (pc) be the roots of C. Then there exists a B such that (pc)=_(p).
Thus, the Killing tensor F C B has roots p/r _= 0 and takes the formF fpp. The
condition IF, A 0 for all A becomes

(3.5) "og O,’(f3"/)+oAgv"O,’(.f’)+oAgt3"Or(fW)=O, Oaf3=O.
The coefficient of pA in (3.15) must vanish, so we have

(3.16) g’"O,.f3’ +gro,.f’t3 +g3"O,.f/’=O (no sum on r).

(Recall that for fixed r there is at least one y such that greta 0.)
Supposeg0. Setting (a,/3, 3,) (, a, a) in (3.16) we find g’"O,.f =0, so that

Orf =--0. On the other hand, if gr----O but g0, then setting (a,/, y) in (3.16)
g/rOrf,a 0. Thus in all cases C3rfaa= O.

If g,r O, then setting (a,/, y) (a, B, a) in (3.16) we find g’"Orf’ O, SO Orf’
0. However, if gr=--O but g"r-o, then, since OrfO’=Orf’=--O, (3.16) becomes
g,ro,.f, 0. Thus in all cases O,.f ---O.

We have shown that fo is a constant, hence that F f’Oppo
Remark. It is sufficient to require that condition (4) of Theorem 2 be valid for

nl + 1,. , nl + Ha, since the requirement [H, A] 0 for (i,/’, k) (a, a,/) yields
this condition for 1,..., nl.

4. The main result. We come now to the fundamental question’ given an involu-
tive family of n 1 Killing tensors, how do we determine if this family corresponds to a
separable coordinate system for the Hamilton-Jacobi equation?

Let {x j} be a local coordinate system on the Riemannian manifold Vn and let
0(. hi(j)dx i, 1 < ] <= n, be a local basis of one-forms on V. The dual basis of vector
fields is X Ai(h)Ox ,, 1 < h < n, where Ai(h)Ai(i) 8 (h). We say that the forms {0} are
normalizable if there exist local analytic functions gCj, y such that 0j gCj dy j, (no
sum). (Equivalently, Xh g-(Or.) It is classical that the forms are normalizable if and
only if the coefficient ofXI is zero in the expansion of [Xh, Xk] in terms of the {X
basis whenever h, k # l; see [1, 35].

LEMMA 3. The one-forms {Oi} are normalizable if and only if
(h) (k)(4.1) (Ox,At) OxiAj(l))A A O, h, k # 1.

This condition can also be expressed in terms of the inner products

(4.2) G(h,l) A (h)Ai(1).
,_ A(h) Ai(h) (l,h) (h) Thus conditionWe have hi(0 ,.1(h,l)lX] or hlG where G(h’I)G(I,i) o(i).

(4.1) can be written in the form

(4.3) G(h’h’)G(k’k’)(7(lh,k,)--’Y(lk,h,)) O, h, k # l,
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where

(4.4) 7(lhk) i(1),]’ (h)l k)

and A(1), is the flh covariant derivative of li(l) [1]. Let H g’Ipipj.
THEOREM 4. Suppose there exists a Q-dimensional vector space of second order

Killing tensors on V, such that H M and:
(1) [A, B 0 for each A, B M.
(2) There is a basis of one forms O(h)= li(h) dx i, 1 < h =<n such that

(a) the n forms O(a), 1 <- a <= n are simultaneous eigenforms for every A M
Awith root p

(a ij Ap, g1)h(,) O,

(b) the n2-forms O(r), n l+ 1 <=r<=nl+ n2, are simultaneous eigenforms for
Aevery A 4 with root p

(4 5) (aiJ A ij
p g )h() O.

The root p has multiplicity 2 but corresponds to only one eigenform.
(3) x(h)(Ai(a)aiiAi(13) o’X(h)(Ai(,)g A(t)), h 1, , n + n2 ]:or all A .. and

all a, fl n + n2 "[- 1, , n.
(4) [L,, Lt 0 where L, Ai(’)pi.
(5) [A, L] 0 ]:or each A ..
(6) Q=1/2(2n+n-n3), where na=n-nl-n2.
(7) G(ab) 0 if 1 <= a b <-_ ha, and G(ar) G(a,) G<rs) 0 for 1 <- a <- n, nx +

l<=r, snl+n2, n+n2+ l<=ce =<n.
Then there exist local coordinates {y} for V, such that 00 f(i(y) dy for suitably

chosen functions f(i), and the Hamilton-Jacobi equation is separable in these coordinates.
Conversely, to every separable coordinate system {y J} for the Hamilton-Jacobi equation
there corresponds a family ofsecond order Killing tensors on V, with properties (1)-(7).

Proof. It is enough to show that conditions (1)-(7) imply that the one-forms 0(i are
normalizable; the remainder of the proof follows immediately from Theorems 2 and 3.

From conditions (4) and (5) it follows that there exists a coordinate system {x i} on
hi+n2 a, r) h X(a)V, such that 0(,,) dx +h=l i(ot)h(X X dx and 0x. Clearly, conditions

(4.1) hold for h a and any values of k, I.
Some other conditions (4.1) follow directly from [2, proof of Theorem 5]. It

follows from that proof that conditions (1), (2) and (7) imply "}/(lhk)--" Y(lkh)-’0 for
pairwise distinct numbers l, h, k such that 1 <_-l, h, k _-< n + hE. Thus, (4.1) holds for
l= 1," ’, nl+n2 and l=<h, k<-nx, h,

The remainder of the proof is essentially a systematic exploitation of condition (1)
for A, B e . Writing this condition in the form (3.3), multiplying by
and summing for i, ], k 1, n, we obtain an identity AE,’.,,,. This identity can be
simplified through use of conditions (2) and (3). In particular, condition (2) leads to

(4.6) O.a’ =-aWA’(Z)Ouhw(z)+Ou(p(Z)gW)A’(Z)hw(z)+p(Z)gjWAV(Z)o,hw(z),

where in this and the following expressions u, v, w, z range from 1 to n + n2 and 0i Ox,.
Condition (3) leads to

(4.7) Ou(Ai(a)a ’Ai(13)) A(z)A(Z)p (z)ov(Ai(a)gi"Ai(13)).
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Furthermore, convariant differentiation of (4.2) leads to the relation

(4.8) ]/(hlk) q- "}/(lhk) A {k)G(hl),].
Through use of these relations we can express the identities a nEm’,mg_,m3 in terms of
Ai(u), (u) i]p and g alone.

Let A, B e M have roots {0i}, {#}, respectively. Equating coefficients of Or/xs in
A,BEc,,,o we find

(4.9) G(rh’)G(s’k’)(T(ch’k’)- "Y(ck’h’)) 0;
A,Bi.e., (4.1) holds for (h, k, l) (r, s, c). Equating coefficients of 0dzr in E,,, a b, we

find similarly that (4.1) holds for (h, k, l) (r, a, c). Thus the forms 0()are normalizable.
A,BEquating coefficients of pr/zs in E,,,o, r, s, pairwise distinct, we verify that (4.1)

A,Hholds for (h, k, l) (r, s, t). Finally, equating coefficients of 0r in E,,, r t, we verify
that (4.1) holds for (h, k, l) (r, a, t). This shows that the forms 0(t) are normalizable.

We see at this point that, by renormalization of 0(3, O(r) if necessary, we can find
local coordinates {y} such that

0(,,) dy", a 1,.. , nl, O(r) dy r, r nl + I,. , nl + n2,

(4.10)
0,) dy + Y Ah(,) dy h.

h=l

-,na+nReplacing 0( by d( 0--z.r=nl+l Ar0r), we see that the new forms 0 (dropping
the hat) satisfy conditions (1)-(7), since G(ar} 0, and further that Ar 0 for the new
forms. Equating coefficients of iob in A HEbf:,,, b c, we find ObA(c) OcAb(), and equating

A,Bcoefficients of PcId, in Ec.. we obtain Or’(B)c --O. Thus 0 dy + df, where df
Y’.1=1 Ac)dy c. Setting

(4.11) Z
h yh, h 1, H1 q- hE, Z y +f,

we have 0(i) dz , X( Oz, ] 1,. , n and our one-forms are normalizable.
Remark. It is sufficient to require that condition (3) of Theorem 4 be valid for

A,Hh, + 1, , nl + n2 since the identity Ea,,0 yields this condition for h 1, , n.
Thus condition (3) is unnecessary when n2 0.

5. An example. To show how Theorem 4 can be employed in practice we treat a
single example in some detail. The real Hamilton-Jacobi equation

Wx

admits the pseudo-Euclidean algebra e (2, 1) as its symmetry algebra of Killing vectors.
A basis for the symmetry algebra is

K1 xpt + tpx, K2 YPt + tpy, L3 YPx -xpy
(5.2)

Po Pt, P1 Px, P2 Py.

As is well known (e.g., [2]), the space of second order Killing tensors for the
pseudo-Riemannian manifold with (5.1) as its associated equation is spanned by
products of Killing vectors (5.2). Thus, it is easy to display the second order Killing
tensors for this manifold.

Recall that two separable coordinate systems for a Hamilton-Jacobi equation are
considered as equivalent if the defining symmetry operators for the two systems are
equivalent under the adjoint action of the local Lie symmetry group of the equation [5],
[6], 10]. Thus, if we are looking for all separable coordinate systems with one ignorable
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variable we can limit our search to those cases where the Killing vectorX correspond-
ing to this variable is an explicitly chosen representative of one of the conjugacy classes
of one-dimensional subalgebras of e (2, 1). We consider the particularly interesting case
whereL P0 + P2. (As shown in [5], all nonorthogonal separable coordinates for (5.1)
correspond to this case. Moreover, it is easily shown that any coordinate system with
P0 + P2 as a generator for an ignorable coordinate must necessarily be nonorthogonal
[10].) For such a system the Killing tensor A must commute with L. Thus A can be
chosen from the real vector space of homogeneous second order polynomials in the
symmetries (5.2). Furthermore, we can identify two Killing tensors that lie on the same
orbit under the adjoint action of the normalizer for P0 + P2. The normalizer has basis
{K2, L3-K1, P0+P2, P1, P0-P2}. (See [11] for a more detailed discussion of this
problem.) One family of orbit representatives is

(5.3) (L3-KI)2 +4P + a(L3-K)(Po-P2) + b(Po-P2)2 + c(Po + P2)2 + dp(Po-P2).

(That is, two such representatives lie on the same orbit if and only if they are identical.
We could, of course, easily compute all possible families of orbit representatives and
apply the following considerations to each such family.) Group theory can take us no
further than this point. We still have to determine which, if any, of the Killing tensors
(5.3) actually correspond to separable coordinates.

In the following it is convenient to choose new coordinates {x, 7., w} such that
7" 1/2(y q- t), W 21-(y t), SO p py + Pt, Pw Py Pt. In terms of these coordinates,

(5.4)

d4w2+4+0 -2xw -aw --ax +p
A -pH -2xw x 2 + c

2
d ax +p

b-aw
2 2

Since O2 is a double root, we must have f(02)-" 0. Also, f(p) 1/4(O --02)2(O --01). It is
orthogonal, we must have n nz 1 for any separable coordinates. Thus A must have
a single root px and a distinct root pz of multiplicity 2 which has only one eigenform. The
characteristic equation f(p)= det (A-oH)= 0 reads

3 2-- W + 1 + P bx2--4-X2 2ax + cb axw + dxw
(5.5)

+ dacw-c(4b-a2)w2+-4b+a2+ x2+-----4cb =0.

Since 02 is a double root, we must have "(02)= 0. Also, ’(0)=1/4(0-0a)2(0-01). It
is straightforward, though tedious, to verify that these conditions on 0,0. are
inconsistent unless a b c d 0, in which case

(5.6) pa -4(wz + 1), p2 0.

Thus,

(5.7)
4w2+4 -2xw 01A -2xw x 2 0

0 0 0
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and 0(1)-- (2w 2 + 2) dx -2xw dw, 0(2)"-" dw. To satisfy conditions (5) and (7)of Theorem
4 we must require 0(3)-xw(w2+ 1)-1 dx + dz+fdw. We choose f such that 0(3) is a
perfect differential and obtain

2w2+2 0

(5.8) (x))

xw
(w2+ 1)

0 0 1

-2xw 1
X2(1-- W 2

2(1 + w2)2

(A(/)])

1
2w 2 + 2 2(w2 + 1)2

2
XW
2w + 1 2(1 + w)

0 1

Condition (3) can be verified directly.
Finally, Q 3 and 4 has the basis {A, H, X(3)}.
We conclude that among the operators (5.3) only A =(L3-K1)e+4p cor-

responds to a separable coordinate system. Furthermore, in this case it is now
straightforward to derive the separable coordinates. They are {x 1, x, x3}, where

(5.9) x xl[l+(x2)2]/2 [x3-(xl)2x2] 2
7"-- W--X

2

Indeed,

(5.10) X(1)= (1 + w)-3/01, X(2)-- 02, X(3)-- 201.
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INVARIANT CURVES, HOMOCLINIC POINTS, AND ERGODICITY IN
AREA-PRESERVING MAPPINGS*

MARTIN BRAUN"

Abstract. In this paper we study an area-preserving transformation which arises in the study of the
motion of a charged particle in the earth’s magnetic field. It is shown that this mapping possesses invariant
curves in one region, and is a horseshoe map in a second region. Numerical experiments are presented which
indicate that the mapping is transitive in a global neighborhood of its homoclinic points.

Introduction. In this paper we present a theoretical and numerical discussion of an
area-preserving mapping M of the plane into itself. This mapping arose as an
"approximate" model of the global flow for the St6rmer problem [2], [3], [4], which is
the study of the motion of a charged particle in a magnetic dipole field, like that of the
earth. Our mapping is also similar to the "linked twist" mappings studied by Bowen [1 ],
Devaney [5] and Thurston [11])

The mapping M. Let 1 be the mapping which rotates each point (x, y) by an angle
a(r), r (x 2 + y2)1/2.

"(r, 0)-, (r, 0 + (r)).

The "twist" a(r) is a C function satisfying

(1) -ra’(r)oo as r-0.

Let 2 be the corresponding mapping which rotates each point (x, y) about the point
(e, 0); i.e., if r

/ denotes the distance of (x, y) from (e, 0) and 0
/

is the corresponding
polar angle (see Fig. 1), then

2" (r+, 0 +) -> (r+ 0+ + a (r+))

(e,o)

FIG.
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Our mappingM is defined to be the composition of 01 with &2, that is, M t2 1.
Clearly, M is area preserving, since it is the composition of two area-preserving
transformations. (We will sometimes denote M by &.)

As the distance r gets larger and larger, the radii r and r+ approach each other. If
a(r) is sufficiently smooth, then M has infinitely many closed invariant curves sur-
rounding the origin. This is a direct consequence of the Moser twist theorem [8].
However, for sufficiently small r, the mapping M is very erratic. There are infinitely
many unstable periodic orbits, as well as infinitely many homoclinic and heteroclinic
points. This is a direct consequence of the following theorem.

THEOREM. Given any positive integer N, there exists an e (N) such that for 0 < e <
e (N) the mappingMpossesses the subshift on N2 symbols as a subsystem.

We will prove the above theorem by constructing a suitable "rectangle" in which
resembles a "horseshoe map" (Smale [10]). Our proof is based on the proof of J. Moser
(personal communication) for a similar mapping (Braun [4]).

We begin by choosing two constants c l, c2 such that

(2) 1/2<c1<c2<,
and consider the annuli

B ={(r, O)lce <-r<-ce}, B+ {(r, O)lCle <-r+

The restriction (2) is imposed so that the annuli B and B+ intersect in two components,
and the boundaries of these components intersect under a nonzero angle (see Fig. 2).

FIG. 2

Our next task is to find an annulus A c B, where the points on the inner boundary
of A are rotated about the origin N times more than the points on the outer boundary of
A. To this end, form the annulus

and set

A, ={(r, O)[(2m-1)zr<-a(r)<=(2m + 1)zr}

N-1

A An+s.
s=0

Here, n is a large positive integer, soon to be determined. Points on the outer boundary
of A are rotated by an angle (2n- 1)r, while points on the inner boundary of A are
rotated by an angle (2n / 2N- 1)zr. The condition that A c B is thus

(i) (2n + 2N 1)7r < re (c e) and
(ii) (2n 1)r > a (c2e ).
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The inequalities (i) and (ii) can be combined into the simpler inequality

(3) c (c2e) < (2n 1)Tr < a(cle)- 2N’n’.

To satisfy (3) we first choose e so small so that

(4) o(cle)-o(c2e) > (2N + 2)zr.

That we can choose e sufficiently small so as to satisfy (4) is a direct consequence of (1).
Then we choose an integer n large enough so that (3) holds.

Next, let A+ be the corresponding annulus A centered about the point (e, 0). The
annuli A and A+ intersect in two "rhombus-like" regions. Let Q be the region lying in
the upper-half plane. This region Q will play the role of the rectangle in the horseshoe
map. It is clear from the construction of A that the image (Q) spirals N times around
in A, and intersects Q in N components , 2," , Or (see Fig. 3). Similarly, the

UI

FIG. 3. Graph of O qbl(O).

image 2(r/’) spirals N times around in A, and intersects Q in N components (see Fig.
4). Thus b(Q) intersects Q in N2 components U, U2,’ ", Ur2 so labeled that U is
the outer one and Ur2 the inner one. Similarly, b-l(Q) intersects Q in N2 components
V1, V2," , Vr2, which are so labeled that V1 is the outer one and Vv the inner one.
We then verify that

4(V)=U, ]=1,...,N2.
This relation follows immediately, up to the labeling, from the fact that

t (t--l(Q) 0 Q) O (O) U U/-.
j= /=1

We also verify that the corresponding boundaries of V go into the corresponding
boundaries of U., as required in [9].
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FIG. 4. (U, U U3 4’2(0,) Q" U2 U U 42(2) O.

To complete the proof of our theorem, we must show that both db and db -1

contract a bundle of sectors (Moser [9]). This is the content of the following lemma.
LEMMA. Introduce coordinates r and r+ in Q, so that Q appears as a square

contained in the square c e <= r, r+ <- CEe. Choose a number A > 1 and introduce the sectors

(5) s+: lr+l < A-lrl, S-: lrl < A-lr+l,
as well as the larger sectors

Then for e sufficiently small, and dqb (6r, 6r+) - (6rl, 6r1+),

db(E+)CS+ and 16r, I<AEI6r for(6r, 6r+)eS+,(5)

and

(6) (dqb)-(,-)cS and ]Srl<,xl,rll for(Sr,Sr)S-

Proof of lemma. We will verify the first part of (6); the second part follows in
exactly the same manner. To this end, we stretch the variables by setting

-1 + -1 +p=e r, p =e r

Then

p+=f(p, O)=[1 +p2--2p cos 0] 1/2

is independent of e. The domain Q is now described by Cl _-<p, p+_-< c2. Next choose
c > 1 such that

Ifll, I=1, and I;1__< c in Q,

where OffOp and 12 Of Note that c only depends on c and c.
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(i) We express the condition 18p+[ <-h [Sp] in terms of 80 and 8p. To this end
observe that

Hence,

laol If IIla,o+l / Ifll la,o 13
i-a I,ol 4- c113 k la,ol,

where k c (X + c).
(ii) Now we apply bl" (60, 6p) --> (60,, 6p,). Since 6p, 6p and

60, 60 + ea’(ep)6p,

we see from (7) that

lao, > (l’(o)l- k)la,o,I.

If we choose e sufficiently small so that [ea’(ep)[> 2k, we see that

(8)

(iii) Next, we express (8) in terms of 6p, and 6p,. From the relation
.f" (a(p , f16p,) we see that

Hence, from (8),

or

Since k- c2--/C, we see that

(9)

+

(k c-)lao,I c la,o; I.

(iv) Next, we interpret (9) in terms of 60 and 6p. From the relation p*=
f(p+ +,, r- 0,), we see that

6p, fl6p,

Hence,

(v) Next, applying =: (80;, 8p;) (80T, 8p we get, as before, that

(11)

(vi) Finally, we interpret (11) in terms of [apll and lapel. From the relation
P flP+ -f260 we see that

160+ I c[clapl l+ lapll],

and thus from (11) we conclude that

(12) c=ll+cloll
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It follows immediately from (12) that
+

or, equivalently, Ir < x-116rl I. Thus d&" E+ S+.
It remains to show that Irxl > A 21rl.

From (13),
+xl=Al  ,l

+ 0,), we have that 0, f +Since p,=f(p,, (p,-fp,), so that
c I+ c or

Thus,

Remarks. A slight modification of this proof shows that the map M -o bl,
where

"(x, y)-,(x y)

also possesses the shift on N symbols as a subsystem. It has been verified by Dragt [6]
that the map z bl, is the correct model of the global flow for the St6rmer problem.

Numerical results. We now present some numerical studies of the mapping M. We
took a(r)= r-4/3, e --.02, and placed the two centers at (-.01, 0) and (.01, 0). Each of
Figs. 5-15 represents 2,500 iterates of the given initial point, and they are scaled so that
the maximum radius of any given point is three. It is helpful in analyzing these pictures
to observe that the mapping M has many fixed points on the y-axis. These correspond
to points which are fixed under both bl and b2, and to points (0, y) which are mapped by
b into (0,-y). Some of these fixed points are elliptic, with their islands of invariant
curves surrounding them, and some are hyperbolic. It can be verified numerically that
the stable and unstable manifolds of some of these hyperbolic points intersect homo-
clinically.

Fig. 5 is an invariant curve of M. It is somewhat surprising that we can find
invariant curves this close to the origin, since Moser’s invariant curve theorem would
require r to be exceedingly large. Figs. 6 and 7 illustrate how a family of closed invariant
curves surrounding an elliptic fixed point, disintegrates. The intersection of the
"curves" in Fig. 7 is a hyperbolic fixed point (the largest fixed point of M on the y-axis)
and the stable and unstable manifolds of this point intersect homoclinically. (The elliptic
fixed point is centered in the "smile" at the bottom of Fig. 11.)

The orbit in Fig. 8 appears to define an invariant curve, while the orbit in Fig. 9 is
periodic, of very high order. (These orbits have been magnified to nearly 15 times their
original size.) It is quite surprising that we should find such "stable" behavior so close to
the origin. Notice, though, in Figs. 10 and 11 how quickly we change from stability, or
integrability, to instability and statistical behavior. Fig. 11 strongly suggests that M is
ergodic in a suitable region, and would also seem to verify Easton’s [7], conjecture on
the ergodicity of linked twist mappings.

The "empty spaces" in Fig. 11 are invariant regions which are enclosed by
invariant curves belonging to elliptic periodic points of M. An orbit starting outside
these regions can never enter into them. Conversely, an orbit starting in these regions
remains inside them, both forwards and backwards. Fig. 12 shows 3 closed curves
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belonging to an elliptic periodic point of period 3. As we slowly vary the initial point of
the orbit, these closed curves begin to disintegrate (Figs. 13, 14), and then we immedi-
ately come back (Fig. 15) to the exact same statistical behavior observed in Fig 11. This
reinforces our notion that M is indeed ergodic in a suitable region.

XO
yo=O

FIG. 5

Xo= 0.020
yo=0.418

FIG. 6

Xo=0.015 ....
Yo =0.417

Xo 0 2 . I

yo= 0.000

FIG. 7 FIG. 8
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\

Xo=0.220
yo=0.000

FG. 9

xo 0.219 "".............................. .....
Yo =0.000

FIG. 10

Xo 0.200

Yo 0.000

FIG. 11

Xo=0.
Yo =0

FIG. 12

Xo 0.186 "yo= 0.000
Xo=0.185
Yo =0

FIG. 13 FIG. 14
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FIG. 15
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WIDDER’S INVERSION THEOREM AND THE
INITIAL DISTRIBUTION PROBLEM*

D. G. ARONSON-

Abstract. Widder’s inversion theorem gives the precise form of the trace on t=0 of a positive
temperature defined in [ x (0, T] for some T > 0. In this paper, Widder’s theorem is extended to positive
temperatures defined in !a x (0, T] for d => 1, and the result is applied to derive a necessary and sufficient
condition for a given Borel measure on Ra to be the initial trace of a positive temperature. Similar results are
also obtained for positive weak solutions of divergence structure parabolic equations.

Introduction. In 1944, D. V. Widder published his celebrated representation
theorem for positive temperatures in an infinite rod [5]. Specifically, if u u(x, t) is a
nonnegative solution of the equation of heat conduction

Ou 02u
(1)

Ot Ox

in R (0, T) for some T > 0, then there exists a nonnegative Borel measure p such that
u g * p. Here

g(x, t) (47rt)-1/ e -x2/4t

is the fundamental solution of (1) and

(g * p)(x, t)=-- JR g(x-j, t)p(d).

If p has a density g then the convolution u g * p can be written

(2)

and it is well known that

u(x, t)= I g(x- , t)g,() d,

lim u(x, t)= O(x)
t$o

at all points of continuity of O. Thus, if p has a continuous density 4’, then (2) represents a
solution of (1) in R (0, T] with initial datum u (., 0) . By analogy, in the general case
one expects u g p to represent a solution of (1) with the measure p as initial datum in
some appropriate sense. Widder’s inversion theorem [6] makes this expectation
precise. It states that, if u g p is a solution of (1) then

b

(3) lim f u(x, t)dx=p(a,b)+p{a}+1/2p{b}
t$o

for all a and b which satisfy -< a < b < +.
Recently, C. H. Wilcox [7] has considered the converse problem. Let / be a

nonnegative Borel measure. A nonnegative solution u of (1) is said to have initial
distribution tz if

lim | u(x, t) dx tz(a, b)
t$o

* Received by the editors August 15, 1980. This work was supported in part by the National Science
Foundation under grant MCS78-02158.

t School of Mathematics, University of Minnesota, Minneapolis, MN 55455.
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for all a and b such that -oo<a<b<+ and/x{a}=/x{b}=0. If u=g.p, then it
follows from the Widder inversion theorem (3) that u has initial distribution p. On the
other hand, Wilcox shows that if u has initial distribution/z then u g

In this note I shall extend Widder’s inversion theorem and Wilcox’s result on the
initial distribution problem, first to the equation of heat conduction in Ra (0, T) for any
d 1, and then to a broad class of linear parabolic equations with divergence structure.
Some of the material needed for these extensions is already at hand, since the
appropriate generalization of the Widder representation theorem has been proved in
[1]. The principal new result to be given here is the extension of the Widder inversion
theorem to Rd for d > 1. A weak convergence version of the inversion theorem in
was proved in [2]. The results for the equation of heat conduction are stated precisely in

1. The corresponding results for divergence structure equations are given in 4.

1. Results for the equation of heat conduction. Let T + be fixed and consider
the equation of heat conduction

(1.1) Ou= Au

in ST =- d X (0, T) for d _-> 1, where

is the Laplace operator on d. The fundamental solution of (1.1) is given by

g(x, t) (4rtt)-a/2 e -Ix12/4t,
where

d

Let C2’I(’T) denote the class of functions u’ St--> R such that u, OU/OXi, Ou/Ot and
02u/Oxj Oxi are all continuous on St, and define

H+-= H+(Sr)=- u C2’I(ST) lg 0 and Ou=ot Au in St}.
The Widder representation.theorem establishes a relationship between H/ and the
class M+ of nonnegative Borel measures on Nd. The following version of the represen-
tation theorem is proved in [1].

THEOREM A. If u H+, then there exists a unique p M+ such that u g p.
If u=g*oH+(Sr), then p cannot have too much mass near I[=+c.

Specifically, if u g p H+($r) then u(0, T) < +, which implies that

(1.2)

It follows that p is regular and therefore r-finite. As is shown in [2], the converse is also
true. That is, if o6M+ satisfies

+cx3,

then g O H+(Sr).
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Since

Let 9 denote the collection of Borel subsets of a. For each A 9, define

"YA () t) =- fA g(x --) t) dx.

IRdg(x- t) dx l,

it follows that YA(, t) has its values in [0, 1]. Therefore

yA(SC)----lim.sup yA(S, t) and Y(sc)-----liminf "}/A(:) t)
t$o t$0

both exist in [0, 1] for all " a. Let

A * {S e a" ’, (Sc) # y (S)},

and define YA" la\A*[O, 1] by yA(Se) y(sC). It is easy to verify using the explicit
formula for g that

1 for
(1.3) v’(f)

0 for f e.
Thus A OA. In general, A # . In the Appendix I give an example of a
bounded open set A c a for d 2 such that A

THZORZM B. Let u H+ be given by u g p for p M+. IrA e is bounded and
p(A) O, then

(1.4) lim,$o IA U(X, t)dx p()+ IoA 3/A()P(d)"

Theorem B contains Widder’s inversion theorem for d 1. Indeed, if A -(a, b)
then OA ={a}tA{b}. Since yA($)=1/2 for =a or b, it follows that A= , and (1.4)
reduces to (3). Moreover, Theorem B is sharp. Let A e be such that A * ;. Fix
so e A * and let p 8Co, where teo denotes the Dirac measure concentrated at st0. Then

u(x, t)= IA g(x , t)8eo(d) g(x o, t)

and

U (X, t) dx YA (:0, t).

Thus, in view of the definition of A 4,

lim f u (x, t) dx
t$0 JA

does not exist in this case.
For arbitrary a and b in , define

(a,b)--(xe[d: ai<x<bi, i= l,2, .,d},

(a,b]=--{xed: ai<x<-bi, 1, 2,... ,d},

[a,b]=-{x[a: ai<-x<=bi, 1, 2,... ,d}.



642 D.G. ARONSON

These sets will be referred to as intervals. The boundary of any nonempty interval (a, b
in [a can be written in the form

d-1

O(a, b LJ Li,
=0

where for/"-> 1 each L is a finite union of open subsets of j-dimensional hyperplanes
and L0 consists of the 2d vertices of (a, b]. Moreover, it is not difficult to verify that

(a,b]() 2-d for L.
Thus, in particular, (a, b]= .

If O R then Oa will denote the d-fold Cartesian product of O with itself. Define

Io =- {(a, b ]: a Oa and b

A function u H+ will be said to have initial distribution Ix M
+ if IX is -finite and

there exists a countable dense subset Oc such that

lim I u(x, t) dx Ix(a, b)
t,O ,](a,b]

and

Ix (O(a, b ]) O

for all (a, b]Io. Note that this differs from Wilcox’s definition discussed in the
Introduction since it involves only a countable number of conditions.

THEOREM C. u H+ has initial distribution Ix M
+ if and only if u g Ix.

Theorems B and C are proved in the next two sections.

2. Proof of Theorem B. By Tonelli’s theorem,

fA U(X, t)dX=IRdTA(, t)p(d).

In view of the definitions of A * and YA(" ),

lim Ya(, t)= yA() for all Rd\A*.
t$o

Since by hypothesis p(A*)= 0, this convergence is p-almost everywhere. As will be
shown below, there exists a constant K+ such that

O<--’}tA(, t)<-Ke -112/4T for all (’, t)sa(O, T/2]. (2.1)

According to (1.2), the function K e -1I2/4T is p-integrable. Therefore, by the dominated
convergence theorem,

lim la u(x’ t) dx I TA()p(d),

and (1.4) follows from d= UOA (j(d\) and (1.3).
Since A is bounded, there exists a constant R > 0 such that x A implies Ix[-< R. Set

,3 1/2 T. Then

A(, t)= IA g(x--, t)dx <-en’(eTrt)-d/a l,, exp (_Ix-:[-----8[xl’)4t dx.
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By the standard device of completing squares one finds that
a

4t 4t 1+46t’

where

(= (1 +4t3t)a/2x-(1 +46t)-a/2.
Thus

TA(, t) <-_ eR2(47rt)-d/2 e -112/(1+4t) fa e

or, with the change of variables v r//,

-1712/4t dx

Since

’YA( t) <= eR2{rr(1 + 4tSt)}-d/2 ( fua e -lv12 du) e -lglz/(l +4t)

and

{’n’(1 + 46t)}-a/2 Iua e -Iv12 du (1 + 4tt)-d/2 <= 1

8 8 1
1 + 4at- 1 + 2aT 4T

for [0, T/2], it follows that (2.1) holds with K e R2/2T.

3. Proof of Theorem C. Suppose that u g tx H+(Sr). Since (a, b]= for
every interval (a, b l, it follows from Theorem B that

lim | u(x, t) dx tx(a, b)
t,0 d(a,b]

for all intervals (a, b] such that (O(a, bl)- 0.
Define the measure

v(A)=- Ia e-lt12/4rtx(d)

for A e Yd. In view of (1.2) and g tz H+(ST),

(3 1) u(Rd) f e -112/4T /z (d:) < +c.
d

For each e {1, 2, , d} and s e IR let

His {X d x

that is, let His denote the hyperplane x s. Clearly Nd U sn His for each fixed I. Let
pl {S : u(Hls > 0}.

Then

(3.2) pl= U pl,
n=l
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where

Pln s ":
1 11}-<(H’s)<=

I claim that for each {1, 2,..., d} the set P is countable.
Suppose for contradiction that P is not countable. Then, in view of (3.2), there

exists an integer n => 1 such that pt, is not countable. Let {si} be a sequence of distinct
elements of P,. For all positive integers N,

N

U H cRD,
j=l

so that
N N

H- E ,( ,) <-
n i=1

However, since N is arbitrary and N/n +c as N +c, this contradicts (3.1).
pl.Let E 13 = Then E is countable and s [\E implies

u(Htt) In e-IF/4rtz(d) 0

for every {1, 2,. , d}. In particular, it follows that

(3.3) /x(S) O,

where $ is any bounded subset of any hyperplane H’s with {1, 2, ., d} and s N\E.
Since E is countable, N\E is everywhere dense in N, and it is an easy matter to

construct a countable dense subset O of N\E. For example, fix q0 e R\E, and for each
positive integer n choose a sequence {q,i" j 0, + 1, +2,...} such that qno qo and

j
q,q qo+

2 22+,, qo+ + f"l (I\E).

Then, as is easily verified,

O U {q,’]=0,+l,+2,...}
n=l

is a countable dense subset of R\E.
If (a, b Io then 0(a, b is a finite union of bounded subsets of hyperplanesH for

{1,. , d} and s Q c \E. According to (3.3), /x (0(a, b]) 0. Therefore u has
initial distribution

Now assume that u H+ has initial distribution/z. By definition, this means that
there exists a countable dense subset Q c [ such that

and

(O(a,b])=O

(3.4) lim | u(x, t) dx lz (a, b)
t$O d(a,b]

for all (a, b Io. On the other hand, since u s H+ it follows from Theorem A that there
exists a unique p M+ such that u g p. Moreover, by Theorem B,

(3.5) lim f .(x, t) dx p(a, b)+ f A()O(d).
t,[,O d(a,b] dO(a,b]
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I claim that

(3.6) o(a, b]=/z(a, b] for all (a, b]Io.

In view of (3.4) and (3.5), in order to prove (3.6) it suffices to prove that

O(O(a,b])=O for all (a,b]Io.

Fix (a, b] Io. Since Q is dense in R one can choose strictly monotone sequences
{a ,.} and {bi} in Q such that

a,a, a,a, b,.b, bb
as n + Let a, (a b,, a,d) and b, (b, b,a). Then (a Iowith

(a. b +-, ,]+(a,b] and (a +,b.](a,b]
as n +. Moreover,

S. (a., b ](a +, b ]+O(a, b ].
Observe that

(S,)=(aS, b+.]-(a + b-]=lim( udx-lim( udx
tO a,b] tO a,b]

lim [ u dx e 0() e 0 (O(a, b ]).

Therefore, SO(a, b] implies that

0= (o(a, hi) eo(O(a, hi).

If (a, b] and (a’, b’] are arbitrary intervals, then

(a, b] (a’, b’] (a v a’, b b’]

where

aa’=(aa,...,aaaS) and b

In particular, if (a, b and (a ’, b’] both belong to Io then (a, b (a ’, b’] either belongs to

Io or is empty. Thus {Io, } is a -system. Let * denote the -field generated by
{Io, }. I claim that N*= .

Let G be an arbitrary open subset of Ne. Since O is dense in N, for each x e G there
exist a and b in Oa such that

xe(a,b)c[a,b]cG.
Thus

x

Each (a, b] Io and Io contains only countably many distinct intervals. Therefore
every open subset G c Na is a countable union
contains the open subset of Ne, so that N c N*. On the other hand, for each (a, b] Io
there exist decreasing sequences {b} in O such that bb as n +m for each
j{1,. , d}. Set b (b,. ., ba). Since

(a,b]= (a,b),
n=l

it follows that* is generated by a subclass of the open subsets
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The measures p and/z are both o--finite and defined on the o--field generated by
the 7r-system {It), 3}. Moreover, according to (3.6), they agree on {Io, }. They
therefore agree on [3, Thm. 10.3]. That is, if u H/ has initial distribution/x, then
/x p, where p is the unique element of M/ such that u g p.

4. Generalizations. All of the results given above for nonnegative solutions of the
heat conduction equation can be extended to nonnegative weak solutions of divergence
structure linear parabolic equations. Consider the equation

(4.1)
0u

Au,
Ot

where, with the convention that repeated indices are to be summed from 1 to d,

A
O lAi](x, t)

0 }=-- +C(x,t).
Oxi -xi + ai(x, t) + Bi(x, t)

0

Ox

Assume that the coefficients of A are bounded measurable functions in Re x [0, T] for
some T e R+, and that there exists a constant A e R+ such that Aii(x, t)ilji --> A 112 for all
e Re and (x, t) e Ra x [0, T]. The results which I will describe here actually hold under

somewhat less stringent conditions on the coefficients of A. Further details can be found
in [1].

A function u u(x, t) is said to be a weak solution of (4.1) in ST Re X (0, T) if

u L(, T; L?o(Ra)) f3 L2(6, T; Hl;2c
for all 6 6 (0, T), and u satisfies the integral identity

Is ( Oq Ou Oq Oq BOU )-u+Ai+Aiu q Cuq dx dt 0
r Ot OXi IOX.i OX.i

for all test functions q e C0 (St). Here Hll,;c2 (Rd) denotes the space of functions on Rd

whose gradient in the sense of distributions belongs to L2oc(Ra). Among the various
representatives of any weak solution of (4.1) there is always one which is continuous in
St. Thus it makes sense to speak of the value of a weak solution at a point.

In [1] it is shown that (4.1) possesses a weak fundamental solution ka(X, t; , "r).
Thus, for example, the weak solution of (4.1) in Sr which satisfies u(., 0)= 0 (in the
appropriate sense) is given by

U(X, t)= f kA(X, t; , 0)0() d:.
d

One of the principal results in [1] is an estimate for kA in terms of the fundamental
solutions g(x, at) of equations of the form

Ou

Ot

Specifically, there exist constants c e R+ +
a2 R and C _-> 1, which depend only on T, A

and the bounds for the coefficients of A, such that

(4.2) C-g(x-, al(t--’))<=kA(x, t; , ’)<=Cg(x-, ce2(t-’r)).

Let H-=.HI (St) denote the class of nonnegative weak solutions of (4.1)
in St. The following generalization of the Widder representation theorem is proved
in[l].
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THEOREM A’. If u H, there exists a unique p M+ such that

u(x, t)= Ind kA(x, t; , O)o(dj).

If

U kAp(d)HA(ST)
d

then, in view of Theorem A’ and (4.2),

Therefore

(4.3) Ind e-121a/4aT T)d/2Up(d) <- C(4ra (0, T) <

Note that this is the analogue of (1.2).
For A e @, define

(, t) fa kA(X, t; , O) dx.A,A

It follows from (4.2) that XA,A is bounded on St. Thus
+XA,A()=IimsupUA,A((, t) and ,A()=liminfUA,A(, t)

to to

are well defined on a. Set

A{s +
NA,A () NX,A ()},

and define

UA,A() UA,a() for # e a.
[1, Lemma 8] and (4.2) imply that

1 for s(4.4) A,A()
0 for e nJX.

Therefore A c OA.
THEOREM B’. Let

U(X, t)= | kA(X, t; , O)o(d)H.
d

IfA is bounded and p (A 0 then

lim IA u(x, t) dx o(i) + fot,l,O A

The proof of Theorem B’ is essentially the same as the proof of Theorem B. By
Tonelli’s theorem

t) dx IN A,A(, t) d,
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where, since p(A)=0, ;gA,A(", t) XA,A p-almost everywhere. In view of (4.2),

t) <= C fA g(x cezt) dx.A,A(,

By an argument similar to the one employed in 2, one can show that there exist
positive constants C’ and T’ depending only on C, T, A and A such that

O<--_A,A(, t)<=C e -112/4’T for all (, t)eRa(0, T’].

(For further details see [2].) Since, according to (4.3), the function C’ e -It/i2/4alT is
o-integrable, the assertion follows from the dominated convergence theorem and (4.4).

The definition of initial distribution given in 1 applies without change to u H.
Apart from some measure theory, the proof of Theorem C given in 3 uses only the
representation and inversion theorems and the estimate (1.2). The analogues of all
these results are available in the present case to prove the following result.

THEOREM C’. tl H has initial distribution Ix M
+ if and only if

u(x, t)= | ka(x, t; s, 0)/x (d).
d

Finally, there remains an interesting open question. Does the set A actually
depend on the differential operator A or is it independent of A within the class of strictly
elliptic divergence structure operators with bounded measurable coefficients? To
answer this question, it is likely that one will need more refined estimates for the
fundamental solution than those given by (4.2).

Appendix. For each d_-> 2 there exist bounded open subsets A Rd such that
A * . To construct an example of such a set let

and

rj=2-(i-1)2, l=2--/2), ci=1/2(ri+l), dj=1/2(ri++li)

forf= 1, 2,.... The set

A ={x d. //<IX[<

A- kA Aj
]---1

is open and bounded. Moreover, {0} c OA. I claim that

(A.1) {0}ca*.
Write

)tA (0, t)= E g(x, t) dx,
j=l

and introduce d-dimensional spherical coordinates with z ix[/x/- to obtain

’a(O, t)=
F(d/2) ./,/-7

za- e dz.

+Note that the integrand z a-’ e achieves its maximum value for z e at z z
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For each k 1, 2,... choose tk SO that the interval

x/4t--’
is centered at z*, that is, choose

Then

2 rkz*/ck
d-1

| Z(A.2) 7A(O, tk) >
F(d/2) "lkz*/ck

Since

it follows that

rk 2k_3/4

rkZ* 2z*
=2z*
Ck 1 + Ik/ rk

2Z*
1 + rk/Ik

and

Ikz *
Ck

as k - +c. Thus, in view of (A.2),

(A.3) y(0)_->
F(d/2)

z- e dz =- Ud.

For each k 1, 2,. .,choose Sk SO that the interval

is centered at z*" that is choose

Observe that

2{[’+’z*ld.o(A.4) YA (0, Sk) <
It/Z)

Now

d-1 e-Z dz + z d- e dz
kZ*/dk

Consequently,

and

rk+lZ

dk 1 + lk/rk+l

IkZ *
dk

2z*
1 + rk+l/lk
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as k -+ +oo. It follows from (A.4) that

f d-1(A.5) A (0) <
2
= Z e dz
r(d/2) Jzz,

In view of (A.3) and (A.5), to prove (A.1) it suffices to prove that Ld < Ua for all
integers d _-> 2. However, Ld + Ud 1, SO that it is enough to prove that

Ld<1/2 ford=2,3,....(A.6)

It is easy to verify that

Moreover,

-z -2 1
L2=2 ze dz =e <2

L3 2 + e dz

Since Z 2-> 2z for z -> 2 it follows that

( f2
+

) -4 1
L3 <= 2e -4+ e -2z dz e <-.

2

Thus it remains to be shown that (A.6) holds for d => 4.
Write

d-1 --z2/2z e =ze q(z),
where

q(z)zd-2e -z2/2.

The function q(z) achieves its maximum in + at z /d- 2 and is strictly decreasing for
z >/ 2. Note that /d 2 < 2z* /2(d 1). Therefore q(z) <-_ q(2z*) for z _-> 2z*
and, in view of (A.5),

(A.7) Ld <
2

*) I2 -z2/2 2 )}d/2-1 -2d-1)F(d/2-------q(2z z e dz --{2(d- 1 e, r(d/2)

Suppose that d 2m for an integer m _-> 2. Then, according to (A.7),

Ld < e
F(m)

(2m 1)m-1

Robbins [4] has proved that for n -> 1

(A.8) n x/nn+l/2 e-n
where

Hence

and

-2(2m-1)

e

1 1
<rn<12n+1 12n

F(m)= (m 1)! > 4r (m 1)m-l/2 e -(m-l)

td<
2m-1/2 (2m 1)m-1 -3m+le
/ (m--l)m-l
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It is easy to verify that for m -> 2

2m-1
<-3

m-1

Therefore

(m 1)1/2
< 2_3/2and

2m-1

< 1=2"’-23" eLa -3m+l 1 1
._exp (m(log 6- 3)+ 1 2 log 2)-<_.0342 <-

2

ford=2mandm>=2.
For d 2m + 1,

Since

it follows from (A.8) that

where

Ld

22m m-1/2 -4mLa < m e=F(m + 1/2)

24m-1 (m 2 m-l
-3m m)

e
4 (2m- 1)2m-1/2

R(m)

It is easily verified that for m => 2,
2 2

(2m- 1)2=4 2m-I

R(m)e

Therefore

12m+1
12(m 1)(24m 11)"

-1/2

R (m) <- R (2) .0563

<122m-3/231/2 -3re+R(2) 1 1 3
La=/- e /--- exp (m (log 4- 3) +-log2 3- log 2 + R (2))

1
-<.01449...<-

2
for d 2m + 1 and m -> 2. This completes the proof of (A.6).

Acknowledgment. I am indebted to Professor Calvin H. Wilcox for bringing these
problems to my attention and for several helpful discussions.
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A THEOREM CONCERNING UNIFORM SIMPLIFICATION AT A
TRANSITION POINT AND THE PROBLEM OF RESONANCE*

YASUTAKA SIBUYAf

Abstract. Given sectors /= {e aj < arg e < bj, 0 < [e <P (1 _-<j =< ,) and functions 6i (1 =</" =< v) such
that (i) U 9i {e 0 < [e [<p }, (ii) 6 is holomorphic in 6ej, (iii) 6j is asymptotically zero as e 0 in 6ej, (iv)
I()-()[<=coexp{-ca/ll in N6e for some positive numbers Co, Cl andh whenever Nk # ,
we prove that 16 (e)[ =< c2 exp {-c 1/[e in 9i for some positive number c2. Then, utilizing this result, we prove
that the Matkowsky condition implies resonance in the sense of N. Kopell under a reasonable assumption.
The sufficiency of the Matkowsky condition with regard to Ackerberg-O’Malley resonance has been an open
question. This work gives an affirmative answer to this question in a reasonably general case.

1. Introduction. The main result of this paper is the following theorem:
THEOREM 1.1. Let

(1.1) G.={e;aj<arge<bj, O<[el<p}, j=l,...,u

be sectors in the complex e-plane, where p is a positive number and the a’s and the b’s are
real numbers. Let 61(e), ", 15 (e) be functions of e. Assume that

(i) u =u. o<1 1<o};
(ii) 3j (e) is holomorphic in .
(iii) 3.(e) is asymptotically zero as e --> 0 in ., i.e.,

", N-0, 1,... in
for some positive numbers KN

(iv) if . k # ;, we have

(1.2) [6i (e) 6k (e)1----< Co exp (]---)-cl in fq,
]’or some positive numbers Co, C and .

Then there exists a positive number H such that

(1.3) 16 (e)l _-<H exp (-)-c in , ] 1, 2,..., v.

We shall prove this theorem in 8. (For another proof, see J.-P. Ramis [5, Thm.
1 l(i), p. 189].) In other sections, utilizing Theorem 1.1, we shall treat the following
problem.

We consider a differential equation

d2v dv
(1.4) ex2 +F(x, e )-x + G(x, e )v O,

where F and G are holomorphic in two complex variables x and e in a domain

(a.s) x e I< oo,

where o is a domain in the x-plane and Oo is a positive number. We assume that o
* Received by the editors August 7, 1980. This work was partially sponsored by the National Science

Foundation under grant MCS79-01998 and by the U.S. Army under contract DAAG29-80-C-0041. This
paper was prepared while the author was at the Mathematics Research Center, University of Wisconsin-
Madison, Madison, Wisconsin 53706.

? School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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654 YASUTAKA SIBUYA

contains a real interval

(1.6) 0 {x; -a _-<Re (x) =<b, Im (x) 0},

where a and b are positive numbers. We also assume that

(1.7) F(x, 0) -2x.

We say that the differential equation (1.4) satisfies the Matkowsky condition, if
there exists a nontrivial formal power series solution of (1.4),

(1.8) v Y’. am (x)e",
m----0

such that all the a,, (x) are bounded on the real interval -o. We also say that the
differential equation (1.4) exhibits resonance in the sense of N. Kopell on 50 i there
exists a solution v (x, e) satisfying v (b, e)= 1, such that v (x, e converges uniformly on
5o as e - +0 to a nontrivial solution of

dv
(1.9) F(x, O)-x+G(x, O)v =0

(cf. B. J. Matkowsky [4] and N. Kopell [2]).
We shall prove the following theorem:
THEOREM 1.2. Ifo is a disk with the center at x O, i.e.,

(1.10) 0={x; Ixl<r0} forsome r0>0,

then the Matkowsky condition implies resonance in the sense of N. Kopell.
In our argument, the assumption that F and G are holomorphic in (x, e) in a

poly-disk (1.5) is indispensable. In our proof, we follow roughly the guideline given by
R. McKelvey and R. Bohac [3]. It seems to us that our results yield a sharp estimate for
eigenvalues studied by P. P. N. de Groen [1]. In 2, we discuss a more general case.

Throughout this research, the author enjoyed lively discussions with N. Kopell,
B. J. Matkowsky and P. P. N. de Groen.

2. A standard form. Let p0 be a positive number and let be a domain in the
complex :-plane which contains a real interval

(2.1) {; -a _-< Re (:) _-< fl, Im (:) 0},

where a and/3 are positive numbers.
We shall consider a linear differential equation:

dv dv
(2.2) e-5+f(:, e)-+g(:, e)v O,

where f and g are holomorphic in two variables : and e in the domain

(2.3)

Set

(2.4)

We assume that

(2.5)

(2.6)

fo( f(, o).

fo(O)=O, f(o)o,

:fo(s)<O fore ifs 0.
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Under this situation, we can write fo as

(2.7) fo(sC) h (),

where h (:) is holomorphic in and

(2.8) h(:)<0 for:5.
Let us change the independent variable by

(2.9)

Then, (2.2) becomes

(2.10)

where

}
1/2

x =q(sc) { fo(t)dt

2d v dv
S -x +F(x, s -x + G(x, s )v =0,

(2.11) F(, e) (# ,)-2{q 7 + e"}, o(, e) (’)-g.

Since fo =-2qq’, we have

(2.12) F(x, s)=-2x +ek (x, e),

and k (x, e) and G(x, e) are holomorphic in a domain

(2.13) X@o, lel<po,

where @o is a domain in the x-plane which contains the real interval

(2.14) o={x;-a<=Re(x)<=b, Im(x)=O},

where

(2.15) a fo(t) dr, b fo(t) dt.

(2.16)

Another transformation"

v=wexp - F(t,e)d

takes (2.10) to

(2.17) 82d2w{ )2 (lOF )}--x F(x, e + e - -x (X, e G(x, e) w =0.

Note that

(2.18) 12(lOFG) x-F + e - -x + sR (x, s ),

where R is holomorphic in (2.13).
Remark. To find the domain 0, we must take into account not only singularities

of f and g, but also singularities of q, i.e., the transformation (2.9). In particular, any
zeros of fo would yield branch-points with respect to x.
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3. Formal simplification. It is known that there exist three formal power
series in e"

(3.1) A(x,e)= Z A,,(x)e’,
m=0

(3.2) B (x, e) Z B (x)e’,
m=0

(3.3) C(e) , C,,,e,
such that

(i) A,, (x) and B, (x) are holomorphic in the domain 0;
(ii) C,, are constants;
(iii) the formal transformation

(3.4)

takes (2.17) to

w =A(x, e)u +B(x, e) e

(3.5) e
2d2u {x + )}u =0;

(iv) we have

(3.6) Ao(x)2- (XBo(X))2 1 identically in 0.
To effect the transformation (3.4), we differentiate both sides of (3.4) with respect

to x. Then, we derive

(3.7) e-r-=(eA’+(x+eC)B)u +(A +eB’) e

and

(3.8)

2d2w
e -xa=(e(eA’+(xZ+eC)B)’+(x2+eC)(A +eB’))u

+((A’+(x+C)B)+(A +B’)’)

where denotes O/Ox. Since e 2 (d2w/dx 2) (X2- eR)w, we derive the following equa-
tions on A, B and C"

(3.9)
(xZ+eR)A e(eA’+(xZ+eC)B)’+(xZ+eC)(A +eB’),

(xZ+eR)B =(eA’+(x2+eC)B)+e(A +eB’)’.

In particular, if we put

we have

X Ao, Y xBo,

dX= Ro(x Co y,
dx 2x

d__Y= Ro(x Cox,
dx 2x
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where Ro(x)= R (x, 0). Hence

d(X2- y2)
dx

0 identically.

Choose Co R0(0) and the initial condition: X(0)= 1, Y(0)= 0. Then, we can deter-
mine Ao, Bo and Co so that (3.6) is satisfied. Other coefficients A,,, B,, and C,, can be
determined in a similar way.

By virtue of (3.6), we can solve (3.4) and (3.7) with respect to u and e du/dx:

(3.10)

where Ejk are formal power series in e whose coefficients are holomorphic in 0. In
particular,

(3.11)
E11(x, 0) E22(x, 0) Ao(x),

E12(x, 0)=-Bo(x), E21(x, O)=-x2Bo(x).
Note that

(3.12) Co Ro(0) 1 + 2
g (0, 0)
f6(0)

4. Outer expansions. A formal power series in e"

(4.1) v= Y a,,(x)e’,
m=0

is called an outer expansion associated with the differential equation (2.10), if (4.1)
formally satisfies (2.10). The power series (4.1) is an outer expansion if and only if

dao
-2x---x + Go(x)ao O,

(4.2)
da,,,

__2x___x +Go(x)am=Lm(x
d2am-(x)

dx 2 m >=l,

where Go(x)=G(x, 0) and L,,(x) is linear homogeneous in ao,"’,a,,-a and
dao/dx, ., da,,_/dx with coefficients holomorphic in o.

DEFINITION 4.1. The differential equation (2.10) is said to satisfy the Matkowsky
condition, if there exists a nontrivial outer expansion (4.1) such that all the a,, (x) are
bounded on the real interval 50 (cf. (2.14)).

LEMMA 4.2. The differential equation (2.10) satisfies the Matkowsky condition if
and only if Co is a negative odd integer and

(4.3) C,, 0, m => 1.

Proof. The transformation

(4.4)
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changes (3.5) to

dZy dy
(4.5) ed--- 2Xx-x (1 +C)y =0.

By a straightforward computation, we can prove that the differential equation (4.5)
satisfies the Matkowsky condition if and only if Co is a negative odd integer and C, 0
for m -> 1.

Note also that, if all the a,, are bounded, then all the da,,,/dx are bounded.
Otherwise, d2a,,,/dx 2 would have much worse singularities at x =0, and hence a,+l

would be unbounded (cf. (4.2)).
Finally, by manipulating with the transformations (2.16), (3.4) and (3.7), and (3.10)

together with (4.4), we can show that the differential equation (2.10) satisfies the
Matkowsky condition if and only if the differential equation (4.5) satisfies the same
condition. This completes the proof of Lemma 4.2.

5. Uniform simplification. Hereafter, we shall assume that

(5.1) Co =-p, where p is a positive odd integer,

(5.2) C. 0 for m _-> 1,

(5.3) o {x Ix < to} for some ro > 0.

The assumption (5.3) means that @o is a disk of radius ro with center at x 0.
Let us choose two positive numbers rl and r such that

(5.4) O<rl<r<ro

and that the disk

(5.5)

contains the real interval 0 (cf. (2.14)).
Let us denote by T (x, e) the 2 x 2 matrix:

A(x,e)
(5.6)

eA’(x, e)+(x2-ep)B(x, e)

(cf. (3.4) and (3.7)). Set

(5.7) U=[ u ]e du/dx

Then the formal transformation

(5.8)

takes the system

(5.9)

to

B(x,e) ]A (x, e) + eB ’(x, e

w

W T(x, e)U

[ o
e-x xZ+eR(x,e)

du[ o
(5.10) e-dx x-ep
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The inverse of the matrix T(x, e) is given by

(5.11) T(x’ e)- [E11(x’ e) Ezz(x,E12(x’ elie
(cf. (3.10)).

Set

(5.12) 2 ={x; Ixl<r}.
It is known that there exist two positive numbers p and P2, a function 6 (e), and a 2 2
matrix P(x, e) such that

(i) 3(e) is holomorphic in the sector

(5.13)

(ii) 6 (e) is asymptotically zero as e 0 in 9, i.e.

(5.14) N=0, 1,2,... in

for some positive numbers KN;
(iii) entries of P and p-a are holomorphic in the domain

(5.15) x

(iv) P (resp. p-l) admits the matrix T (resp. T-1) as an asymptotic expansion as
e 0 in 5 which is valid uniformly in

(v) the transformation

(5.16) W=P(x,e)V

takes (5.9) to

(5.17) exx xZ-e(p +(e))
V

in the domain (5.15) (cf. Y. Sibuya [6]).
Utilizing this result and manipulating with rotations of the disk @2, we can prove

the following lemma:
LEMMA 5.1. There exist sectors

(5.18-/’) 9.={e;ai<arge<bj, O<le[<o3}, /=1,2,...,k

(where 03 is a positive number and the a’s and the b’s are real numbers), functions
6a(e), 6k(e), and 2x2 matrices Pa(x, e), ,Pk(x, e) such that 9a U. (J gk
{e 0 < le] < 03} and that

(i) 6j (e) is holomorphic in .;
(ii) 3. (e) is asymptotically zero as e

(iii) entries of Pi and p-a are holomorphic in the domain

(5.19-j) x E ., e;
(iv) P (resp. p[a) admits the matrix T (resp. T-1) as an asymptotic expansion as

e 0 in which is valid uniformly in ;
(v) the transformation

(5.20) W P (x, e V
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takes (5.9) to

(5.2 4)

in the domain (5.19-]).
6. An estimate for gj (e). In this section, as an application of our main theorem (cf.

Theorem 1.1), we shall derive an estimate

[ \__/.2
(6.1) [8(e)[-</-/ exp--) fore .,
where/-/, is a positive number. To do this, it is sufficient to prove that, ifS f # , we
have

(6.2) ]6,(e)-6i(e)]<-Moexp(-) fore ,
whereM0 is a positive number. To derive an estimate (6.2), we need some preparation.

Let us consider the differential equation

(6.3)
daz
dt

(t-a)z 0, where a is a parameter.

This equation admits a solution

(6.4) z =Z(t,a)

such that
(i) Z is an entire function in (t, a),
(ii) limt_.+oo (1-a)/2 et2/2Z(t, a) 1

uniformly in a if a is in a compact set in the a-plane. The solution Z (t, a) is uniquely
determined by (i) and (ii). The functions Z ((-i)t, -a), Z (-t, a) and Z (it, -a) are also
solutions of (6.3). Set

(6.5-0)

(6.5-1)

(6.5-2)

=rz(t,a) z((-i)t,-a) ]XIto(t, a)
[.Z ’(t, a) (-i)Z ’((-i )t, -a

[ Z((-i)t,-a) Z(-t,a) ]xIt(t, a)=
(-i)Z’((-i)t, -a) -Z’(-t, a)

[ Z (-t, a) Z (it, -a) ]xlt2(t, a)
I--Z’(--t, a) iZ’(it, -a)J’

and

(6.5-(- 1)) xIt_,(t, a)= I’[ Z(it,-a) Z(t, a)jqiZ ’(it, -a Z ’(t, a)

where’ denotes O/Ot. These four matrices are matrices of independent solutions of (6.3).
Set

(6.6) h l(a) 2-a/2 e i(a+l)/4
r((1 a)/2)’

h2(a) (-i) e ai/2,
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and

(6.7)

Then

(a)
2(a)

(6.8)
qto(t, a) qtl(t, a)Cg(a),

qt2(t, a) xlt_(t, a)qg(a),

xIt(t, a) 2(t, a)(-a),

xIt_(t, a) XIto(t, a)(-a).

Fix and j so that 5el f3 # . Choose a branch of e 1/2 in the sector 5el f3 5. Set

81/2

and

dPl h (X, e A(e )XIth(8- ),P+l(8")
(6.10-h) h =-1, 0, 1, 2.

,p+()

Then, l,o(X, e), l,l(X, 8"), l,2(x, 8") and l,-l(X, 8") (resp. j,0(x, 8"), ,a(x, 8"), ,2(x, 8")
and ,-l(X, 8")) are fundamental matrix solutions of (5.21-1) (resp. (5.21-])) such that

)l,o(X, 8,)"-’l,l(X, 8" )((p "’l(E )),

,(x, e) I,,(x, e)(-p -,()),
(6.11-l)

>,_(x, )= ,o(X, e)(-p-()),

and

(6.114)

Set

(6.12)

and

(6.13)
Ql,h (X, 8" fIJl,h (X, 8" exp {(- 1)h

Qj,h (X, e d,h (X, e exp { (--1)he J},
h =-1, 0, 1, 2.

It is known that, if (x, 8") is in a domain

(6.14-h) xE2, 8"eff’l9/., arg -Tr-hTr
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2

Hence, the matrix

where u is a small positive number, we have

(6.15) I[Q,h(X, e)ll<--H[e[q, [[Oj,h (X, e)-X[l_-<H[elL
whereH is a positive number depending on u, q is a real number and []. denotes a usual
norm of matrices. Furthermore, the matrix

(6.16) QLh (X, e Ol,h (X, e

is asymptotically zero as e 0 in i (q uniformly in the domain (6.14-h). (For these
results see, for example, Y. Sibuya [6], [7].)

Let Pl(X,e) and P(x,e) be the matrices given in Lemma 5.1. Then,
Pl(X, e)dPl,o(X, e) and P (x, e),0(x, e) are two fundamental matrix solutions of (5.9) in
the domain

(6.17) x 2, El
Therefore, there exists a 2 2 matrix L(e) such that

(6.18) Pl(X, e)l,o(X, e)= P.(x, e)i,o(X, e)L(e).

Note that L(e) does not depend on x. It follows from (6.18) that

exp O,o(x, e)-Pj(x, e)-P(x, e)O,o(x, e).

(6.20) exp {--eJ}L(e) exp {-eJl-12
is asymptotically zero as e 0 in 91 fq 5 uniformly in the domain (6.14-0), where 12 is
the 2 x 2 identity matrix.

In the same way (manipulating with the connection formulas (6.11-/) and (6.11-])),
we can prove that the matrix

(6.21) exp Ll(e) exp --e 12

is asymptotically zero as e -> 0 in if) uniformly in the domain (6.14-1), where

(6.22)

Also, the matrix

La(e C(p + 3i(e ))L(e )C(p + 6,(e ))-1.

2 2

(6.23) exp{eJ}L2(e)exp{ -e } 12

is asymptotically zero as e -->0 in l Yl- uniformly in the domain (6.14-(-1)), where

L2(e) c(_p 6i(e ))-,L(e )C(_p 6l(E ))"(6.24)

Set

(6.25)
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Then

(6.26)

and

{A l(P + 6j (e))c 11(e) + Cza(e)}
A(p +(e))

(p +,()){(p +())c()+c()}
*(p +,())

21(8) A I(--P 31(8 )) 11(8 + A 2(--P 31(8)) 12(
(6.27)

A (-p 6i (e {A ,(-p 8l(e))c2 (e) +A2(-P 81(e ))c22(e)}.
(-p -())

Utilizing the fact that, for any e , there exists an x 2 such that
(i) (x, e) is in the domain (6.14-h),
(ii) x/e/ takes either a real value or a purely imaginary value,

we derive from (6.20), (6.21) and (6.23) that

1) 11(8 )- 1 and 22(8 )- 1 are asymptotically zero

as 8 -0 in OWl

for e 51 f3 -, where c is a positive constant;

4) ](2(e)c exp ()
for 8 5l (3 5

for 8

Set x(a)= ,l(a)/&2(a). Then

[/.t (-p l (8))11 (8) -/2, (-p (j (8))22(8 )1
I/x (-P (l (8)){ 11 (8) 22(8 )} + {/2, (-p (l (8)) -/./, (-p 6j (8))}c22(8 )[

m/,
2

=< exp (--) in 6e/f3

for some > 0. Since/x (-p) 0, we have

(6.28) Ic(8)-c22(e)1<=c11(8)-(8)1+c2 exp(r_)
in ol for some c > 0 and c2 > 0. On the other hand,

IA (p + 6i(e ))c a(e -A a(P + 1(8 ))c22(8 )1
I{A(p + 6j (8)) ha(p + (l (8))}C 11 (8) "/1(P +l (E)){C 11 (8) C22(8 )}l

nr2=<-exp(--) in(3
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for some > O. Since A (P) 0 and (dA 1/da) (p) # O, we have

(6.29) 161(e)--6j(e)l<--c31Al(P+61(e))l Ic11(e)--c22(e)l+c4 exp[

for some c3 > 0 and c4 > 0o An estimate (6.2) follows from (6.28) and (6.29).

7. Resonance. In this section we shall prove Theorem 1.2. To do this, we return to
5. We proved there that the transformation (5.16) takes the system (5.9) to (5.17) in

the domain (5.15). The function 6(e) satisfies the condition (5.14). We replace (5.14) by

(7.1) I()1 =<H exp in 9

for some positive number H.
Set

(x, e) A()% (x/ ’/, p + a()),
(7.2) h =-1, 0, 1, 2.

h (X, 6 a(e)h (x/e 1/2, p),
Then, h (X, e) (resp. h (X, e)) are fundamental matrix solutions of (5.17) (resp. (5.10))
such that

(7.3)

and

(7.4)

Set

(7.5)

Then the transformation

l)l(X E)’-2(X,
,(x, ) ,_(x, )(p),
(-I(X, E )o(X, E )(--p).

S (x, e) o(X, e)o(X, e)-.

(7.6) V=S(x,e)U

takes (5.17) to (5.10). Hence, the main part of the proof is to show that S(x, e)- 12 is
asymptotically zero as e- 0 in 5e uniformly in 1. Note that r <r. To do this we
manipulate in a way similar to the arguent in 6, utilizing the fact that

(i) 6(e)exp{xE/e} and 6(e)exp{-x2/e} are asymptotically zero as e 0 in 6e
uniformly in 1;

(ii) C(p +6(e))C(p)-l_ 12-- O(6(e));
(iii) c(_p _6(e))(_p)-l_ 12 O((e)).

The details are left to the reader.

$. Proof ot Theorem 1.1. We shall prove Theorem 1.1 in the case when u 3. The
general case can be treated in the same manner. We shall consider three sectors 51, 62,
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o’Cg3 as shown in Fig. 1. We denote by ’-’1,2, ’-92,3, ’-/93,1 the intersections
ow3 f3 5el, respectively.

1,2

S2,

FIG.

The three functions 61 (e), 62(e), 63(e) are holomorphic in owl, o/92, ,jC/93, respectively.
Furthermore,

(8.1) 6j (e) is asymptotically zero as e - 0 in ,
and

(8.2) [6j +1 (e) 6. (e)[ _-< Co exp (--)-cl in j,j + 1,

where Co, Cl, A are positive numbers and 3,4 5e3,a, 64 =61. We shall denote 6j+l(e)-
6j(e) by r (e).

We consider a sufficiently small disk:

(8.3)

We choose three line-segments 11, 12, 13 starting from e 0 in such a way that

(8.4) l. c ,.+1 (cf. Fig. 2).

Y1
Y2

3

FIG. 2

Three line-segments 11, 12, 13 divide the disk @ (cf. (8.3)) into three open sectors,
2, 53 (cf. Fig. 2). The boundaries of 1,572, 53 are respectively

(8.54) li-1 + yj -l, j 1, 2, 3,
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where l0 13, and the y’s are circular arcs such that

(8.6)

The line-segments lj and the circular arcs yj are oriented as indicated in Fig. 2. We
assume that po is so small that

(8.7)

where . denotes the closure of 5/.
Set, for e 1 mJ2 U3,

(8.8) 8()=() ife.
Since

we have

2ri -,+vi-lj :- e

Utilizing

we derive

1 N N+I

--(m +i) ]()

+{1 ’Ii u;6 (:) d}eu+l-j=l +’yj--lj (

Since 6 (e) is asymptotically zero as e - 0 in 5i U2 U3, the first term must be zero,
and hence

Thus we arrive at the following formula:

(8.9)
1 { 3

Ii cri(:)
(E)--/ j=l N (__) d + fe N6(#)-e d}eN

for e 5, U2 U53 and N 1, 2, 3, , where o-j
Construct three open sectors 57a, 2, 3 as shown in Fig. 3, where 0 <p <p0 and 0

is a small positive number. Then

< Co 1
N--1

Po Po--Pl
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j

radius p
i

radius PO

FG. 3

and

d8 CO f Po

sin 0 o
--N exp (-c it- dt

CO fo
+

sin 0
(NA --1--1) exp (-c r) dr

-Asin--c ]- F

for e 5 U if)2 J frO3, where Co is a positive number. Since

F --< Ca e-(N/a

for some C > O, we have

e[ N -(/a)(8.10) 16 (e )1=< C2\ ca /
e

for e a U P2 -J o’93; C1 is a positive number. For a given e, choose N so that

N ca N+I
--< i---T =<

Then, it follows from (8.10) that

(8.11) la(e)[ C2 e 1/a exp (TT.-Cl)
Choosing 11, 12, 13 in various ways, we can complete the proof of Theorem 1.1.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO MULTIPLE LOOP
POSITIVE FEEDBACK SYSTEMS*

JAMES F. SELGRADE

Abstract. This paper shows that the asymptotic behavior of solutions to a system of ordinary differential
equations which models multiple loop positive feedback in biochemical control circuits is similar to the
asymptotic behavior for single loop positive feedback systems. Specifically, the positive orthant is positively
invariant and positive-time solutions are bounded. The critical points in the positive orthant are ordered by
strict inequality. Each critical point is either asymptotically stable or unstable. Each nondegenerate unstable
critical point has two orbits leaving it in opposite directions and each of these orbits is asymptotic to the
adjacent critical point. The regions of attraction of the critical points are studied. In particular, for dimensions
two and three, the stable manifolds of the unstable critical points separate the positive orthant into regions of
attraction. Thus the orbit of each point is asymptotic to some critical point.

1. Introduction. Product feedback occurs in many biological and biochemical
processes [1], [4], [5], [6], [8], [9], [13], [14], [16], [17], [18]. Here we study a nonlinear
system of ordinary differential equations for multiple loop end-product positive feed-
back (see [1] for negative feedback). The n-dimensional system has the form

.l fl(X1, Xn)- hl(X1),

(1) .i fi(Xi_l, Xi, Xn)- hi(xi), 2 <- <- n -1,. =L(x._,x.)-h(x.),

where, for 1 <-i <-_ n, xi is a real function of time and fi, hi are C functions with
properties to be discussed shortly. This system has been used to model a cellular process
for control of gene expression in enzyme synthesis [6], [13], [18] and also to model a
system of enzyme-catalyzed reactions where enzyme activity, rather than synthesis, is
induced [18]. In these cases, the variables in (1) represent chemical concentrations and
the system of reactions has the structure

Let the positive orthant in

={x (xl, x2," ’, xn): xi >=0, 1 <=i <=n}.

For notational convenience, we consider the subscripts on the variables xi modulo n,
i.e., let x0 x,. For 1 =< =< n, we assume fi and hi are C functions in a neighborhood of

satisfying the following conditions on
(A1) fi > 0 if Xi--1 > 0 and hi > 0 if Xi > 0 with hi(O) 0;
(A2) fi is bounded and hi(xi)-->
(A3) hi > 0 if xi >= 0; Ofi/Oxi- > 0 if xi- > 0;

Ofi/OXi 0; Ofi/OXn >: 0 for > 1.
Assumption (A1) means that the presence of xi- causes the production of xi and that xi
inhibits its own production. (A2) prevents the solutions to (1) from becoming arbitrarily
large. (A3) makes the feedback positive and allows the possibility of feedback by x, to
all the other variables. We add a condition on the critical points of (1):

Received by the editors May 6, 1980, and in revised orm November 19, 1980.
? Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650..
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(A4) Equation (1) has exactly k critical points in Y and Ofi/OX -’-0
at each critical point.

According to (A4), at a critical point the linear variation of the ith component of the
vector field in the xi variable is contained in h’i. These assumptions are analogous to
those of Mees and Rapp [13] for negative feedback.

A critical point is degenerate if the Jacobian matrix, at the critical point, of the
right-hand side of (1) has a zero eigenvalue. If at least one of the critical points is
degenerate, we refer to this situation as the degenerate case. Then the nondegenerate
case will be the case where no critical point is degenerate. Let x, y Rn. There is a partial
order on R defined by x =< y (x < y) if and only if Xi Yi (Xi < Yi) for all i, 1 <- -<_ n.

For (1) with assumptions (A1) through (A4), we show that X is invariant for the
positive-time solution flow, and positive-time orbits in Xe are bounded. Also the critical
points are ordered a < 2<"" < k and each (i is either asymptotically stable or
unstable. In the nondegenerate case, the critical points alternate between stable and
unstable. Each unstable point generates an orbit asymptotic (in positive time) to the
adjacent stable critical point. In the degenerate case, there may be several adjacent
unstable critical points. In either case, information about the domains of attraction of
the critical points can be obtained. If u, v and u -< v then define the rectangular box

B(u, v)=-{x Y: u <-x <=v}.

It follows that all orbits in the interior of B(%, +a) are asymptotic to the same critical
point, either % or %+a. Also, if n 2 or n 3, the stable manifolds of the unstable
critical points separate Y( into regions of attraction. Thus the orbit of each point in is
asymptotic to some critical point.

These results are the same as those for the single loop feedback system [17] where
h(x) =- x and f(x_, x, x,) -= x-a, > 1. However the critical points of (1) do not lie on
a line as in [17]. Also, for n 3, the effect of xa and x on 32 complicates the spiralling of
orbits in B(a, k). Below we concentrate on the new arguments needed to prove these
results for (1).

2. Background. If oW is a subset of Rn, let Int , 0ow, and C1 oW denote its topological
interior, boundary, and closure, respectively. If owa, 6e2 c R, define 5ca \5e2 to be the set
of points in 5ca that are not in ow2. Let 0 denote the origin in R". In vector form, an
autonomous system of ordinary differential equations in R" is denoted

(2) k G(x).

The C function G is called a vector field. The unique solution to (2) at time with
initial condition x R is written x. t. The solution curve is referred to as the orbit of x.
When we are discussing the components of a solution curve, the functional notation x(t)
is often more convenient than x t. We assume solutions exist for all => 0.

If T c R then define x T =- UtTX t. Likewise, if 6 c R and T c R, 9’. T--
Uxzex T. ois invariant if 5e. c 6for all Rand 5eis positively invariant if 6. o
for all _-> 0. For A c R, define the to-limit set of A by

o(A)-- f3 C1 (A. [t, oo));
t>o

to(A) is an invariant set. A compact set A c R" is called an attractor if A has a closed
neighborhood N c R such that to (N) A. A bounded set ow c R is an attracting region
if 5e is positively invariant and has a closed neighborhood N such that to(N)c 5e. Thus
an attracting region contains an attractor. An attracting region which is rectangular is
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called an attracting box. The domain of attraction of an attracting region , dom 5, is
defined by

dom ={x [: w(x) c 5g}.

If a critical point c of (2) is an attracting region then is an attractor and is called an
asymptotically stable critical point.

From (2) we get a system of equations on R" Rn given by

(3) G(x), 0 =DG(x)v

where (x, v) e Nn Nn and DG(x) is the derivative matrix of G at x. The solution flow to
(3) is called the tangent flow. The second equation of (3) is referred to as the linearized
equations of (2) and a solution is written v or v(t).

In [17] we show:
LEMMA 2.1. Let@ c be a domain which is positively invariant under the solution

flow of (2). Suppose that OGi/Oxi >- 0 on @forall andL ]. Letx tdenote the solution to

(2) where x @. If O <- G(x) then x <- x s for all O <= <- s. If G(x) <-_ O then x s <- x
]:or all 0 <- <- s. In either case, if the positive orbit ofx is bounded then to (x is one critical
point.

If either property in Lemma 2.1 holds then the orbit of x is said to be monotone.
This monotonicity is useful for finding attracting regions.

An n n matrix A is irreducible if it leaves invariant no nontrivial coordinate
subspaces of [. A is positive if all its entries are positive.

The next result is due to Perron and can be found in Gantmacher [-3, p. 53].
THEOREM 2.2. A positive matrix A always has a positive eigenvalue Ix (called the

principal eigenvalue ofA) which is a simple root ofthe characteristic equation and exceeds
the moduli of all other eigenvalues ofA. To Ix them corresponds an eigenvector (called the
principal eigenvector of A) with positive components.

3. Some general results for (1). Let F denote the vector field of (1). The next two
results follow directly from our assumptions but the proofs are somewhat different from
those in [17].

PROPOSITION 3.1. If (1) satisfies (A1) then Int is positively invariant.

Proof. Take x Int and suppose the positive orbit of x leaves Int . Then there
is a first time s so that the orbit of x meets. Thus at least one component of x(s), say
Xk (S), is zero; and xi(t) > 0 for all j and t, 0 _-< < s. Since fk (Xk-l(t), Xk (t), X, (t)) >-- 0 for all
0_-< t_-<s, we have that xk(t) satisfies the differential inequality ) _->- hk(y) for all
0 _-< < s. Thus xk(t) y(t) for all 0 _-< < s where y(t) is the solution to 3) -h(y) with
y(0) Xk(O). But y(t) > 0 for all _-> 0 since hk(O) 0. Hence Xk(S) >- y(s) > 0, which is a
contradiction.

PROPOSITION 3.2. /f (1) satisfies (A1) then Y( is positively invariant. In fact,
(\0) tcInt gforall t>0. IfF(O)#Othen . tcInt gforall t>0.

Proof. The first assertion follows from Proposition 3.1 because of the continuity of
the solution flow. Thus the orbit of each point in O\0 must enter Int Y immediately or
remain in 0 temporarily. However, examining F on OY shows the latter is impossible.
The reason is that for each face or edge of Og\0 we have two coordinates Xi--1 and Xg

such that Xi 0 for this edge but Xi--1 ’ O. Hence Fi(x) fi(xi-1, Xi, Xn) > 0 on this edge
and so the vector field is not tangent to this edge. This completes the proof.

Since (1) satisfies (A3), the positive-time solution flow preserves the partial order
on Int , [2], [10], [12], [16], [17], i.e., if x, y s g and x <= y then x _-< y for all -> 0.
Also Lemma 2.1 applies to (1).



672 JAMES F. SELGRADE

PROPOSITION 3.3. If (1) satisfies (A2) and (A3) then positive orbits of points in Y{
are bounded.

Proof. From (A2) each point y of Y(, all of whose components are large enough, has
F(y) <= 0. Lemma 2.1 gives that the positive orbit of y is monotone nonincreasing. Thus
the positive orbit of each point in Y( is contained within the box B(O, y) for some
such y. 71

Let fi,j=Ofi/Oxj. Using (A4), the linearized equations of (1) at a critical point
c (c, c.) are:

v.fa..(c, c.)-vhl (c),

(4) bi--Ui-lfi,i-l(Ci-l, Ci, Cn)-’Unfiln(Ci-l, Ci, Cn)--vih[(ci), l<i<n.

If the critical point c is not the origin 0, we have that fi, i-1 > 0 and h > 0 for => 1
and fi, --> 0 for > 1 because of (A3). The right-hand side of (4), DF()v, is a linear
vector field which satisfies (A1). Proposition 3.2 implies that for v : 0 and for all > 0

(5) 0 < exp (tDF(C))v.

Hence the fundamental matrix exp (tDF(C)) is positive for all >0. If 0, it may
happen that each fi,i-1 is zero. If so, DF(O) is upper triangular and thus 0 is asymptotic-
ally stable. If 0 but some fi, i-1 is nonzero, then we need a condition to guarantee
that exp (tDF(O)) is positive. This condition is irreducibility. If 0, DF() is irre-
ducible by virtue of (A3) but DF(O) may not be. So if 0 is a critical point we must
assume DF(O) is irreducible to get that exp (tDF(O)) is positive--see [12, Lemma 4]. To
avoid this special case in subsequent discussion we now assume that F(O) O. However,
our results remain valid if F(O)= 0 with the additional assumption that DF(O) is
irreducible, needed if 0 is not asymptotically stable.

Since the trace of DF(x) is negative for all x , for each critical point the matrix
DF(C) has at least one eigenvalue with negative real part. So has at least a
1-dimensional stable manifold.

Henceforth, we assume F(O) 0 and (A1) through (A4) and we restrict our
attention to the flow of (1) in Int .

4. Critical points. The k critical points of (1) correspond to the zeros of a function
of one variable. From (A1), (A2), and (A3) we have that hi(O)--0 and hi is strictly
increasing without bound. Also fi > 0 if xi- > 0; and fi is nonincreasing as a function of
xi and strictly increasing as a function of xi-a. For c => 0 we proceed recursively to define
the functions pi(c), 1 <-- < n. Let pl(c) be the unique, positive value for Xl solving the
equation

hl(Xl)=fl(Xl, C).

For 1 < < n, let pi(c) be the unique, positive solution to

hi(xi) fi(Pi-l(C), xi, c).

Each pi is a strictly increasing function for c >0 because of (A3). Let p(C)=(pl(C),
p2(c), , pn-l(C), c) represent a curve in . The critical points of (1) are situated along
p precisely where h,(c)=f,(p,_x(c), c). Define g(c), c >-0, by

(6) g(c)=--h.(c)+L(p.-(c), c).
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The vector field F along the curve p is given by

F(p(c)) (-hl(pl(c)) +fl(pl(c), c), -hn(c) +f(pn-(c), c))

(0, 0,..., 0, g(c)).

Thus F(p(c)) <- 0 if g(c) < O, F(p(c)) 0 if g(c) 0, and F(p(c)) >= 0 if g(c) > 0. So the
sign of g(c) determines the direction of F along p, and the critical points of F are in
"1-1" correspondence with the zeros of g. From our basic assumptions, it follows that
g(0) > 0 and g(c) --> -c as c --> c. Let 0 < c < c2 <" < ck denote the zeros of g. Then
the critical points of (1) are i p(cj), 1 <=] <= k. Since p is a strictly increasing function
of c, we have 0 < c1 < c2 <.. < k. Also, a tedious computation involving the chain
rules gives that

(7) detDF(i)=(-1)"+lg’(ci) [I hl(pi(ci)).
i<n

So the sign of g’(ci) provides some information about the eigenvalues of DF(qi).
Using Lemma 2.1 and the fact that the sign of g determines the direction of F along

the curve p, we find attracting boxes in . Detailed proofs of these results can be found
in [17].

LEMMA 4.1. Let c > O. Ifg c < 0 then the positive orbit ofthe pointp c is monotone
and asymptotic to the largest critical point less than p(c). If g(c) > 0 then the positive orbit

of p(c) is monotone and asymptotic to the smallest critical point greater than p(c).
LEMMA 4.2. Fix i, 1 <= i <= k, and let c-1 0 and qi-1 0 if i 1. If g(c) > 0 for

ci_l < c < ci then B (ci, ck) is an attracting box with Int B (cj_l, c) c dom B (%., ck).
Proof. Choose c’ and c" where ci_<c’<ci and ck <c". Since g(c’)>0 and

g(c")<O,O<=F(p(c’)) and F(p(c"))<-O. Lemma 4.1 gives that p(c’), t,i and
p(c") t’ c as -> . If x 13 (p(c’), p(c")) then p(c’) <= x <= p(c") for all _-> 0.
Thus oo(B(p(c’), p(c")))c B(j, k), which implies the result.

LEMMA 4.3. Fix j, and let c+l c and c+1 c ifj k. Ifg(c) < O for c < c
then B(O, ci) is an attracting box with Int B(O, ci+l) dom B(O, %).

THEOREM 4.4. Consider % <- c. If g(c) > 0 for ci-1 < c < ci and g(c) < 0 for ci <
c<ci+l then B(Ci, ci) is an attracting box with Int B(i_I, i+1) dom B(Ci, .). In
particular, if ci c then ci is an asymptotically stable critical point.

Proof. Lemma 4.2 and Lemma 4.3 imply that B (i, ck) and B (0, %.) are attracting
boxes. Since the intersection of attracting boxes is an attracting region and B (ci, ci)
B (i, (/k) 0 B (0, ci), our result follows easily.

COROLLARY 4.5. Suppose cj is a nondegenerate critical point. If g’(G.)>0 then
DF(i) has a positive eigenvalue and so c is unstable. Also, ci is asymptotically stable if
and only if g’(cj) < O.

Proof. The first assertion follows from (7). The second assertion follows from the
first and from Theorem 4.4.

THEOREM 4.6. Let c be any critical point of (1). Then c is asymptotically stable or
unstable. % is unstable if and only if either g(c)<0 ]’or ci_l <c <c or g(c)>0 for
Cj C Ci+l.

Proof. From (5) we have that exp (tDF(Ci)) is a positive matrix for all t>O.
The Perron theorem implies that the principal eigenvector lies in U=-
Int B (ci_1, %.) U Int (ci, (j+l). Let/z denote the principal eigenvalue of exp (DF(Ci)).
We argue three cases determined by the position of/x relative to the unit circle.

If I 1> 1 then %. is unstable with a 1-dimensional strong unstable manifold
contained in U. Thus g(c) < 0 for c.-1 < c < c. and g(c) > 0 for c. < c < G+I. If [/xl < 1
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then %. is asymptotically stable, and so g(c) > 0 for Cj-l< c < cj and g(c) < 0 for

c. < c < c+1 by Lemma 4.1.
If [x] 1 then the Perron theorem gives that/x 1 and that all other eigenvalues of

exp (DF(i)) have norms less than 1. Hence i has a 1-dimensional center manifold
and a (n 1)-dimensional stable manifold. By the equivalency extension theorem of J.
Palis and F. Takens [15], the flow in a neighborhood of j is equivalent (i.e., there is a
homeomorphism taking orbits onto orbits) to the product flow on the Cartesian product
of this center manifold and the stable manifold. Since this center manifold is tangent at

%. to the principal eigenvector of exp (DF(qf)), this center manifold is contained in U
and so the flow on it is determined by g near c. Thus, if g(c)< 0 for G-I < c < cj or
g(c) > 0 for c < c < c/1, the flow on at least one side of this center manifold is leaving
as increases and hence %. is unstable. Otherwise, the flow on this center manifold is
positively asymptotic to j and, by the Palis-Takens result, so is the flow in a
neighborhood of , i.e., j is asymptotically stable. Thus the theorem is proved.

If is an unstable critical point, let E7 c R denote the invariant vector space
determined by all eigenvalues of exp (DF(qf)) having norm less than 1. Let M. denote
the stable manifold of f tangent to E at fj. Two distinct points in Rn, x y, are related
if x -< y or y =< x. Being related is invariant under the positive-time flow of (1). The next
two results are proved in [17].

LEMMA 4.7. If is an unstable critical point then the vector space E] contains no
related points. In particular, if v 0 and either 0 <= v or v <-_ O, then v E.

THEOREM 4.8. Let be an unstable critical point with an (n- 1)-dimensional
stable manifold M.. Then iVI. contain no related points.

5. Two-dimensional case. Here we assume n 2 in (1). From the Poincar6-
Bendixson theorem [7, p. 151], we know an orbit in Y( is positively asymptotic to a
critical point or a periodic orbit. As in [17], it follows that:

LEMMA 5.1. Yt contains no nonconstant periodic solutions to (1).
THEOREM 5.2. The orbit of each point in 27 is positively asymptotic to some critical

point. Ifi is an unstable critical point, its stable manifold M. is 1-dimensional. Each M.
separates Y into regions of orbits positively asymptotic to _, i, or i+ depending on
the sign of g near ci.

6. Three-dimensional case. The results for n 3 are the same as n 2 except the
stable manifolds of unstable critical points are 2-dimensional. The argument proceeds
by induction on the number of critical points and this induction is similar to that in 17].
The difference occurs in the analysis of a special case with three critical points which is
crucial to the induction argument. Here we study this three critical point case. is
assumed to be asymptotically stable. Since g(c) < 0 for c < c < 172, :2 is unstable. Thus
either g(c) < 0 for c2 < c < c3 or g(c) > 0 for c2 < c < c3. In the nondegenerate case, the
latter occurs and so 3 is asymptotically stable.

First we show that the stable manifold of an unstable critical point is 2-dimensional.
LEMMA 6.1. Let n 3 in (1). The principal eigenvalue of exp (DF()) for any

degenerate critical point is one. Also, if j is an unstable critical point, then its stable
manifold M. is 2-dimensional.

Proof. Let %. be a critical point of (1). Recall that fi,, =- Ofg/Ox, >-O. For 1 _-<i<_-

3, h > 0 is evaluated at the appropriate component of ci. An eigenvalue of DF(Ci) is
a root of the polynomial

3 + (hi + h2 + h3)A 2 + (hh + hh3 + hzh3-f3,zf2,3)l
(8)

+ hh2h3-fl,f2,,f3,- h]3,af2,3.
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Define the following list of real numbers from the coefficients in (8):

a3 =- hlhah3-fl,3h,lf3,a- hlf3,af2,3,

ro l,

T1 =- hi + h2 + h3,

T2 =- (hlh2 + hlh3 + h2h3-f3,2f2,3)T1- a3.

According to the Routh-Hurwitz criterion [11, p. 15], the number of roots of (8) with
positive real parts is equal to the number of sign changes in the sequence
{To, T1, T1T2, a3}. Since To and T1 are positive, to have two roots with positive real
parts T1 T2 must be negative and a3 must be positive. The sign of T1 T2 is the same as the
sign of T2. But T2<0 implies, after a computation, that h2h3-f3,2f2,3<O and
h2h3-fa,2f2,3 < 0 gives a3 < 0. Hence (8) has at most one root with positive real part. If
i is degenerate then a3 0. Thus hah3-f3, f,3 > 0 and so Ta > 0. Hence the principal
eigenvalue of a degenerate critical point is one. This completes the proof.

We return to the special three critical point case. Theorem 4.4 asserts that
B(I, 3) is an attracting box with the positive orbits of all points in entering
B(cI, (3). We divide B(I, c3) into eight subboxes by planes through (/2 and parallel
to the coordinate planes. B(I, 2) and B(2, 3) are two such boxes and the other six
are defined as follows (see Fig. 1):

FIG.

Box (1) ={x: pl(Cl)X1 pl(C2), p2(Cl)X2P2(C2), C2X3<=C3}

Box (2)--{x: pl(c2)x1 pl(c3),p2(cl)x2P2(C2), c2x3c3}

Box (3) {x pl(C2)=Xl pl(C3), p2(Cl)=X2=p2(c2), Cl X3 C2}

Box (4)-= {x pl(C2)<=X1 <=pI(C3),p2(c2)<=X2<=P.2(C3), Cl X3 <: C2}

Box (5)-= {x pl(cl)<=Xl -< p1(c2), pz(c2)<--Xz<-p2(c3), cl =<x3-< c2}

Box (6) =- {x :.pl(cl) <- Xl =< p1(c2), p.(c2) <- Xz <=p2(c3), c2<-x3<=c3}

All orbits in Int B(c1, c2) are asymptotic to 1 and all orbits in Int (ca, c3) are
asymptotic to either (2 or (93 depending on whether g(c) < 0 for ca < c < c3 or g(c) > 0
for c2 < c < c3. To study the behavior of orbits in the remaining subboxes we must
obtain information about the direction of the vector field F on the faces and
interiors of these boxes. If XI.=pl(C2) then Fl(X)=-hl(pl(cz))+fl(pl(cz),X3)
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--fl(pl(c2), c2)+fl(pa(c2), x3), SO we get

FI(X)>0 ifx3>c2 and Xl<-pl(C2),
(9)

Fl(X)<0 ifx3<c2 and Xl-->pl(c2).

If x3 c2 then F3(x) -h3(c2) +f3(x2, C2), SO

/F3(x)>0 ifx2>p2(c2) and x3--<c2,
(10) / F3(x)<0 if x2<P2(C2) and x3-->c2.

F2 is slightly more complicated. Divide the portion of the plane x2 p2(c2) in
into four open faces (see Fig. 2)"

FIG. 2

Face (1) =- {x’ p(cl) < X1 < p1(C2), X2 p2(C2), C2 < X3 < C3}

Face (2)-={x" pl(c:z) < xx < p1(c3), x2 p2(c2), c2 < x3 < c3}

Face (3)=-{x" p(c2)<X1 < p1(C3), X2--= p2(C2), Cl < X3 < C2}

Face (4)---{x" p(cl) < x < p(c2), x2 p2(c2), cl < X3 < C2}

If X2 p2(C2) then Fz(x) -h2(p2(c2)) +f2(X 1, p2(C2), X3). Sincef is increasing in X
and nondecreasing in x3, the set of points where F 0 is a set y containing (2 and is
contained in Face (1) UFace (3) and in the line {Xl pl(c2), x2 p2(c2)}. )’ separates the
plane x2 p2(c2); F2(x)> 0 if X is greater than y and Fz(x)< 0 if x is less than y.

Thus, on the faces of B (cSx, 2) or B ((2, 3),F points into B(I, c82) or B(, 3).
Hence B(c81, (’2)\(2 C dom , and the positive orbit of each point in B(qg2, 3) is
asymptotic to (2 or (:)3. AS in [17], we prove:

LEMMA 6.2. A --= B(CSx, c82) LJ B(2, (3) is an attracting region.
In the other six subboxes, certain component functions are Lyapunov functions.

From (9), the Xl-component function is increasing along orbits in Box (1) LJ Box (6) and
decreasing in Box (3)U Box (4). From (10), the x3-component function is increasing in
Box (4)LI Box (5) and decreasing in Box (1)U Box (2). This does not prevent an orbit
from passing through Face (3) from Box (3) into Box (4) and then returning to Box (3)
through Face (3). However, we do have:

LEMMA 6.3. Neither Int (Box (3)UBox (4)) nor Int (Box (1) LJBox (6)) contains
any compact invariant sets.
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Pro@ Suppose Int (Box (3) U Box (4)) contains a compact invariant set L The set
of points {x: Fl(x)=0} intersects Box (3) Box (4) only in the line {x: xl p(c2), x3
ce}. Hence ! is bounded away from {x: F(x)= 0}, and there is some/3 > 0 so that
Fl(x)<-- for all x eL If x(0) I then(t)=F(x(t))<-- for all ->0. Thus, for s >0,
we have

x(s)-x(O)= 21(t) dt<-_-s.

So x(s)--oo as s oo. This is a contradiction since the orbit of x(0) is bounded. A
similar argument holds for Int (Box (1)U Box (6)).

Lemma 6.3 and the preceding discussion imply that the positive orbit of a point in
Box (3)U Box (4) is in dom A or leaves Box (3)U Box (4) in finite time. Thus an orbit
starting in Box (2) either enters dom A or enters Box (3)U Box (4) by (10). Then this
orbit enters either dom A or Box (5) by (9). This orbit then enters dom A or Box
(1) U Box (6) by (10). Finally, this orbit enters either dom A or Box (2) by (9) and
Lemma 6.3. Therefore, any orbit not in dom A must spiral around A through the six
numbered boxes. We study this spiralling by taking a section for the flow and analyzing
the return map. The remaining argument is similar to that in [17] and we just sketch it
here.

Choose the face ow, shared by Box (1) and Box (2) (see Fig. 3),,_ {X X1 pl(C2), p2(Cl)<X2<=p2(c2), C2X3C3}.

x2=P (Cl)

x3=c

x3 I ,C

’x

FIG. 3

Let denote the plane X1 I01(C2). Int oW denotes the interior of 5 with respect to .
Recall that Ms is the 2-dimensional stable manifold of e. Ms intersects transversely
by Lemma 4.7 and Theorem 4.8. Hence M2.(3 is a 1-dimensional C manifold. Let
denote the connected component of M2 Inte, ow such that 2 c C1

LEMMA 6.4. Each point of\tt related to some point of belongs to dom A. If the
point is above ,/1 then its positive orbit is asymptotic to c2 or 3. If the point is below then
it belongs to dom .

LEMMA 6.5. u///is a closed subset of Int O. In fact, Mmust have a limitpoint on the
edge x2 pc(ca) or the edge x3 c3.

TI-IEOREM 6.6. Let n 3 and k 3 in (1). Suppose c is asymptotically stable and
M2 is the stable manifold of c2. Ifa point is below M2 then its positive orbit is asymptotic to

(1. If (3 is asymptotically stable (i.e., if and only if g(c) > 0 for ce < c < c3), then the
positive orbit of a point above M2 is asymptotic to 3. If c3 is unstable (i.e., if and only if
g(c) < 0 ]:or c2 < c < c3), then the positive orbit ofa point between M2 andM3 is asymptotic
to 2 and the positive orbit of a point above M3 is asymptotic to 3.
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7. Conclusion. For n 2 and n 3 we have shown that the stable manifolds of
unstable critical points separate the regions of attraction of the critical points. In higher
dimensions, unstable critical points may not have codimension one stable manifolds
[18] and so cannot separate the space. Even for n 4 there exists the possibility of a
degenerate critical point with a 1-dimensional unstable manifold. In general, the
dynamics of (1) with n => 4 appears complicated.

Acknowledgment. The author would like to thank Robert Martin for a helpful
conversation concerning Proposition 3.1.
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A FREE BOUNDARY PROBLEM DESCRIBING TRANSITION IN A
SUPERCONDUCTOR*

LUIS A. CAFFARELLIS-, AVNER FRIEDMAN AND AUGUSTO VISINTIN

Abstract. Isothermal transition of superconducting material in the presence of an external supercritical
magnetic field is considered. In the one-dimensional case a weak formulation is given and then the existence
and uniqueness of a solution are derived. Regularity results are obtained for both the solution u (which
represents the intensity of the magnetic field) and for the free boundary, which separates the superconductor
from the normal conductor.

1. The physical problem. Consider a half space {(x, y, z), x > 0} of initially super-
conductor material in the presence of an external uniform magnetic field of intensity
_<-uc (uc the critical value, u > 0). Suppose an external magnetic field of intensity

ue(t) > u is applied for > 0 at the boundary x 0 of the superconductor. Assume that
both external fields are parallel to the x-axis. Then the intensity of the magnetic field
will depend only on x and t; we denote it by u(x, t). Thus

(1.1) u(x,t)>-_O forx=>0, t_->0

and

(1.2) u(x, O)= Uo(X) for x => 0,

where Uo(X) is the initial intensity. We assume that the initial intensity is stationary, that
is (cf. (1.8))

Uoxx+auo=O forx>0, a>0.

It follows that

(1.3)

and 0 < < u. Also

(1.4)

where Ue(t) > U.

Uo(X)= e for x > 0

u(O, t)= Ue(t) for > 0,

Under the external field with intensity Ue, the superconductor is switched gradually
into a normal conductor; we assume the transition to be isothermal. The two phases are
separated by an unknown curve x s(t) on which u attains the critical value,

(1.5) u(x(t), t)= Uc for t> 0.

Furthermore, by Maxwell’s equations and London’s equations [4], on this interface
there holds a discontinuity relation for the magnetic flux:

t,

(1.6) u(s(t)+O, t)-u(s(t)-O, t)=-a | u(:, t) d for t>0,
Js (t)

where/3 is a physical constant, 0 -</3 -< 1 we refer to [1] for the derivation of (1.6) and
for further details on the physical phenomenon.
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In the normal conductor Maxwell’s’equations yield

(1.7) ut-uxx =0 for0<x<s(t), t>0

whereas in the superconductor, by Maxwell’s equations and London’s equations,

(1.8) But uxx + cu 0 for x > s(t), > O.

The problem (1.1)-(1.8) has been formulated by Cohen and Miranker [1], who
have obtained results on the behavior of the free boundary using the asymptotic
techniques of singular perturbation theory.

In this paper we begin with a weak formulation of the problem. We show that this
problem has a solution u and that we can correspond to it a free boundary x s(t) such
that (1.1)-(1.8) hold ((1.6) is established for almost all t). Further, the solution is unique
and the free boundary is monotone increasing and H61der continuous (exponent 1/2).

2. Weak formulation. We assume that/3 O. Set

1 if <Uc,
/3(’)=

/3 if>Uc,

ioa(= (,
[0 ifx<s(t),

t)
1 ifx>s(t).

Let T > 0 and set O N+ x (0, T),

= O {(x, t); x > s(t)}.

LEMMA 2.1. If (U, S) is a solution of the physical problem (1.1)-(1.8) then

(2.1) u,-(a(u))-((f u(,t)d :0 in ’(Q).
//

Proof. Denote by (., .) the duality between (0) and ’(0). Then for any
ve(O),

(2.2) (since u is continuous)

IIo[But-a(u)x]v dx dt

T

s(t)+O s( t)--O

T

fo (fs(,) u)dt+ff dxdt-- k
V

Ifo B (ut uxx )v dx dt + I In (But uxx + au )v dx dt
/n

by (1.6); finally, the last two integrals vanish by (1.7), (1.8).
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We d6note by H(:) the Heaviside graph.
We shall assume that

(2.3) b/e E L2(0, T)

and introduce a weak formulation of the physical problem.
Problem (P1). Find functions u, 1" such that

(2.4) uELz(O,T;HI(R+)), u =>0 a.e. in O,

(2.5) Jo u (s, t) dx < c for aoe. (0, T),

(2.6) ’ is measurable in Q; X H(uc u) a.e. in 0,

(2.7) u(0, t)= ue(t) a.e. in (0, T),

(2.8) - uv dx + a(U)xVx + a u(, t) d )Vx dx 0

+in ’(0, T) Vv Ho(R ),

(2.9) u(0) Uo.

Notice that (2.8) implies (2.1). It follows that

(2.10) ut L2(0, T; H-I(+));

hence [3] u E C([0, T); H-I(+)), so that (2.9) has a meaning in H-I([+).
Setting

Uo(x) Jx uo() d, x > 0,

we now introduce another weak formulation of the physical problem.
Problem (P2). Find functions U, ,g such that

(2.11) U L2(0, T; HI(+)), Ux =< 0 a.e. in Q,

(2.12) X is measurable in (2; g H(uc + Ux) a.e. in Q,

io io- Uv dx + [-a(-Ux)v + aU)v] dx a(u(t))v(O, t) dt

in 9’(0, T) k/v HI(R+),(2.13)

(2.14) U(0) Uo.

Notice that (2.13)yields

(2.15) Ut-(-a(-Ux)), +aUx =0 in @’(O)

from which we get [3]

(2.16) U, L2(0, T;(HI([+))’).

Hence U E C([0, T); (HI(0U))’) so that (2.14) has meaning in (HI([+))’.
Notice also that (2.13) includes the boundary condition

Ux(O, t)---Ue(t) in (0, T).
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LEMMA 2.2. (u, X) is a solution of (P1)/f and only if (U, X) is a solution of (P2)
where u, U are related by

(2.17) U(x, t)= Ix u(, t) d,

and consider the following problem:
Problem (P2). Find U C2;] (Q) such that

(3.2) flU,-(-a(-U)) +aUH(uc+ U) 0

(3.3) Ux(O,t)=--Ue(t) for 0< t< T,

(3.4) U(x, 0)= Uo(X) for x >0.

Set

aa in C(N\{Uc}),

b/ee /’/e in wl’l(0, T),

Uo -+ Uo in Ca(+) fq La(R+).

Uo(X) I uo() d

in O,

This problem has at least one solution, which can be obtained by standard
techniques [2], by approximating Q by bounded domains

O,, O f) {(x, t); Ixl < m}

and solving (3.2)-(3.4) in O, with, say, U Uo on [xl m, 0 < < T.
By the maximum principle, U _-> 0.
Step 2. A priori estimates. We shall denote various positive constants independent

of e by C.
Multiply (3.2) by U, and integrate with respect to (x, t). Setting

x=H(u+U,x)

(2.18)

The proof is rather immediate.

3. Existence.
THEOREM 3.1. If

(3.1) Ue wa’l(0, T)

then there exists at least one solution of (P2) (and hence, by Lemma 2.2, also of (P1)).
Proof. The proof consists of several steps.
Step 1. Approximation of (P2). For any small e >0, let H C(),a

C(R), Ue CI[0, T], Uo C2(+) f-) La(R+) be such that

J0 if so<0,
H() H =>0,

1 if > e,

a()= a (:) if : < u or if : > u + e,

1/2fl < a’ (sc) < 2,

Ue(t)>ucift>O, Uo(X)>Oifx>O, Ue(O)=Uo(O)=Uc,
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and noting that aU2x >= 0, we get

(3.5) /32 fo ((U(t))2-(U)2) ax + dr a(-U)(-Ux) dx

< J0 Ue(z) U(O, 7-) dr

1/2

Hence

(3.6) IIuII<O,T;=<+>>=<O,T;.*<+>> C.

Next we differentiate (3.2) with respect to x. Setting u U we have

(3.7) 3ut-(a(u))-(Ux) =0 in O.

The function u also satisfies the boundary conditions

(3.8) u, (0, t) Ue (t) for 0 < < T,

(3.9) u,(x, O)= Uo(X) for x >0.

We now multiply (3.7) by u- Ue(t)e and integrate with respect to x, t. We get

fo (ua(t)-u) dx+ IodZ Io (a(u))x (Ux +Ue(t)e -) dx

The right-hand side is bounded by
1/2 1/2

C[[HeI[La(Q)+C(
0

2(t)e dx) +C{/ ’]Hex’[ 2L2(+) dr}
where (3.6) was used. It now easily follows that

(3.10) Ilull(o,;=(+)=(o,;.(+) c.
Recalling (3.2), (3.6) we thus altogether get the estimate

(3.1 ) u11.,(o,;(.+(o,: .(.+ c.
Next we want to show that

(3.12) -Ux u 0 in O.
For this purpose we rewrite (3.7) in the form

(3.13) ut-(a(u)) +agu +aUH’ (u u)u 0 in O.

This is a parabolic equation for u, and the initial-boundary conditions are given by
(3.8), (3.9); notice that these conditions are compatible at (0, 0). Applying the maxi-
mum principle we get u 0, so that (3.12) is valid.

Step 3: Taking eO. From (3.11) and the definition of H it follows that there
exists a sequence e0 and functions U, g such that if e e0,

U U inHa(0, T;L2(+))Lz(O, T; H2()) weakly,

X g in L(Q) in the weak star topology,
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and by compact imbedding and interpolation [3]

Ux - Ux in L2(O) strongly and a.e. in O.

Since a () is Lipschitz continuous, we then have

a(Ux) a(Jx) in L2(()) strongly and a.e. in O.

Taking e em 0 in (3.2), we get (2.13) in the sense of @’(O). Next, (3.12) gives Ux <- O.
Finally,

H(uc + Ux) H(uc + Ux) a.e. in O\{(x, t); Ux(x, t) Uc},

and (2.12) follows. We have thus proved that U is a solution of (P2). 71
Remark 1. From (3.11) it follows that the solution U of (P2), which we have

established, satisfies

(3.14) U Hi(0, T: L2(+)) f3 L2(0, T; H2(+)).
Remark 2. If in Theorem 3.1 we assume that UoLn(O, oo), then U

L(O, T; LP(o, c)). Indeed, we may take in (P2)U0 Uo in LP(o, 00). Now multiply
(3.2) by lU IP-2u and integrate with respect to (x, t). Performing integration by parts,
as in the case, P 2, the assertion easily follows.

4. Regularity of the solution. In this section we assume, in addition to (3.1), that

(4.1) u’ (t) >0 if0<t< T.

Denote by u the solution of (P1) constructed in Theorem 3.1 and denote by F the
set

F= {(x, t) Q; u(x, t)= Uc}.

In this section we prove’
TI-IEOaEM 4.1. Assume that (3.1), (4.1) hold. Then F is given by x s(t) and

s(t) is monotone increasing and continuous,

u>=O, u<-O, (a(u))>=O, u,>-O,
[--,o-.cr/2 [or any 0 < cr < 1 locally in O.bl --’x,t

Ux L,oc(O), ut L2oc(O).
The functions u, s satisfy (1.1)-(1.5), (1.7), (1.8); Ux(S(t)+O, t)existforall (0, T)and
(1.6) holds for a.e. t.

Thus the solution of the weak formulation (P2) satisfies essentially all the equations
of the physical problem. In the following section we shall establish uniqueness for u.

In order to prove Theorem 4.1 we begin with the solutions u of (P2). We have
already proved that

u_->0

LEMMA 4.2. Assume that

(4.2) U’e(t)>=O

(4.3)

(4.4)

in O.

forO<t<T,

bloe (0) bl (0)

U (x) >- aUo (x) for x > O.
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Then

(4.5)

(4.6)

Proof. Differentiating (3.2) with respect to t, we get for Ut the equation

(4.7) (Uet)t-(a’(-Uex)Uetx)x+oxeUetq-ozUeHre(tlcq-Uex)Uetx--O in O,

with boundary conditions

Ut,(O,t)=-U’ee (t)<0= for 0 < < T,

[3Gt(x, O)=(-a(-U’o(X)))’-cUo(X)X,(x, O)

->a’( U(x))(- Uo(x))-,Uo(x)

=>0 for x >0,

where ,g =< 1 and (4.4) were used in the last two inequalities. The condition (4.3) assures
the compatibility of the boundary conditions at (0, 0). We can now apply the maximum
principle to deduce (4.5). The inequality (4.6) follows from (3.2) and (4.5).

LEMMA 4.3 ?Assume (4.2)-(4.4) and

(x) > (x) for x(4.8) Uo =aUo >0.

Then

(4.9) U-.t <= 0 in O.

Proof. Differentiating (4.7) with respect to x we obtain for Ut the equation

[(Uext)t-(ate(Uex)Uetx)xx q- oH’e (Uc + Uex)UexUext +

+oH (Uc + U)UU,, + aH’ (Uc + Ux)U(Uxt)x

aH’ (Uc + Ux) UtUxx <= 0 in O

where (4.;), (4.6) were used in the last inequality. As for the boundary conditions,

Uxt(O, t) -u’ (t) <- 0 for 0 < < T

and, by differentiating (3.2) with respect to x,

l Uxt(X, O)= (-a (- U6 (x )))" a U’o (x )x. (x, O) aUo (x)H’ uc + U’o (x )) U’ (x

<=(-a(-U’o(X)))"-aU’o(X)<=O for x >0

where (4.8) was used in the last inequality and X <= 1, U’o >= O, Uo >= O, U’ >= 0 were
used in the preceding inequality. The assumption (4.3) gives the compatibility of the
boundary conditions at (0, 0). We can now apply the maximum principle and obtain
(4.9).

LEMMA 4.4. There holds

(4.10) Ut>-O, U ----U 0, t,l ----Uxx 0, l.,lt----UxtO a.e. in O.

Proof. It suffices to prove that Uo, Ue can be chosen so that (4.2)-(4.4) and (4.8)
hold; for then we take e 0 in (4.5), (4.6) and (4.9). Notice that (4.4) is obtained from
(4.8) by integration.
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Define o by

Uo -atio =0 if0<x <6,

ao(O)=uc,

ao (x) Uo(X) if x > 6, 6 small.

Then, since u + CeUo 0 for x > 0 and u0(0) < Uc,

o ct7o _-> 0 in @’(0, c)

and we can "smooth" t7o in a neighborhood of x 6 so that the new function, Uo,
satisfies (4.8); notice that t7 near x 8 is proportional to a Dirac measure at x 8.

Since also Ue(0)> Uc, we can easily construct approximating functions ue(t) such
that

Ue(t)=Uc+U(O)t if0<t<8

and U’e (t) >= 0 if > 6; notice that U’e (t) U0 (0) > 0 if 0 < < 8. The parameters 8, g
tend to zero as e 0. We have now constructed uo, Ue satisfying (4.2), (4.3) and (4.8);
this completes the proof of the lemma.

LEMMA 4.5. The set F (the free boundary) is a curve x s(t), and s(t) is monotone
increasing.

Proof. Recall that

r {(x, t) Q; u ---Ux Uc}.

Since Ux <-_ O, Ut >= O, it follows that F is a graph with respect to both axes. To prove
that F is a curve x s(t) it remains to show that it is impossible to have

(4.11) U(Xl, to) u(x2, to) for Xl<X2, (xi, to) Q.

Suppose (4.11) holds. Then in the rectangle

R (Xl, x2) x (0, to)

we have X 1 and therefore

ut Uxx + cu O.

Moreover u takes a minimum in R at (xl, to) and u(xl, to)-0; this contradicts the
maximum principle.

Since u(x, t) >= uc (<- u) if x < s(t) (x > s(t)), it follows (recalling that Ue(t) > Uc,
Uo(X < Uc that

s(t) > 0 if t>0.(4.12)

Set

In view of Lemma 4.5,

(4.13)

(4.14)

a {(x, t)e O; x > s (t)}.

ut- u,, + cu 0 in D,

ut- Uxx 0 in O\lq.

By standard potential theory estimates [2] we deduce that locally in Q

(4.15) u (x, t) is H61der continuous in x (exponent
and in (exponent tr/2) for any 0 < tr < 1.
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From Lemma 4.5 we also obtain ,gx =< 0. Since also u >- O, ut >= O, the equation (2.1)
for u yields

(4.16) (a(u))xx >=0 in @’(O).

Thus, in particular,

(4.17) ux is increasing in x, in Q\F.

Recalling that ux -< 0 in Q we have that

(4.18) ux(s(t)-O, t)= lim ux(x, t)
x?s(t)

exists and is finite for any 0 < _-< T. Similarly

(4.19) ux(s(t)+O, t)= lim Ux(X, t)
xs(t)

exists for any 0 < <_- T, but we do not know, as yet, that it is finite.
Multiplying (2.1) by v @(O), v _->0 and reversing the calculations in (2.2) (in

taking the limit of Ux as x s(t) + 0 we use the monotone convergence theorem) we get
T

fo [Ux(S(t)+O, t)-ux(s(t)-O, t)+O Is u(, t) d,]v(s(t), t) dt=O.
(t)

It follows that

P

(4.20) Ux(S(t)+O, t)-Bux(s(t)-O, t)=-c | u(:, t) d a.e. in t.
as (t)

Now, for any rt > 0, if r/< < T then

lux(x,t)]<C ifx=Oorx>=xo, C=C(l)(xolargeenough).

From (4.18), (4.20) and (4.17) we then also have

lux(x, t)l <= C if x e R+,
for a.e. (rt, T), with another constant C. Since ux is continuous in O\F, it follows that

(4.21) lux(x, t)l--< C if (x, t) O\F, > r/;

thus Ux Lloc(l)).
To prove that utL21oc(O), approximate the free boundary x s(t) by a curve

F: x s(t) given by u Uc + 8(6 > 0). Denote by R the domain bounded by F, x x0
and to; it lies to the left of F.

Multiplying ut- uxx 0 by ut and integrating over R, we get

(4.22) (/,/t)2 +- (u x )t uxut dt + uxut dt O.
R f-I F,s R f’l{x xo}

Notice that

-a (u),
2 - RCft=to}

1 Io (Ux)2 dx,(Ux) clx-- ,-

-Io uxutdt= Io (Ux)2 dx
R f-IF R f’IF

(since g ut/Ux)
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and finally, by (4.21),

Io uxut dt Io ’ux’ut dt >- -C I ut >-- -Cuc"
R N{x xo} R {x xo} R {x xo}

Combining these facts we obtain from (4.22) the inequality

f I’ (blt)2 - Cblc.
R

This completes the proof of Theorem 4.1. [3

5. Uniqueness.
TIaEOREM 5.1. Let U, V be two continuous solutions of (P2) with continuous

x-derivative and assume that the sets

rer {(x, t) e O; -U(x, t) Uc},

Fv {(x, t) Q;- V(x, t)= Uc}

are given by continuous curves

x st(t) and x sv(t) respectively.

Then U =- V in Q.
Proof. Suppose the assertion is not true and assume, for definiteness, that

U- V > 0 at some points of Q. Then U- V must take its positive maximum in Q at
some point (Xo, to) in Q. The point (Xo, to) cannot lie t the left of both Ft, Fv since in
that region U and V satisfy the same parabolic equation. Similarly (Xo, to) cannot lie to
the right of both free boundaries.

Suppose next that (Xo, to) lies between Fc and Fv or on only one of these curves.
Then

-U >-_ Uc and Vx <- Uc (or conversely),

with at least one inequality being strict. Hence

(5.1) (U- V)(xo,,o) O,

which is impossible.
It remains to consider the case that (Xo, to) belongs to For (’1Fv. Then U and V

satisfy the same parabolic equation in the rectangle

Ro’(Xo, Xo+ 1)x (, to)
and the maximum of U-V in Ro is attained at (Xo, to). But then, the maximum
principle gives (5.1), which is impossible. 71

6. Further smoothness of the free boundary
LEMMA 6.1. For any rl > 0 there exists a positive constant c such that

(6.1) u<-c in (o\r)fq{t>rl}f’l{x <l/rl}.

Thus ux is locally strictly negative.
Proof. Set

+u(t)=u(s(t)+O,t),

u- (t)= Ux(S(t)-O, t).
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Thus

+(t)-u-=als u(,t) d.Ux
(t)

In view of ux <_- 0, ux, _-> 0, the assertion of the lemma would follow from an inequality of
the form"

(6.2) u- (t) < -c,

Denote by u the solution of

Since ut > 0 away from F,

(6.3)

c>O.

o o
U au if x > s(t)

0 0 +u -Uc, uu asx+stt).

Uxx au + ut > au if x > s(t).

Hence, by comparison, u < u if x > s(t). Therefore

+ o o isU bl bl Ol hi,
(t) (t) (t)

so that

ux =u, +a ud<O,
(t)

and (6.2) readily follows.
THEOREM 6.2. The ]’unction s(t) is H61der continuous (exponent ) in < < T, ]:or

any r/>0.
Proof. Denote by R the region bounded by

x=s(to), t=to+h and F (h>0),

and let k be defined by
S(to+h)=s(to)+k;

notice that k > 0. The assertion of the theorem is equivalent to the inequality

k
.

(6.4) m_<C,
h-

where C is a constant independent of h, provided

q<to<to+h<-T, 0<h<l.

Setting (t u- Uc we can write

(6.5)
Rfq{t=to+h}

S(to)+k

fix
s(t)+k

dx u(, to+h) d
as(to)

>- ck2, by lemma 6.1 (since t u).

The left-hand side of (6.5) is equal to

Itl I,iux(s(t)-O, t) dt- ux(s(to), t) dt

<-_ Ch,

since ux Lloc(O). It follows that Ch > ck2, and (6.4) is proved. [-]
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ON THE REDUCTION OF CONNECTION PROBLEMS FOR
DIFFERENTIAL EQUATIONS WITH AN IRREGULAR SINGULAR
POINT TO ONES WITH ONLY REGULAR SINGULARITIES, I.*
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Abstract. It is shown that a complete system of Stokes’ multipliers for a system of linear differential
equations having an irregular singularity of Poincar6 rank one can be calculated in terms of connection
relations of certain associated functions near their regular singularities. Solutions of the differential equation
are expressed as Laplace integrals of the associated functions, and the formal solutions can be summed as
generalized factorial series in explicitly given half-planes of convergence.

Introduction. It is well known (see [5], [11]) that solutions of the standard
differential equation of PoincarY rank one, i.e.,

(0.1) dx_
dz-(A+Az )x,

(where x is n-dimensional (n >_- 2) and A diag {A ,. , An} has all distinct entries) can
be expressed in terms of convergent Laplace integrals and the solutions are asymp-
totically equal to formal solutions in sectors which are slightly larger than half-planes
(we call these enlarged half-planes). Some integrals which have been used have the form

Y(t) e z’ dt,

where the matrix Y(t) consists of certain solutions of the associated differential
equation

dy
(0.2) d- (A- tI)-l(I +A )y,

which has singularities only at the regular singular points l a,..., An, oe, and the
contours of integration are loops from oe along certain rays which encircle the finite
singularities.

In the context of a theory of invariants for meromorphic differential equations
which has recently been developed by the authors (see [1], [2], [12]), the integrals
represent the normal solutions (see 5) of (0.1) (which are uniquely determined by their
asymptotic in enlarged half-planes) and the corresponding normalized connection
system (i.e., the Stokes’ multipliers which relate the normal solutions in consecutive
sectors) are invariants of the differential equation. The problem of calculating Stokes’
multipliers is usually referred to as a lateral connection problem for the differential
equation.

In this paper we will show how such lateral connection problems can be reduced to
solving connection problems for certain solutions of (0.2) at their regular singularities in
the finite complex plane. These solutions, which we call associated functions, are
expressed locally by convergent expansions which can be calculated explicitly from the
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formal solutions of (0.1). The complete analytic structure of these solutions can be
determined on their full Riemann surfaces through the differential equation (0.2).

For a "general" differential equation of the form

(0.3) -z (o AZ x,

where Ao has all distinct eigenvalues and the power series converges for Izl sufficiently
large, associated functions can also be constructed locally by convergent expansions
which are formed in an analogous way using the columns of a formal fundamental
solution matrix for (0.3). Although there does not appear to be a simple differential
equation for these associated functions in the general case, their complete analytic
structure on their full Riemann surfaces (including their behavior at ee) can be
determined via a transfer which expresses these associated functions as convolution
transforms of associated functions corresponding to standard differential equations.
Here, we use a result of Birkhoff-Turrittin which asserts the existence of a meromor-
phic transformation which takes (0.3) to some standard differential equation (0.1). The
normal solutions of (0.3) can be expressed as certain convergent Laplace integrals of
these associated functions, the lateral connection problem for (0.3) can be solved in
terms of connection problems for the associated functions at their (finite) regular
singularities, and the normal solutions may even be summed as convergent generalized
factorial series expansions in explicitly given half-planes.

Our methods extend some results of Birkhoff [7] (for a scalar second-order
differential equation) and Jurkat, Lutz, Peyerimhoff [13] (for two-dimensional systems)
to the n-dimensional case. In these cases the associated differential equation has only
two finite singularities, the standard differential equation can be solved explicitly in
terms of Kummer functions (see [4]), and the asymptotic of the coefficients in the formal
solutions (both for standard and general differential equations) alone is sufficient to
produce the Stokes’ multipliers. When n > 2 one requires more information from the
formal solution than just the asymptotic of the coefficients and our procedure involving
the associated functions and their connection formulae may be considered as a natural
extension of the procedure which was used in the two-dimensional case. In particular,
the transfer of behavior of associated functions (from a standard differential equation to
a general one) may be thought of as a refinement and extension of a perturbation
theorem of Jurkat, Lutz, Peyerimhoff [13, p. 447] of formal series whose coefficients
have a given asymptotic behavior.

The differential equation (0.2) has also been considered by K. Okubo [15], who
called it the "hypergeometric system." He recognized that the constants which relate
the associated functions at their singularities are involved in computing the monodromy
group of (0.2) at oe, but did not consider the relation between (0.2) and (0.1). Okubo
[14] has also treated the central connection problem for standard differential equations
satisfying certain additional hypotheses. He has reduced the calculation of the central
connection coefficients (which then can be used to calculate the Stokes’ multipliers in
the case of a standard differential equation) to that of calculating the solution of a
central connection problem for a related system of linear difference equations, for
which convergent representations of solutions are obtained.

Our development proceeds along the following lines. We first investigate the
structure of solution matrices Y(t) of the associated differential equation and construct
a fundamental solution matrix Y*(t) which has the property that its kth column is
regular everywhere in the finite complex plane except at &k. Next we show how to
determine the analytic continuation of solutions onto their full Riemann surfaces ( 2)
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and then obtain connection formulas between various solutions ( 3). The matrix Y*(t)
plays an especially important role in these calculations. In 4 the transfer of behavior of
the associated functions from a standard differential equation to a general one is
performed, and in 5 we use the associated functions to express normal solutions of
(0.3) as certain convergent Laplace integrals and factorial series. Here, we also show the
equivalence between the lateral connection problem for normal solutions of (0.3) and
one for the associated functions. This treatment is based on some notes of the second
author.

Three types of contours arise naturally in the Laplace integrals of normal solutions.
Loop contours may be used with a different path for each column of Y(t), the loops may
be deformed to obtain standard Laplace integrals along various rays, and using the
matrix Y*(t) it is possible to select a common path for all the columns. This last type is
especially important in showing the equivalence of the connection problems mentioned
above.

We shall use the notation [A(z)] to abbreviate the system of linear differential
equations dx/dz A (z)x and we note here that we always assume that the system is at
least two-dimensional, since in the trivial case n 1 the formal solutions converge and
yield all the actual solutions explicitly.

1. The associated differential equation and its solutions. Consider the standard
differential equation (0.1) where A =diag {A a,..., A,} and the Ai are all distinct. We
assume that

(i) diag A x-= A’= diag {A ,..., A’} where none of the A is an integer. Note that
condition (i) can always be brought about by making a scalar transformation x z VlY,
which transforms (0.1) into

d__Y [A + (A yI)z-a]Y
dz

and selecting 3/to be (mod 1) incongruent to the h.
With (0.1) we associate the differential equation

d___y_(1.1)
dt

(A- tI)-l(I +A 1)y =- B (t)y,

which may be obtained from (0.1) by formally expressing a solution x as a Laplace
integral of the form y(t) e z’ dt (see also 5).

The coefficient matrix B(t) has singularities in the finite complex plane at
A 1, , An which are first order poles, and has a first order zero at co. Hence A
co are singularities of the first kind for the associated differential equation [B ]; therefore
they are regular singular points of its solutions. Expanding B(t) at Ak we have

B(t) (t-hk)- Y B,,(t-h),
’=0

where Bo, has all entries equal to zero except for the kth row which is equal to the
negative of the kth row of (I + A). Since Bo, has n- 1 linearly independent eigen-
vectors corresponding to the eigenvalue zero, and (h , + 1) (which is not an integer) as
the only nonzero eigenvalue, then at t---hk there exist n- 1 linearly independent
regular solution vectors of [B] and a unique singular solution of the form

(1.2) )-(h :+1)y(t) (t- .h E h(,)(t-h)
,----0
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where hk (0)/F(, , + 1) ek, the kth unit vector (see, e.g., [19, Chapt. II]). By calculating
the recursion formulas for the coefficients h (u) and comparing them with the recursion
formulas for the coefficients f(u) in the formal solution vector

fk(P)Z-vZ x’ e, fk(O) ek,
0

of the differential equation [A +A lZ -] it can be verified that h(u) fk (u)F(A + 1 u).
This can also be seen from the asymptotic expansion of the Lapace integral eZtyk (t) dt
(see 5).

Each of the singular solutions yk(t) has a branch at t- Ak. In order to be able to
determine their behavior at the other singularities Ai(J k), we consider a t-plane
together with parallel cuts from each Ak to along the ray arg (t--,k)- r/ for some
fixed real number r/which may be arbitrarily chosen so that none of these cuts passes
through another one of the singularities, i.e.,

arg(,i-h)r/mod2rr, l<-],k<-_n, ]k.

Every such r/will be called admissible. If we now specify, for k 1,.. , n,

log (t-hk)= log It-Akl/ irl -0

for all such that arg (t-h)=r/-0, then we denote the t-plane with these cuts and
choices of the logarithms by n. The solution y(t) (for each k, 1 _-< k _-< n) may now be
defined near hk according to our selection of log (t h) and then (by means of analytic
continuation) defines a single valued function in ,. We will write y (t; r/) if we wish to
emphasize the dependence of yg(t) on the location of the cuts, and we define

Y(t)=[ya(t)," ", y,(t)] Y(t; rl).

The functions Yk (t; r/), 1 =< k =< n, will be called the associated functions corresponding
to [A(z)] and an admissible direction

Considering yg(t) near t=h (for l <-], k <- n), we see that there exist unique
constants cik ci () such that

(1.3) yk(t) cikyi(t) + reg (t-- hi)

(where by reg (t) we generically denote a matrix function of appropriate size which is
regular at 0). We form the matrix

(1.4) C C(rl)= (ci), 1-<_/", k <=n,

and we note from (1.3) that cii 1, 1 <= j <-n.
In order to relate the quantities in C to the Stokes’ multipliers of the differential

equation (0.1) ( 5), we will as an aid construct another solution matrix Y*(t) which is
intimately related to C. To prove the existence of Y*(t), we require the following
additional assumption"

(ii) None of the eigenvalues of A is a negative integer. Note that by selecting y
appropriately in the scalar transformation x z vI, we can always arrange that (i) and
(ii) hold simultaneously. Moreover, we could even arrange that A satisfied the stronger
assumption that

(ii’) None of the eigenvalues ofA are integers. We shall see in 2 that assumption
(ii’) is equivalent to the invertibility of C.

Remark 1.1. Assumption (ii) holds if and only if [B] has no nontrivial polynomial
solution. To see this, realize that p(t)= Ed

=o ct for some integer d >= 0 and constant
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vectors c(O <- u <= d), Cd O, is a solution of [B] if and only if

-(tI A)p’(t) (I +A a)p(t), i.e.,

-dca (A + I)ca,

-uc+Ac+a(u+ 1)=(Aa+I)c, O<=u<=d-1.

Hence, for a polynomial solution to exist it is necessary that A1 +I have -d as an
eigenvalue. Conversely, if -d is taken to be the largest nonpositive integer eigenvalue
of AI+I and ca is any corresponding eigenvector, then using the invertibility of
(Aa +(u + 1)I), 0<_- u _-<d- 1, we recursively calculate ca-a," , Co satisfying (1.5) and
hence have constructed a polynomial solution.

The nonexistence of a polynomial solution of [B] will be used in the following
proposition to construct the solution matrix Y*(t).

PROPOSITION l. Let [B(t)] satisfy assumption (i) and let rt be admissible. Then
there exists a solution matrix Y*(t)= Y*(t; rt)=[y*(t; rt)," ", y*(t; r/)] for [B(t)]
satisfying

(1.6) y(t)=reg(t-hi) fortran, fk, l<-_f,k<-n,

(1.7) y*(t)=yk(t)+reg(t--hk) fortran, l<=k<=n,

if and only if (ii) holds.
Moreover, Y*(t) is uniquely defined by (1.6), (1.7), is a fundamental solution of[B],

and satisfies
(1.8) Y(t)= Y*(t)C.

Proof. Since all vector solutions of [B] form an n-dimensional vector space
whereas those staying regular at hj form an (n 1)-dimensional subspace, we see that
for each fixed k, 1 -<_ k <= n, the subspace of solutions staying regular at all h., k, is
obtained as an intersection of n- 1 such subspaces, and by a well-known dimension
formula from linear algebra we conclude that this intersection is at least one-dimen-
sional. On the other hand, since every solution of [B] is of the form cyk (t) + reg (t- h)
for a suitable constant c, we conclude that the space of solutions which are regular at all
hi,/" : k, has dimension greater than one only if [B] has a solution which is regular
everywhere and therefore must be a polynomial, due to the fact that is a regular
singularity.

Hence the foregoing discussion shows: If (ii) holds, i.e., if [B] has no polynomial
solutions, then for every k, 1 _-< k _-< n, there exists a nontrivial solution y (t) which is
regular at h for all k, 1 _-</" -< n, and therefore must be singular at ,. Such a solution
is defined up to a multiplicative constant, which may be selected such that (1.7) holds.
This shows that a solution Y*(t) exists and is unique whenever (ii) holds. Conversely,
assume that Y*(t) satisfying (1.6), (1.7) exists. Let c be a constant vector such that
Y*(t)c =-0 for ,. Then for every k, 1 =< k _-< n, if we let tend to h, all but one
column of Y*(t) remain regular, hence Y*(t)c =-0 implies Ck----0, 1-<k =<n, which
shows that Y*(t) is fundamental. In the same manner, if c is such that Y*(t)c stays
regular at hj for all/" k (k fixed), then cj 0 for all ] k, hence Y*(t)c y’ (t)ck, hence
the space of solutions being regular at h (f k) is one-dimensional, which implies (ii) by
means of the foregoing discussion.

Finally, since Y*(t) (in case of existence) is fundamental, there exists a unique
constant matrix, say , such that

Y(t) Y*(t),
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and using (1.7) and (1.3) we see that C C by discussing the behavior of the kth column
near

Remark 1.2. Note that C may be constructed for any differential equation (1.1)
satisfying assumption (i), and from the proof of Proposition 1 it is seen that under this
assumption alone there exist nontrivial solution vectors which are regular at all of the
singularities A 1,"’, An except possibly one of them. So (1.6) can always be satisfied,
whereas (1.7) requires assumption (ii).

2. The analytic continuation of solutions of the associated differential
equation. Our goal in the next two sections is to determine how the matrices Y*(t; 7)
vary with respect to (i.e., determining the analytic continuation when crossing one of
the cuts, for example) and 7 (i.e., comparing Y*(t; 7) for different choices of admissible
7). The analytic continuation of Y*(t) will be treated first and it will be applied in the
next section to study how the matrices Y*(t; 7) are related for various 7. As a
consequence of our techniques we will characterize the invertibility of the matrix
in this section and in the next one we will see how the matrices C(7) are related for
various choices of 7. One could, in principle, make these calculations for Y(t;
directly, but the utilization of Y*(t; 7) is a technical convenience which simplifies the
ensuing algebraic computations. Whenever we speak of Y*(t; 7) we will always
implicitly be making assumptions (ii), or (ii’), which guarantees its existence.

LEMMA 1. Let (i), (ii) be satisfied and let 7 be admissible. Then for every fixed k,
l<-k<-_n, the analytic continuation of Y*(t; r) across the cut arg(t--Ak)=7 in the
positive sense is given by.

(2.1) Y*(t; 7)(I + C* ),

where C’ has all zero columns except]’or the kth column which is equal to the kth column
of C(7) multiplied by (e-2i’ 1).

Proof. From (1.8) we see (note that ck 1)

y(t) 2 y (t)ci, hence y (t) y(t)- 2 y (t)cik,
/=1 ik

for every fixed k, 1 _<- k <_- n. Since y (t) stays regular at Ak for j k, it is sufficient to
discuss how yk(t) changes when crossing the kth cut. From (1.2) we see that yk(t) goes
into yk(t) e -2"i; when crossing the cut in the positive direction, hence y (t) goes into

2 -n’iA
Y (e 2 ,n-iA

e (t)+ -1) y(t)Cik
jk

=y(t)+(e-2=ix;’-l) Y(t)Cik,
/=1

and since all the other columns of Y*(t) remain unchanged, this completes the proof.
Remark 2.1. By exactly the same arguments as in the foregoing proof (or by

inverting the matrix (I +C ), one finds that the analytic continuation of Y*(t; 7) across
the cut arg (t- Ak) 7 in the negative sense is given by Y*(t; 7)(1 + ), where * has
all zero columns except for the kth column which is equal to the kth column of C(7)
multiplied by (e2ix’- 1). This will be used in the next section.

The matrix Y(t) may be thought of as the naturally constructed solution of (1.1)
while the matrix Y*(t) is the uniquely constructed fundamental solution which is
particularly convenient with respect to its analytic structure. The proof of Proposition 1
provides a means of constructing Y*(t), but if C is invertible it may be more natural to
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construct Y*(t) by means of solving (1.8) to obtain

(2.2) Y*(t) Y(t)C-1.
The following proposition shows that C is invertible if and only if (ii’) holds.

PROPOSITION 2. LetA satisfy (i) and let Cbe defined according to (1.3). Then ifC
is invertible, the matrix

r*(t) r(t)c-
must satisfy (1.6), (1.7). Furthermore, C is invertible if and only if (ii’) holds.

Proof. Assume C is invertible, and define Y*(t)= Y(t)C-1. Then it follows from
(1.3) that for every j, 1 <_- j <- n,

Y(t)=[y(t),’", y,(t)]=[yi(t)Cil,"’, y.(t)c.n] +reg (t-1i);

hence

Y*(t) Y(t)C-1= [0,..., 0, yi(t), 0,..., 0]+ reg (t-A.),
which is equivalent to (1.6), (1.7). Therefore we conclude from Proposition 1 that A
must satisfy (ii) whenever C is invertible, and since (ii’) always implies (ii) we may now
assume that (ii) holds (since otherwise (ii’) fails and C is not invertible).

It follows by solving [B(t)] at t= oe that (ii’) fails if and only if [B] has a vector
solution which is single-valued in a deleted neighborhood of oe. Since every vector
solution of [B] is of the form Y*(t)c for a constant column vector c, then the analytic
continuation of Y*(t)c around oe (in the counter-clockwise sense) may be expresssed as
Y*(t)C*c, where Y*(t)C* denotes the analytic continuation of Y* around oe. Hence
Y*c is single valued if and only if C*c c. Hence there exists a single-valued vector
solution of [B] if and only if C* has one as an eigenvalue. If we assume, without loss in
generality, that the numeration of the Ak is such that the ray arg (t- Ak+) r/lies to the
right (when going towards oe) of the ray arg (t Ak) r/for 1 _--< k _-< n 1, then according
to Lemma 1 we find, beginning on the right-hand side of all the cuts,

C* (I+C*)... (I+C*).

Now let x (x, , xn) be any constant row vector. Then by induction one proves
that, for k 1,..., n,

k

x(I+C*l ). (I+C’)=x+ Z o6,

where 6 is the vth unit row vector and the constants c. are independent of k and are
recursively given by

(e-2X "rri .a 1) XrCrl,
r=l

(2.3)

r=l A=I

For k n we see that C* has one as an eigenvalue if and only if there is a nontrivial row
vector x such that

X+ o,3,=X,
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which holds if and only if a a, 0. Since none of the h k is an integer, this
occurs (in view of (2.3)) if and only if xC= 0; that is, C* has one as an eigenvalue if and
only if C is not invertible.

Remark 2.2. By a similar argument one can show that

det (C*-I)=det C fi (e -2=i’- 1).
k=l

Remark 2.3. Note that the proofs of Propositions 1 and 2 have the following
consequence which will be used later. Suppose that for a fixed admissible rt, a matrix
Y(t; /) [yx(t; ), y,(t; )]is given where each column yk(t; /) is locally given by
a convergent series (1.2). Then if there are constants cik such that (1.3) holds for 1 _-<f,
k _-< n, and if C [Cik] is invertible, then the matrix Y*(t; /) defined by (2.2) must satisfy
(1.6), (1.7), and is even uniquely defined by (1.6), (1.7) within the class of matrices which
differ from Y(t; l) by right-hand constant factors.

Remark 2.4. It follows from Proposition 1 (under assumption (ii)) that Y(t) is a

fundamental solution matrix if and only if C is invertible. Furthermore, in the case of
invertible C, we see from (1.8) and (2.1) that Y(t), if we perform its analytic continua-
tion across the cut arg (t- hk) /in the positive sense, picks up the constant right-hand
factor C-1(I + C’ I + ’, and k can be seen to have all zero rows except for the kth
row which is equal to the kth row ofCmultiplied by (e -2i’- 1). In fact, the same formula
for the analytic continuation of Y(t) can be seen to hold (using yi(t) y(t)ci+
reg (t-h)) even when C fails to be invertible.

3. Connections between solutions of the associated differential equation
3.1. The geometry of the cuts and the dominance relation. The set of all admis-

sible numbers is open, hence a union of countably many open intervals, and two
numbers < are in the same interval if and only if the following property holds"

For any k, 1 N k <- n, if we turn the ray arg (t- hk) / (in the positive sense) by an
angle of (1 q, then none of the points h (j k, 1 <- <-_ n) is crossed; i.e., none of the
possible choices for arg (h -h) lies in the interval (/, ).

Therefore the critical values, i.e., the inadmissible numbers /, are the possible
values of arg (hi-h) for all j k, 1 _-<j, k _-< n, and if /is a critical value, then /+ 21zr is
also critical for every integer 1. We choose the following enumeration for the critical
values:

Let m be the number of critical values in the interval (-zr/2, 3zr/2], number them
as

(3 1) 3zr_> 70> /1 >" > /m-1 >----
2-- 2’

and for every integer k, let

(3.2) r+,n r 2kzr, u=0,... ,m-1.

Note that m is always an even number and, since the critical values are periodically
distributed mod 2zr, there are exactly m such critical values in any interval of the form
(a- 2zr, a ]. Then the set of r for all integers u is exactly the set of critical values.

Recalling that the Stokes’ directions for the differential equation (0.1) (see [2, 2])
are those rays arg z z where Re (hi- A)z changes sign as the ray is crossed, we see
that the Stokes’ directions z and the critical values r are related by

37r
(3.3) n + r - for every integer u.
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Also, the dominance relation f < k on (see [2, 2]), which means that

(3.4) Re (Ai-Ak)z < 0 for arg z ’,

has the following interpretation in .: If (analogously to (3.3)) we set r/+-= 37r/2,
then (3.4) holds if and only if a suitable choice of arg (A;-Ak) lies in the interval
(-Tr + r/, r/). This is also equivalent to saying that the cut from Aj to lies on the
right-hand side of the cut from A to c looking in the direction r/. Hence for a fixed u, if
we enumerate the eigenvalues A1,’", An such that the fth cut (]:or any value of
rl (fly, fly-l)) lies on the right-hand side of the kth cut whenever < k, then the
dominance relation f < k in S’v S(’v-, ’v) coincides with the natural ordering of the
indices.

The set of all pairs (/’, k),/’ k, having a change ofdominance from k to/’ on ’v, i.e.,
f < k on ’v e while k </" on ’v + e (e > 0 and sufficiently small), is denoted by pv and is
called the position set corresponding to the Stokes’ direction ’v (see [2, 3]). Then the
position set pv is exactly the set ofpairs (L k) such thatfor suitably small > 0 the/’th cut is
to the right (resp., left) of the kth cut in ,v+ (resp., ,v_).

We recall from 1 that for every admissible r/we have made fixed selections of the
values y(t; ), or equivalently, of log (t-A)for t, and l<=k<-_n. For a second
admissible value every point to e , 71 , such that for every k, 1 -<_ k -< n, the selected
values of log (t0 A) in ,, resp. , coincide is called a reference point with respect to q
and }, or simply a reference point if r/and are fixed. That is, a reference point to is such
that no possible choice for arg (to- Ak) lies between rt and for any k, 1 <= k <_- n. We
remark that in case [rt-ri[<27r then reference points always exist and the set of all
reference points with respect to every pair r/, r is always simply connected. A point A. is
called accessible from reference points with respect to q and ! for a particular choice of
cuts in the directions r/ and (or just simply accessible if the cuts are fixed) if points
arbitrarily close to 1i can be connected to reference points by a path which does not
cross any of the cuts. This implies that

yk(t; r/)= y(t; )

for each k such that A is accessible. We now state that Y*(t; r/) essentially stays the
same as long as rt varies in an interval (r/v+1, r/v) for some integer v.

PROPOSITION 3. For a fixed integer v, take any two values q, l such that qv+ < rl <
< rlv. Then for every reference point we have

(3.5) *(t; n)= *(t; ).

Proof. Since each point A,..., An is accessible from a reference point, then
yk(t; r/)=yk(t; ) for each k, l_-<k =<n, hence C(r/)=C(). Therefore from Pro-
position 1 we see that Y*(t; r/)= Y*(t; ) for all reference points with respect to rt,

since that construction produces a unique Y* which depends only on Y and C.
Remark 3.1. In view of Proposition 3 we may denote Y(t; rl) (resp. Y*(t; r/)) for

every rt (r/v+1, rtv) by Yv(t) (resp. Y,* (t)), and we also denote the common value of
(v)C(r/) for all r/(r/v+l, r/v) by Cv=(ci ), l<-f, k<=n. Note that (3.5) requires an

additional assumption (ii) or (ii)’ which assures the existence of Y*, while Y(t; rl)=
Y(t; ) for all r/, r (r/v+1, r/v) holds generally.

3.2. Relations between various matrices * (t). For admissible values of r/

separated by a critical value r/v, the matrices Y* and *Yv-1 generally are not the same
and the following proposition describes the connection between them.
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PROPOSITION 4. For every integer p and every reference point relative to the
numbers q, l satisfying

(3.6) Tu+l < /1 < T]9 < < "1’/9_1,

(9)the constant invertible matrix W9 (wig) satisfying

(3.7)

is given by

(3.8)

(3.9)

(3.o)

Y-I (t)= Y9 (t)W9

(9) 1 1 < =n,Wjj ----j <

(,)
wig O, (j, k) e pg,

(u) -2-triX ) (u)w ig (1 e ig

l<=jk<-n,

if(j,k)pg, l<=jk<=n.

Proof. By y* (t), resp. * (t) we denote the kth column of Y9-1" (t), resp9-1,k Y 9,k

Y* (t). For some fixed k, 1 <= k <= n, let /, be chosen according to (3.6) and note that
since 0 < q-r/< 27r there always exist reference points for which (3.7) holds. For the
kth column we have

(3.11) y* (t) y* (t)w] +’’’ + y* (t)" (9)
9-1,k 9,1 ,n nk

where we consider the plane , together with an additional cut along arg (t-hg)= .
For each point hi, 1 <- j -< n, which is accessible from reference points relative to these
cuts, (3.11) remains valid by means of analytic continuation along an appropriate path
and if j k then since the only function in (3.11) which becomes singular at h is y *,i(t),

(v)we conclude that wig 0. Similarly, if f k (note that ,g is always accessible) we
conclude that y* (t) y* (t)w2 reg (t-,g), which in view of (1.3) (1 7) holds if9-1,k 9,k

and only if Wk 1. (Here we use that at a reference point we have yg(t; r/) yk(t; ).)
This leaves us with a discussion of what happens at an inaccessible point hi, i.e., a point h
for which a possible choice of arg (hi- hk) lies in (r/, ). But from our discussion of the
dominance relation, this happens if and only if (j, k) pg. Hence the support of Wg, i.e.,
the offdiagonal positions where W has nonzero entries, is contained in the position set
pg. This establishes (3.8), (3.9). The calculation (3.10) follows as an application of
Proposition 5 (see Remark 3.5). It could also be proven here directly by the same
method of analytic continuation across the cuts, but we delay this argument until later
since the geometry of the cuts is easier to work with in the situation of Proposition 5.

Remark 3.2. Using similar arguments with Y* (t) Y*-I (t)W, it can be shown
that the elements of W;-a can be expressed in terms of C_a as follows. If we let
W- (Wjk), then wii 1, 1 <_- j -< n, wig 0 for (j, k) 09, j k, and

(9- for (j, k)09.Wik 1 e’i;)ck
This calculation also follows from Remark 3.5, as we shall see.

Remark 3.3. If r/is any admissible number, then , and-2 consist of the same
set of complex numbers and differ only in the different selection of the branches of
log (t- hg), 1 -< k _-< n. Hence the matrices Y(t; rt) and Y(t; rl 27r) are defined in the
same domain of complex numbers and are obviously related by

Y(t; l- 2"rr) Y(t; q)e 2riA’.
Recall that the number m of critical values in any interval of the form (a- 27r, a] is
even, and define/x m/2. Then for any / (r/9+1, r/9) we see that

Cg+m e-2iA’c9 e 2iA’ for every integer p.
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Moreover, since Y* (t) e 2riA’ and *Y,+,(t) can both be considered as fundamental
solution matrices in ,--2,, the above relation for Y(t; rl) and Y(t; rt 27r) can be used
to check that Y* (t) e 2’iA’ has (as a solution in ,-2,) the properties (1.6), (1.7) which
uniquely characterize Y*+, (t) (according to Lemma 1), hence

(3 12) . , 2iA’Yy/. (t) Yy (t) e

From this it follows that

(3.13) Wy+, =e-2iA’wye2=iA’

for every integer ,, hence any collection of m consecutive Wy determines all of them.
In 5 we shall see that the connection matrices Wy equal the normalized connec-

tion matrices Vy (see [2]) of the differential equation [A(z)]. In order to relate the
elements of some matrix C to the invariants of [A(z)], we will now establish a
one-to-one correspondence between a single Cy and the set Wy+l, ’,

If we define, for an arbitrary but fixed integer u,

(3.14) C+ (W+, Wy+l)-1

and

(3.5) c; w+., w+.+l,

then clearly Wy/l,’", Wy+m uniquely determine C+, C-. Moreover, C/

uniquely determine the matrices Wy+l," , Wy+m as we will show. Note that a pair
(/’, k) changes dominance exactlyonce within any interval of the form (a- rr, a] and
(f, k) py if and only if (k,/’) py+,. Hence the sets

and

ry++l p.++I U U

where try/l, resp. cry/,/1, denotes the set of pairs (j, k) with ] < k in S’/ $(-. r/l),
resp. S’y/,/I (compare [2, 3]), are antisymmetric and transitive sets. Also, the sets
0/1,’", Oy/, are disjoint, antisymmetric and transitive; hence according to Pro-
position 3 [2, 4] the matrices Wy/l,"’, Wy/,, resp. Wy/,/l,"’, Wy/, can be
uniquely calculated using C+, resp., C. Note that if we order the eigenvalues
hi," h according to the dominance relation in S’ +

y+a, then C becomes upper
triangular, whereas C is lower triangular. In what follows, for simplicity of cal-
culations, we will assume that such an ordering for the eigenvalues has been made.

In order to relate C+y to Cy, using (3.14) and the definition (3.7) we obtain

(3 16) * * +Vy+. (t)= Yy (t)Cy

for a reference point with respect to r/-Tr and r/, where r/is arbitrary, but fixed, in
(r/y+1, r/y). These reference points include all points lying on the left hand side of all the
cuts in the direction r/(looking towards 0o). Denoting the elements of C+ by +

cik, 1 <=j,
k <= n, then from (3.16) we obtain

(3 17) y* * (t)c + * (t)c +y+.k(t) y y. k +’ + y y,. .k.

For (3.17) it is sufficient to consider the plane with cuts along arg (t-i) l, 1 <=j <= n,
and an additional cut along arg (t--Ak)-- r/--Tr. Just as in the proof of Proposition 4, if
we continue all the functions in (3.17) analytically along a path towards any

/(1 _-< _-< n) which is accessible relative to this system of cuts, then Ck 0 if/" k and
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+c kg 1 (note here that Ag is always accessible). Furthermore, we see that the accessible
points A are precisely those for which/’_-> k (according to our ordering of the eigen-
values). In terms of the dominance relation, they are (aside for/" k) those/" such that
k </" in S’,+a. Now consider an inaccessible point A with j < k (i.e., j < k in S’+a). We
then perform an analytic continuation of the functions in (3.17) along a path from a
reference point which crosses none of the cuts except arg (t-A)- r/, and since the
reference points are to the left of this cut, this cut is crossed in the negative sense. The
only function in (3.17) which changes when we cross this cut is *y,k(t) and (using
Remark 2.1) its analytic continuation is given by

y* (t)+(e2ix’ 1) l(t)c ()t,,k Y lk
/=1

Hence the continuation of (3.17) yields

(3 18) y* * 1)cl].+u,(t)= y,(t)[ck +(e 2’ia

/=1

Since each point a,., j < k, is now accessible, and since the only function in (3.18) which
becomes singular at a. is y ,.(), we see that

+ 2"rria ) (v)(3.19) c.g (1-e cig, l<-j<k<--n.

Likewise, using (3.15) and (3.12) we obtain

(3.20) * (t) * . 2.rriY+. Y+. (t)C- Y. (t)e A’C-2,

for a reference point with respect to r/-Tr and r/-27r (hence lying on the right hand
side of the cuts in the direction r/-27r). Applying similar arguments as above, we find
that C- (Cik), 1 <-- j, k <= n, is lower triangular with ones on the diagonal and

(,.,+m)c ik (1 e-2iA)Cjk 1 <= k < f <= n.

Hence using C/,n e-2iA’Ce2iA’, we may calculate c), in terms of C and we
formulate these results as

PROPOSITION 5. For every integer t, the connection matrices between Y* (t) and
Y+, (t) are given by (3.16) and (3.20) (depending upon in which half-planes they are
compared) and can be calculated from C as follows"

/c+ (w+, w+)-’ (c),

+ 0. ifk <jinS’+x,
(3.21) cik=t ilk=j, l <-_j <=n,

()1 -e2"ix;’)cig ifj < k in S’,+1

c; w+,, w+,+ (c),

! ifj<kinS’
(3.22) c ig if k j, 1 <- j <- n,

-2rri,X/x (’)2"i(x-x)(1- e )cj if k < j in S’+1.
Furthermore, since the factors in (3.21), (3.22) are uniquely determined by their product,
this establishes a one-to-one correspondence between the elements ofthe matrix C and the
connection system (W+I, , W+m); moreover, in light of (3.13), there is a one-to-one
correspondence between a single matrix C and the connection system W,)/
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3.3. Relations between various matrices Cv.
Remark 3.4. As a consequence of Proposition 5 we see that (from the one-to-one

correspondence between an arbitrary C and the system (W,)) there is even a
one-to-one correspondence between C-1 and C. Moreover, the formulas derived in
Remark 3.2 enable us to find the explicit formulas expressing Cv-1 in terms of C.
Namely, using (3.21), (3.22) and (3.13) for both v and v-1, one finds

(3.23) C+Wv+, WC+

(3.24) e2"triA’c-wu+t. W e 2"rri a’ t’--
v-1

Furthermore, from (3.21) and (3.22) we also see (with D=diag{1-e:Zi’;, ...,
1 e :’ia ;’}) that
(3.25) C,,D C+ --eZA’c-2 for every integer v,

and therefore we see, using (3.23), (3.24), and (3.25) (both with v and u-1) that

(3.26) W,.,C,.,-1D C,.DW,,+, for every integer v.

Remark 3.5. Using (3.23) and (3.24) we will now see how these equations contain,
in particular, the calculations of W in terms of C (3.10), W51 in terms of C_

-1(Remark 3.2), as well as W+, in terms of C-1 and W+, in terms of C. If we label the
eigenvalues A,..., An according to the dominance relation in S(r, r+l), then as
remarked earlier in this section, the cuts in for t s (+1, ) occur from right to left
(from the points A 1, ’, An looking toward in the direction 7). Consider the points
A 1, , An in the complex plane together with a line in the direction through each
point. Then (according to the definition of t) at least two points A 1, , An must lie on
the same line and we consider the decomposition of the set {A 1,"’ ", An} into subsets
according to whether or not they lie on the same such line. Since there is no critical value
in (7v+1, rt) we see (by first considering < 7 and taken very close to /) that the
subset of points which lie on the same line have consecutively numbered indices.
Moreover, the position set p consists of all pairs (/’, k) where/" < k and Aj, Ak lie on the
same line in the direction 7. This establishes a blocking of the set of indices
{1, 2,..., n} in which two indices ], j+l occur in the same block if and only if
arg (Ai+a- Ai) t(mod 2zr) (hence one-dimensional blocks correspond to eigenvalues
with the property that no other eigenvalue lies on the line determined by it and the
direction t). If we compare this labeling and blocking with the corresponding one for
s (t, 7-1), then we see that the single elements keep their same index and within

every nontrivial block, the ordering (with respect to the dominance relation) of the
indices is exactly the reverse of what it was for / (/+, t). This explains how the
dominance relation changes for consecutive sectors S’.

Let the matrices C+, +C-1 be partitioned according to this blocking; i.e., the
diagonal blocks correspond to the indices occurring in the same block. Recall from
Proposition 4 that if W is blocked in the same manner, then since the support of W is
in p, W is actually diagonally blocked and the diagonal blocks themselves are lower
triangular. Likewise, since the support of W+, is contained in p+,, the set of opposite
pairs of those in p, then W+ is also diagonally blocked according to this same
blocking and the diagonal blocks are themselves upper triangular. From Proposition 5
we see that if the eigenvalues are ordered according to the dominance relation in S’+1
the C+ is upper triangularly blocked and the diagonal blocks are also upper triangular,
while *C-1 is upper triangularly blocked, but the diagonal blocks are lower triangular
(comparing the dominance relation in S’+1 with that in S’ as described above). Thus
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comparing the diagonal blocks of each side of (3.23) we see that those on the left-hand
side are upper triangular with diagonal equal to I, while those on the right-hand side are
lower triangular with the same diagonal I. Hence the factors of the diagonal blocks on

-1both sides are inverses of each other. This implies that the matrix W+, is calculated in
terms of C as follows:

-1W+, (w.g), 1 -< ], k =< n,

w.. 1, l<-j<=n,

w; 0, (j, k) t,+,

wig (1 e 2"n’iA )C (u) (j, k) p+,.

The calculation of W in terms of the elements of C-1 obtained in Remark 3.2
corresponds to a similar argument for the diagonal blocks on the right-hand side of
(3.23). Similarly, (3.24) is equivalent to

-2"rriA’ -1 2-rriA’ -1e W e C C-_ W+p.,

and arguing in the same manner, one obtains (3.10) from the diagonal blocks on the
left-hand side, while from the diagonal blocks on the right-hand side one obtains a
formula for the calculation of W+ in terms of the elements of C-1.

Remark 3.6. These relations also may be used to calculate all the matrices W
from a single C by the following inductive procedure. Calculate W and Wv+, from the
diagonal blocks of C (with the blocking of indices introduced above associated with
/). From (3.26) one can then calculate C-1 and blocking it according to blocking
associated with 7/u--1, the diagonal blocks then yield W-I and W+,-1, etc.

Remark 3.7. As a consequence of the definitions (3.14), (3.15) and the relation
(3.13), we see that

+c+ (c)-

and

C-/+ e-2=ia’(c+ )-1 eZ=iA
and making use of (3.25) (for u +/z) we obtain

(3.27) C,+ ((C-,)-’ (C+ )-a e
2,,iA’)D -1

Remark 3.8. Using Y(t)= Y* (t)C (also for u- 1) and the definition (3.7), one
sees (assuming that C is invertible) that

Y-l(t) r(t)C-1WC_I,
and using (3.26), we obtain

(3.28) Y-l(t) Y(t)DW+,D-1

for reference points with respect to r/, satisfying (3.6). Similarly, using Y(t)=
Y* (t)C (also for u +/x), (3.16), (3.27) and (3.25), we obtain

(3.29) Y+, (t) Y(t)D(C-/

for reference points relative to /- r, /; also using (3.20) we obtain

(3.30) Y+.(t) Y(t)[D(C+ )-1 e2iA’D-1]
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for reference points relative to W r, t 2r. Since Wv+, can be given (see Remark 3.5)
in terms of Cv-1, (3.28) describes the connection formula between consecutive matrices
Y(t) in terms of the elements of C-1. The connection formulas for the matrices Y(t)
(analogous to (3.16) and (3.20) for Y* (t)) are given by (3.29), (3.30). Note that
although the formulas (3.28), (3.29), (3.30) were derived under the assumption that C
is invertible, the formulas themselves are given by quantities which are always defined
(just using assumption (i)). Moreover, all the matrices Wv may be considered as being
defined by (3.21), (3.22) in terms of C, even though Y* (t) may fail to exist. Since the
invertibility of all of the C can be brought about by a scalar shift z of [A (z)], and in 4
we will show that the matrices Y(t) as well as the quantities in C depend analytically
upon the parameter 3’ when it is varied in a deleted neighborhood of 0, then by analytic
extension the connection formulas (3.28), (3.29) and (3.30) can be shown to be valid
without the additional assumption that C is invertible.

4. The associated functions corresponding to a general differential equation
4.1. Definition of the associated functions. We will now define associated

functions for more general differential equations [A (z)] than the ones treated thus far.
Such a class of differential equations are ones which satisfy the following natural
assumptions"

(al) (z)=o vz converges for ]zl> a ando has all distinct eigenvalues (for
a suitable a >-_ 0).

(a) If ff’o is a constant invertible matrix which diagonalizes A[o, then
diag {/VaA 1/Vo} has no integer entries.

In discussing how the quantities we shall define correspond to invariants of [(z)], it is
important to have in mind an a priori fixed, but arbitrary, ordering for the eigenvalues
h 1, , h, ofo and also to make a fixed, a priori, selection (depending only on Ao) for
Fo such that

PIZOP0 --diag {A 1,""",/n} A.

Under these assumptions, there exists a unique formal fundamental solution matrix for
[A(z)] of the form

Azt(z) P(z)z;V e

where ’=diag{/V’Al/V0} satisfies assumption (i) ( 1) and /Va(z)=20 z is a
-1formal power series in z which begins with the selected/o.

Every other formal fundamental solution matrix of this type differs from the above
H(z) by a constant, invertible, diagonal, right-hand factor which corresponds exactly to
the freedom in selecting

Although the above assumptions are natural to make from the point of view of
being especially easy to check, there is a slightly more general class of differential
equations [A (z)] for which our results also apply and we will say that such differential
equations satisfy our basic assumptions which we state as follows"

(b) [A(z)] is a meromorphic differential equation (at oo); i.e.,

(Z)--" Zr-1EuZ
0

converges for [z I> a for some a >- O, and is formally meromorphically equivalent (see 1])
-1

to a special differential equation [A(z)]=A+Alz where the entries of A=
diag { 1," , } are all distinct and A1 satisfies assumption (i).

Comparing the formal meromorphic invariants (see [1]) we find that [A(z)]
satisfies our basic assumptions if and only if it has a formal fundamental solution of the
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form

(4.1) IYI(z) .(z)zi’ eA,
where ff’,(z)= /vz is a formal meromorphic transformation (note that the sum
may be assumed to be taken over all integers u; however, for negative values of u only
finitely many coefficients/ are nonzero) and ’ has no integer entries. Since the entries
of ’ are modulo one equal to A’ diag {A x} we see that A satisfies (i) if and only if ’does. Finally note that since every formal meromorphic transformation F,(z) can be
factored as (apply [1, Lemma 2] to fix (z))

where f’,, (z) is an actual meromorphic transformation and a(Z) is a formal analytic
transformation, [A(z)] is meromorphically equivalent to an equation having a formal
fundamental solution/a (z)z i’ e Az and therefore satisfying our "natural assumptions."
Hence the class of differential equations satisfying our basic assumptions can equally be
characterized as those equations which may have Poincar6 rank greater than one, but
whose rank can (by means of a meromorphic transformation) be reduced to one and the
resulting differential equation then satisfies the natural assumptions (ax), (a2). It is,
however, theoretically of interest to know that the results we shall derive depend only on
a particular structure of the formal meromorphic invariants and not on any additional
features of the differential equation such as its Poincar6 rank (which is not a meromor-
phic invariant).

Let any fixed differential equation [A (z)] satisfying our basic assumptions be given.
We select any formal fundamental solution matrix (4.1) and (analogously to (1.2)) we
define the associated functions corresponding to [A (z ), /-) (z )] for each k, 1 <-_ k <= n, as

(4.2) 37 (t; rt)= 37 (t)= Y + 1 p)(t- hg) v-G’+l),

where ]g (u) denotes the kth column of/ and we define the nonintegral power as in 1
by specifiying the branch of log (t-Ag) for an admissible r/. It can be shown (see, for
example [3, 2] or [19, p. 59]) that for u sufficiently large, hence the
power series in (4.2) converges for It-ALl sufficiently small. It is important to observe
that Tgi!) does not depend upon a particular factorization of a fixed (z) into
m(Z)Z e Az, since all po;sible factorizations are obtained by replacing
for an arbitrary integer qg and correspondingly replacing 2k(U)Z by 2uTk(P)Z -u-qk.

Note that there are always only a finite number of indices u < 0 for which g (u) 0. We
also observe that 37g (t) does depend upon the choice of/-)(z), however, and when/-)(z)
is replaced by I2I(z)D, D =diag {dl,’’’, d}, 37g(t) is replaced by

4.2. The analytic structure of the associated functions. Our goal is to obtain the
complete analytic structure of the associated functions in and also their behavior at
oo. We state this result now as

THEOREM 1. For any differential equation [A (z)] satisfying our basic assumptions
(b), let H(z) (see (4.1)) denote any selected formal fundamental solution matrix, let
denote any admissible direction, and let fig(t), 1 <- k <- n, denote the associated functions
correspondingto ([(z)],/(z)) and q. Then the functions g(t), 1 <- k <= 7, are analytic in
n, satisfy

(4.3) g(t)=?igi(t)+reg(t-Ai), l<-j,k<-n
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and can be analytically continued along every path which does not contain any of the
points 1, , An. Furthermore, if S is any sector in the t-plane of the form

S ={Itl> R, c <arg t</3}

with 0 < a < 27r andR so large that none of the points )t 1, , An lies in S, then ]’or any
fixed analytic continuation of k(t) into the whole sector S, we obtain

-(a+)l(4.4) lim e ’l)Tk (t) 0, S,
t---,

]’or e > 0 arbitrary, where a is the radius of convergence of the power series ]’or (z ).
To prove this, we first realize that [(z)] is properly meromorphically equivalent to

a special differential equation [A(z)], A(z)=Ao+ z-lA1. On one hand, according to
the foregoing discussion we see that [(z)] is meromorphically equivalent to an
equation satisfying our natural assumptions, and every such equation, according to a
result of Birkhoff-Turrittin (see [5] and [18]), is meromorphically equivalent to such an
[A(z)]. Furthermore, considering the formal meromorphic invariants and applying a
constant transformation which puts A0 into Jordan form, we find A0 A, and the
entries of A’= diag {A 1} are (modulo one) congruent to the corresponding entries of A’;
hence A satisfies (i). For such a differential equation [A (z)] we know from the previous
sections that, corresponding to the unique formal fundamental solution matrix H(z)
Fb(z)zA’e Az there exist associated functions yk(t) which are locally given by (1.2),
analytic in 5, for every admissible rt and satisfy (1.3). We first formalize the transfer of
the behavior of the y(t) to the 37(t) in the following lemma. For every integer ,, by
yV)(t) we denote the function whose power series expansion is obtained by I,l-fold
termwise differentiation (u _-> 0) resp. integration (u < 0) of the power series expansion
of yk(t). For , -1, the function 3, -1)(t) can be analytically continued as antiderivative
of y(t), and similarly for u -2, -3,. ..

LEMMA 2. Consider any differential equation [A (z)] satisfying our basic assump-
tions and any special differential equation [A(z)], A(z)= A +Alz -1, where A1 satisfies
(i), which are equivalent by means ofa meromorphic transformation T(z). Then for every
admissible rl and fixed k, 1 <-k <=n, the associated functions 37(t; r/) and y(t; r/),
corresponding to the uniquely selectedformalfundamental solutions H(z) resp. H(z), are
related as follows"

IfD diag {dl, , dn} is such that HD TH, and if

T(z) E Tvz -,
then, for ,, [t hk[ sufficiently small and every integer d > Re , ,,
(4.5) ;(t)d Z T(--1)y(k-)(t)+(--1)d | d(t--s)y-d)(s) ds,

where the path o integration can be taken arbitrarily in , and d(t) is an entire [unction
given by

(_)
_

(.6) r(t)= 2 r+= F(u)

Furthermore, the functions (t) are analytic in , and satisfy (4.3) with C [.] given
by

(4.7) ( DCD-1.
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Pro@ Since T(z)= 2v Tvz transforms [A(z)] into [A(z)],

T’(z) (z)T(z)- T(z)A(z),

which is a system of linear differential equations in the components of T(z). Since the
only possible singularities of T(z) can come from singularities of A(z) and A(z), it
follows that the series , T,z converges for Izl > a where a is the radius of con-
vergence of A (z). Therefore

(4.8) ][T,[[<-M(a+8) for all u, and 6 > 0 arbitrary.

Hence (4.6) converges for all and defines an entire function.
For fixed k and r, we define, for fixed d > Re A ,

)(t) (-1)a f f’a(t- s)y(-a) (s) ds.

Then (t) is analytic in n provided that the path of integration does not cross any cut.
Note that the convergence of the integral at h is guaranteed since

Y-d)(s)=(--1)d E r(A+l-#)fk(#-d)(S-Ak)"-(+1)
=d

for [s-Z[ small enough.. Hence for close enough X, if we expand d(t--s) and
y-a) (s) into power series and interchange summation and integration, we obtain

tp

(-1) fia S)-1 )-(+1)y(t)= E T,+d E F(h+l-)f(-d) (t- (s-h ds.
u=l =d

Making a change of variable x (s-A)/(t-A) (note that for close to A one
may integrate along the straight line from A to t), we obtain

and, since the path of integration on the right is on the real axis and the power of x is
defined to be the principal value, we get

(1-x)-lx"-;’-I dx
F(u)F(/x-h)
F(+-,)

This computation yields

hence

F(u)(-1)r( , +

))(t)= E T E F(A: + 1--/z)f(/z--’)(t--hk)
u=d+l

, T(-1)y(-)+fi(t)=YT , r(a;, + 1 tx)f(lx-v)(t- ak).--A:--i

where we define

E F(A, + 1 --/z) (/.t)(t-- Ak)"-A-I,

fk(lz) . Tffk(tz v)
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(note that this is a finite sum!). Hence the functions on the right-hand side of (4.5) are
associated functions corresponding to the formal solution T(z)H(z), and from/-)D
TH and the fact that the definition of Tk (t) does not depend on the factorization of the
formal solution/- (hence we may factor D T(z)Fb(Z)z A’ e Az) it follows that (4.5)
holds for ]t-Ak] sufficiently small and then in all of n if we extend 7(t) analytically
using (4.5).

To prove (4.7), take any pair of indices , k, 1 _-< ], k -<_ n, and define by (4.7). Then
for d > Re A , and d > Re A

d((t)-

+ (-1) T(t- s)y- (s) as (t- s)y c;

From y(t)= yj(t)cj +reg (t-Aj) we conclude for every integer that

y"(t) y") (t)ci, +reg (t- Ai);

hence the sum on the right-hand side is regular at Ai. If we rewrite the sum of the two
integrals as

’’ iS(t (- (s) cls + T(t s)(y-(s)- y;s)y cjk

(-a) have integrable singularities at Ak and(note that the integrals exist since y -d and Y
A.), then the second integral clearly is regular at As (since the integrand is regular there),
whereas the first integral even is an entire function of t. So we obtain

d((t)- )7. (t).k) reg (t- A.), l<-],k<=n,

which completes the proof of the lemma.
To complete the proof of Theorem 1, we note that (4.5) yields the analytic

continuation of Tk (t) along every path avoiding A 1, , An (since y(t) can be analytic-
ally continued along the path, and the path of integration may be taken to coincide with
the selected path). To establish (4.4), note that from the estimate (4.8) it follows by
estimating the power series (4.6)

[[d(t)ll--< M(a + a)d+l

Since [ly (t)[[--< Kit[ for suitable K and a and all S sufficiently large, then possibly by
enlarging K and a) the same estimate holds for y(-)(t) for the finitely many values of
u -<_ d for which T # 0. Hence estimating (4.5) we find that (4.4) holds (with e 26).

4.3. The invarianee of C(/) and the existence of z*(t). Lemma 2 and Theorem 1
have the following consequences which are now listed for later use.

Remark 4.1. The proof of Lemma 2 (with d sufficiently large and a replaced by a

sufficiently large constant) applies e.qually well when T(z) is a meromorphic trans-

formation from any [A (z)] to any [A (z)] both satisfying our basic assumptions. Hence
it follows that for fixed admissible r the diagonal similarity class of C, i.e., {DCD-1}, is a

meromorphic invariant of [A (z)]. If

T(z) I + E rz
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is a Birkhoff transformation and if both equations have rank one, then the selected
formal fundamental solution matrices H(z)= (Fo +FlZ -1 +’" )z A’ e Az (resp./(z)
(/o +/lZ -1 +" )z i’ e Az) both start with the same a priori selected F0 if’o; hence we
find D I. So C is a Birkhoff invariant of [A(z)]. Formula (4.5) in this case under the
assumption Re A , < 0 becomes (with d 0)

k(t) yk(t)+ f ’o(t--S)yk(S) ds.

Our goal in the next sections is to relate the Birkhoff invariant C to the normalized
connection system (i.e., the Stokes’ multipliers corresponding to the system of normal
solutions (see [2]), which are also Birkhoff invariants).

Remark 4.2. In the situation of Theorem 1, if the matrix ( (,jk), 1 <- j, k <- n, is
invertible, then according to Remark 2.3 the matrix IT’*(t)= IT(t)t-1 satisfies, for
k 1,..., n (if 37 (t) denotes the kth column of IT"*(t)),

17 (t) 17k (t) + reg (t- Ak),

37 (t) reg (t-- Aj), jCk.

Moreover, the analytic continuation of 37(t) can be performed across any cut by
means of (4.5) provided that the path of integration is deformed continuously with
respect to such that it does not cross any one of the singularities Aj. Utilizing this, one
immediately obtains analogues of Lemma 1 and Remarks 2.1, and 2.4 in 2, as well as
Propositions 3, 4 and 5.and Remarks 3.1, 3.2, 3.3, 3.4 and 3.5 in 3 under the
assumption that t is invertible.

These formulas determine explicitly the analytic continuation of the matrices Y
and 17"* across the cuts in any fixed direction r/onto their full Riemann surface. Thus the
direction r/provides us with a particular realization of the abstract Riemann surface,
and its independence of r/is explained by the connection formulas.

Remark 4.3. Recall from Proposition 2 that C corresponding to a special
differential equation is invertible if and only if (ii’) holds. Moreover, from (4.7) we see
that is invertible if and only if C is. If it happens that t is not invertible for some
differential equation [/(z)], then a scalar shift z v takes [(z)] into [.Zi(z)-3"z-I] and
any meromorphically equivalent special differential equation [A(z)] into [A(z)-
3"z-I]. Since the eigenvalues of A1 for all meromorphically equivalent special
differential equations are congruent modulo one, then in order to make C, hence
invertible, it is only necessary to select 3" so that A-3"I has no eigenvalues which are
integers. This occurs for all but a discrete set of 3’. The assumption (ii’) is equivalent to
the property that the corresponding special differential equation has no single-valued
solutions and since this is meromorphically invariant, we see that t is invertible if and
only if the general differential equation has no nontrivial single-valued solutions.

4.4. The influence of a scalar shift on the associated functions. For the purpose of
later use, we now will establish how the associated functions change with respect to a
scalar shift z v. In case 3" is an integer, this is just a very simple meromorphic
transformation, and the statements in the following Lemma could also be derived from
Lemma 2. Hence the interesting case is where 3’ is not an integer, but we state the
lemma generally.

LEMMA 2’. Suppose that both [A(z)] and [A (z)-3"z-lI] satisfy our basic assump-
tions ]’or a suitable complex 3’. If H(z) F,(z)z a’ e az is a selected formal fundamental
solution of [A(z)], and if we select I(z)=F,(z)za’-eaz as a [ormal fundamental
solution for [A(z)-3"z-lI], then ]’or every integer , and k 1,..., n, the associated
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functions Y,k (t) and ,(t) are related by

sin rh ,
fx (t- S)dl+’-l* (-d2)(S) ds,(4.9) 7(-dl-d2),k (t)

F(dx + ih T) Yu,k

where dl, d are sufficiently large integers, the path of integration is token in n (for fixed
(+, ,)) and the power of (t-s) is defined congnuously along the path of
integration such that at s it coincides with our usual definition. Furthermore, the
corresponding matrices C (rasp. ) are related by

() (eZ=i(h-v) 1)ci ifi < k in 8+1(4.10) (e 2=ia 1)cik

(4.11) (e 2=ih 1)"( (e 2=i(h -v) e2=iv(

Proof. Similarly as in the proof of Lemma 2, one finds for ]t-h] small, using the
(- (s) and taking d, d2 so large that the integral convergespower series expansion of y ,

at both and h:

Ak

(s-h)-- ds.

Using the same change of variable x (s hk)/(t-- hk) and integrating on a straight line
which yields arg (t s) arg (t- h) arg (s hg), we find, as in the proof of Lemma 2,

(t-s)+v-l(s- ds=(t-)’
F(da+y+-A)

and using well-known identities for the gamma-function, we find

sinrrh, Ix (t-s)al+v-1 (-a2)(s)ds

a(--dl--d2)(t),Yv,k

which proves (4.9).
In order to prove (4.10), (4.11), we first note that differentiation (resp., termwise

integration) of the associated functions corresponds to a transformation z , where y is
an integer, and by Lemma 2 this does not influence the matrices C (resp. C); hence, by
applying such integer shifts to both differential equations, we may assume that
d d2 0. Now let k be fixed. If to h is any point on the cut arg (t hi) , and if
by ;(to)(resp. (to)) we denote the boundary values of ,(t) as to from the left

()(resp. from the right) (i.e., as [t[ [to], arg ( 2)+0 (resp. arg -0)), then
can be characterized as the unique number for which

,g(to) , ,i(to)- y,i(to)}Cii+ (to) {i+
-+ -2wi(h}-y)xy ,/(to)(1-e

(with analogous interpretations of )7+,i(to) and )TSa(to)). From (4.9) we see that

sin ’, : x
)- (s) ds + (to s (s) ds(to)

F(y) sin r(A y) x
Y,k (to S y, Y,k
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where the second integral is taken along the cut, and in both cases the definition of
arg (to- s) is the same, but depends on whether the kth cut is to the left of the jth cut or
vice versa. The first possibility occurs if and only if j < k in $’v/1, and we then have to
take arg (to- s) r/, whereas for k < j in S’v/l (i.e., whenever the kth cut is to the right of
the jth cut) we take arg (to-s)= r/- 27r. Hence we find in both cases, using

+ 2"rriA ) (v)
Y.k
/ (s)-y.k(s)= ya(s)(1-e cj,

--2"rriA} (v)

(t0) 37X. (t0) ds.
,+ sin ,rA,(1 e )cj t(to_S)v_aya(sY "’ F(r) sin

Since in the case k <j in the integral arg (t-s) is taken to have the "correct" value
r/- 27r, we find

sin rrA f o + ~+---, J (to s)V-ay,i(s) ds (to)
F(y) sin 7r(h Y) , y ’

whereas for j < k, arg (t- s) has value r/; hence

sin rcA
(to s)’/-ay + 2y-rri_-+ ,t0,(s) ds e y,

F(y) sin r(,. y) x
Hence we find

sin sin
37+,(to)_37,k(to) -Y (1 e-2=iX;)ci y,i(to) if k <] in S+,

sn (A- y)sin

(to)-f (to) - (1 e -ex;’)c y,/(to) if < k in S+,
sin A sin (A -y (u)o2ywi+

Y,k
sin (A- T)sin

Since

sin A sin (A y) (e 2=ix- 1)(1 e -2=ix-v)) -2iv

sin (A-y)sin A} (e(__l)(l_e_}) e

using (4.12) we find that (4.10) and (4.11) follow.
Remark 4.4. From Propositions 4 and 5 it is now easily seen that the matrices W

and C/, C- (for all integers v) are invariant with respect to a shift z v. This will be of
importance later.

5. Representations of the normal solutions using Laplace integrals and convergent
factorial series

5.1. Laplace integrals. Let [A(z)] be a differentia! equation satisfying our basic
assumptions, let H(z)=F,,(z)zA’e Az denote a fixed formal fundamental solution
matrix and let the Stokes’ directions rv be defined by (3.3) for all integers v. We recall
from the general theory of invariants (see [2, 5]) that the system of normal solutions
X(z), v 0, =t= 1, +2, corresonding to the pair ([A (z)], H(z)) is characterized by the
properties that for each integer

(Ia) X.(z) H(z) as z -+ , Z S S(G,-1, Tv+l)

and for z e S’v S(r-l, r),

(Ib) Wv X (z)Xv-I(Z) e O-(pv)

i.e., the support of Vv is contained in the position set p. In the special case of distinct
eigenvalues of Ao (our natural assumptions) or more generally for our basic assump-
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tions since the eigenvalues of A are distinct, it can be shown (see [4]) that each single
normal solution matrix X(z) is also characterized by the property that

(II) X(z)-H(z) as z -’)0, Z eS(Tv--7"l’, Tv+l).

A sector of this type S(r- r, "/’v+l) is referred to as an enlarged half-plane.
It has been long established (see [5], [9], 10], 11], 16], 17]) (in varying degrees of

generality) that solutions of differential equations of this type have convergent Laplace
integral expansions in certain half-planes, the formal series may be summed as
convergent generalized factorial series in the same half-planes, and the solutions have
the asymptotic expansion H(z) in sectors which have various angular openings (up to
enlarged half-planes). The contours of integration which have been used include both
standard rays and also loops which are asymptotic to certain rays.

In this section we will show that the normal solutions can be expressed as
convergent Laplace integrals of the matrices of associated functions Y(t) and Y* (t)
using loop contours. We also show the normal solutions can be expressed in terms of
convergent factorial series expansions and in the process we show that the associated
functions yk(t) and some corresponding functions 0k(t) (both of which are defined
locally) can be analytically continued into certain natural domains by explicit methods,
thus producing solutions which can be considered as effectively calculable. As compared
with the classical theorems, we wish to emphasize the following points which distinguish
our results.

(1) The normal solutions are identified by selecting the appropriate matrix of
associated functions Y(t) (or Y* (t)) and particular contours of integration.

(2) The half-planes of convergence for both the Laplace integrals and the factorial
series are explicitly given and may be considered as generally the optimal such domains
of convergence.

(3) The normalized connection system (V), i.e., the Stokes’ multipliers corre-
sponding to the normal solutions, are shown to be all calculated explicitly from any one
of the matrices C; hence the matrix C not only determines the analytic continuation of
the associated functions yk(t), but that of the normal solutions of the differential
equation [A(z)] as well.

In.reference to point (2), the particular information which makes it possible to give
the optimal half-planes of convergence is the precise knowledge of the growth of yk (t) at
c (see (4.4)). This, as well as the complete analytic description of yk(t) in Lemma 2,
distinguishes our methods from the classical ones. Wasow [19, pp. 338-339] has
pointed out that the classical methods do not yield this information because they do not
take full advantage of the analyticity of A(z) in a neighborhood of c.

Note that, while the associated functions were considered in a t-plane with certain
cuts and choices of logarithms, it is convenient to think of the variable z to vary on the
Riemann surface of the logarithm described by two parameters ]zl and arg z (compare
1, 1]). Hence non-integer powers of z will always have a clear meaning, since they are

single valued functions on the Riemann surface, if we define

(log I+i arg z)z =e

LEMMA 3. Let [A(z)] satisfy our basic assumptions and letH(z) F,(z)z A’ e Az be
a fixed selected formalfundamental solution. Then for each fixed k and admissible rl, we

define

e yk(t; ’1) dt,(5.1) x(z; n)
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where yk(t; r/) is the kth ]:unction associated with [A(z)] and H(z), and the path of
integration yk(rl) is the contour in , from eo along the left-hand side of the cut
arg (t ) r/, around, in the positive sense, and back to oo along the right-hand side of
the cut. Then, ira denotes the radius of convergence ofA(z), the integral (5.1) converges
for

z () Re(zen)<-a;-<argz<-
and represents an analytic function satisfying

(5.2) x(z; n)f(z)zXexz aszm, z(n)

with f (z) denoting the kth column ofF(z).
Pro@ The convergence of the integral for z () is an immediate consequence

of (4.4). To obtain the asymptotic expansion (5.2), we first realize that for z ()

1 Z--1 eXk
(t-)- ez dt

2i (, F(a)

for any complex a which is not a negative integer or zero, where we define the power
z according to the selection of arg z as in (5.2); this formula is, e.g., given in [8,
p. 226] for and in general is found to hold by analytic continuation (by means of
rotating the path of integration). Hence the right-hand side of (5.2) is obtained by
termwise integration of the expansion of y(t) at t= , and (5.2) can therefore be
proven in a standard manner by expressing y(t) as a finite part of the expansion plus an
error term whose Laplace integral can be easily estimated.

5.2. Representation o the normal solutions as Laplace integrals, Now let any
fixed integer p be given and we claim that x (z; ) does not depend on as long as
varies in (+1, ). To show this, consider two values , (+1, ) and a reference
point to with respect to , which lies on (). If we now turn the contour 7() such
that it comes to be in direction (and still passes through t0), then it is easily seen that
the integral does not change its value (for z () ()) ifwe define the integrand by
keeping its values fixed at t0 and extending it analytically along the new path of
integration. But in doing so, we find that the new integrand is ety(t; ) whereas the
rotated path of integration can be taken as (). Hence

x(z; ) xg(z; ) for z () () if , (+1, ).

Therefore, if we combine the vectors x l(Z ),..., xn (z ) into a matrix X(z), then
X(z) is an analytic function for

ze= U Y(n),

whose columns in every half-plane Y(), +< <, can be represented as Laplace
integrals. Furthermore, since a closed subsector of Y always can be covered by finitely
many (in fact two) half planes (), (+1, ), we find that

X(z) H(z) in for every integer p.

So far, we did not say that X(z) is a solution matrix of our given differential
equation [A(z)]. This however is one of the consequences of

TzoazM 2. Let [A (z)] be any differential equation satisfying our basic assump-
tions, and let H(z) Fm(z)z A’ e Az be a selected formal fundamental solution of [A(z)].
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Then for every integer u, the matrix X,(z), defined by

e Y,(t) dt forz(.3) X,(z)
,.....o,

where rl can be taken arbitrarilyfrom the interval (r/+a, r/) and the path ofintegration for
the kth column of Y(t) is taken along yk(l), is the uth normal solution corresponding to
([A(z)], H(z)). Moreover, the normalized connection matrix V is equal to W, hence the
normalized connection system Va, , V,) is in one-to-one correspondence and can be
explicitly calculated in terms of C, for any integer u.

For a proof of Theorem 2 it is technically convenient to first treat the case when the
matrices Y* (t) (for all integers u) exist. Even theoretically this is an especially
handsome case since then we will be able to choose a common path of integration in
(5.3) instead of having different paths for the different columns of X(t) (integrating
Y* (t) instead of Y(t)). To that extent, we make the following additional assumption on
[a(z)]:

(iii) Let [A(z)] have no single-valued vector solution. According to the discussion
in Remark 4.3, this is equivalent to the property that C is invertible for every integer v,
hence by means of Remark 4.2 assumption (iii) implies the existence of Y* (t) for every
integer v. Under this additional assumption we have

THEOREM 2’. In the situation of Theorem 2, let [A(z)] additionally satisfy (iii).
Then for every integer v we have, for X(z) defined by (5.3),

(5.4)
1 f e (t) dt for z e (1)

where 1 can be taken arbitrarily from the interval (v+l, 7v) and the path of integration
y(? is taken as the contourfrom along a parallel to direction arg 7, sufficiently far
out on the left, around all the singularities h a, ", h, in the positive sense and back to c
along a parallel to arg 7, sufficiently far out on the right. Furthermore, for every integer
v we find

Xu_l(Z)=Xu(z)Wu

where W is defined as in Proposition 4.
* (t) denote the kthProof of Theorem 2’. Take any fixed v, k and r/ and let y.k

column of Y* (t) Since eZt(y * (t) yk(t; is an analytic function in the closed region
containing h and bounded by y (rt), we see by using Cauchy’s theorem that y(t; rt) in
(5 1) may be replaced by y* (t) and from the same theorem (since y *. (t) stays regular at

hi for f k) we conclude that the path of integration () can be replaced by (). This
proves (5.4).

To obtain (5.5), we consider any (W+l, ) and (W, -1). Then if to is a
reference point on () with respect to and , we may continuously deform () (by
keeping to fixed) such that its two rays finally become parallel to arg , and we may
do this without crossing any point h 1, , h,. The new contour finally obtained by this
deformation of y(W) may then be taken as (), and if we keep the same value for Y (t)
at to and define it along () by means of analytic continuation, then with this
temporary interpretation of Y (t) along ()

1 [ zt ,
2i .v)e Y. (t) dt forze()

Y_ (t)= Y (t)W at t= togives the analytic continuation of X(z) into () Since * *
and therefore (by means of analytic continuation) along V() (for this temporary
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interpretation of Y* (t)) we obtain

Xu-l(Z)---/ (r)
eZtv* (t) dt

1 Iv zt ,
e Y(t) dtW-1

()

for z 6 6t’(r); hence (5.5) follows.

Proof of Theorem 2. We first prove Theorem 2 under the additional assumption
(iii) in part (c), and then in part (/3) we will remove this extra assumption.

(a) As explained earlier in this section, the normal solutions can be characterized
by (Ia), (Ib) or by (II). If we already knew that X(z) defined by (5.3) is a solution
matrix of [A(z)], then using Theorem 2’ we would be finished in this case since every
closed subsector of S(z rr, T,+I) is contained in 6e. (at least for It] sufficiently large). So
it remains to show that X are solutions of [A(z)]. Of course, using X(z) H(z) in
and the fact that X(z) is invertible for [z[ sufficiently large in 6e, it is easy to see that
X’(z)X- (z)-A(z) in .. But this alone is not sufficient to guarantee that X(z) is a
solution of [-A(z)]. In order to bring this about we use that the X(z) satisfy the closing
condition

X,+m (z e 2ri) X, (z) e 2riA’ for z e 5e and every integer v.

(This is easy to show using * * e 2riA’Y+, (t) Y. (t) and the fact that y(r/+ 27r) may be
taken equal to y(r/).) Hence the logarithmic derivatives X’,(z)X- (z), 1 <- , <- m, in a
full neighborhood of combine (by (5.5)) to yield (see [12, p. 161]) the single-valued
analytic function A (z).

(/3) In the general situation of Theorem 2 for a suitable selection of y, the
transformation x zV] takes [A(z)] into [A(z)-yz-iI], which satisfies (iii) (and our
basic assumptions). From Remark 4.4 we recall that the quantities W do not change.
Furthermore, we see by partial integration that

(-1)z
xk 7 | ztye (- (t; r/)dt,d)

27ri Jr,(n)

and for d large enough, the singularity of y (-) (t; r/) at hk becomes integrable. Hence in
this case, we may take the path of integration to be completely on the cut arg (t-hk)
r/, from oo to hk on the left border and back to oo on the right border. By comparing the
different values of y(-a)(t; r/) on the two borders, we find

(-
x (z" n) [2zr------ (1 e 2rix) e (t; r/) dt,

where we integrate on the right border of the cut.
If now (t; ) is the kth function associated to [A(z)-z-I] (with (z)=

F(z)zA’-ve as the selected formal solution), then we conclude, from Lemma 2’

sin (-)
(t_ S)a,-v-l,g(-z)(s) dsy-a -a2)(t; n)

F(dl-

for dl, d2 large enough. Taking d dl + d2 and interchanging the order of integration
we find

xk(t )
(--1)dl+d2+lzdl+d2 e=X sin (h

e zs(d2),(u,k as U dl-T-1 e du,
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and since

we find

[oo(. s(-d (s) dse u,k
aA

2zri
(1 e2i(_v)

(__l)d2zd2 -lik(Z" TI)

f iAd_,y_1
aO

"-d (d-2/)rrie du z e F(dl-y). z 5().

z’2(z; n)=x(z; n).

This shows that even in the general case the matrix (5.3) is a solution of the differential
equation, namely the uth normal solution (since it has the correct asymptotic in an
enlarged half-plane). Furthermore, since the scalar shift changed neither W nor V, we
see that also in general V W, which completes the proof of Theorem 2.

Remark 5.1. An independent proof that X(z) satisfies the differential equation
[A(z)] may be obtained by showing that kth column of Y(t; 7) satisfies

with

if one writes

tyk(t)= 2 A.(--1)"Y(k-")(t)+(--1)d I d(t--s)Y(k-d)(s) ds.
zd

A(z)=EA.z-,
(compare [9, p. 389]).

5.3. Representation of the normal solutions as factorial series. To establish the
factorial series representation of the normal solutions, we first discuss the properties of
a function k(u) (k- 1,..., n) which in a sense is the associated function in case
z -0.

LEMMA 4. Let [A (z )] satisfy our natural assumptions andH(z Fa (z )z A’ e Az be a
selected formalfundamental solution. Then for every fixed k, the function k (U) which is
locally defined by

(5.6)
(-1) -1I/tk(bl)-- 12fk(P) r(,i IX

has the following properties:
(i) For every admissible ri, ’k (u) is analytic in an open infinite strip containing the

ray arg u r/and not containing any of the points hi- hk (f k).
(ii) In the strip described in (i), Ok(u) satisfies

(5.7) lim e-(a+)lUl@k(U 0
U-+O0

for e > 0 arbitrary and a being the radius of convergence of the expansion ofA (z).
(iii) If q (v+l, ’v) for any integer v, then for the kth column ofX(z) we find

(n)

(5.8) x,k(z)=e;Zza;’{fk(O)+ f &k(u)eZUdu} forz (rl).
aO
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Proof. By a calculation analogous to that in the proof of Lemma 2’, one finds that
for sufficiently large dl, d2

U dl+dx-1 -sin 7’/’/ fu :+dl-1 (--d2) sJo + ds.(5.9) (k-dl-da)(H)+fk(O)r(dl+d2 (U S)h Yv,k k

Since 6(u) is locally analytic at u 0, and by means of (5.9) can be analytically
continued to every point of the strip described in (i), we conclude that (i) is satisfied.
Furthermore, (ii) follows from estimating (5.9) and using estimation (4.4) for y,(s +
h); finally (iii) is obtained by insertion of (5.9) into the right-hand side of (5.8) after
partial integration (compare part/3 of the proof of Theorem 2).

Using the properties of 4,k(u), it follows (see [19, pp. 324-327]) that X.k(Z) can be
represented as

b,(l,w)l, }(5.10) x,(z) eXz x’ f(O) + E - (z + lw)l=OZ(Z +

and the generalized factorial series on the right converges absolutely for Re (z e i) < -a
if we take arg w =--r, and Iwl_->/(2 min., IXm (A-A)e-il). This represen-
tation is obtained by re-expanding d/:(u)=,l=obk(l, w)w-t(1-e )l and integrating
termwise. The coefficients bk(l, w) can either be obtained from this re-expansion or by
the calculation of the formal power series expansion in z - of the factorial series. Both
ways show the existence of a lower triangular (infinite) matrixM (mli) (1, 1, 2, .)
which is independent of .w and relates the coefficients b,(1, w) to the coefficients f(j) by
means of (see also [19, pp. 329-330])

(5.11) b(1- 1, w)w -l mlifk(j)w -, l= 1, 2,...,
/=1

which shows that b (l, w) is a polynomial in w of degree at most and, since it can be
shown that mll--1/(1-1)!, we see that for w =0 the representation (5.10) formally
becomes the asymptotic expansion of x, (z). We formalize this result as

THEOREM 3. Let [A (z)] satisfy our natural assumptions. Then for every v and k,
X,k (Z) can be represented by means of a convergent generalized factorial series

bk(l,w)l’ } forz(rt)x,,,g(z) eXZz x’ f(O) + i:" -; + lw)I=oZ(Z +

with 1 (r/+l, r/), arg w -7-zr, [w[ min. ]Im (h.- hk) e-i"[ >= zr/2 and b(l, w)is a
polynomial in w ofdegree at most whose coefficients can be explicitly found by expanding
the factorial series as an asymptotic power series in z -.

Remark 5.2. We wish to state that Theorem 3 holds equally well when some of the
h , are integers; this can be seen by using a scalar shift z v to obtain noninteger h ,.

Remark 5.3. Doetsch [9, pp. 386-396] has treated the Laplace integral and
factorial series expansion for "general" nth order scalar differential equations having
Poincar6 rank one and all distinct eigenvalues. (Because the eigenvalues are distinct, it
can be shown that [A (z)] satisfying our natural assumptions is analytically equivalent to
such a scalar differential equation, so there is no loss of generality in treating such nth
order scalar differential equations.) By solving (using successive approximations) an
integral equation, (scalar) functions Y(t) Y=o kt+- with similar properties to our
(vectors) y(t) are constructed, where d corresponds to our h ,. In order to apply the
theorem of NSrlund to obtain the factorial series expansion, it is required to have a
function which is analytic at 0 as well as in the semi-infinite strip, hence d should be a
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positive integer. This could have been done either by a prenormalization of the
differential equation using an appropriate scalar factor z v, or by transforming Y(t)
using a convolution of our type (5.9).

6. Invariants of the differential equation. We have shown (see [2] and [12] for the
general case and [4] for the special case of distinct eigenvalues) for a differential
equation satisfying our natural assumption (al) (but not requiring (a2)) that a complete
system of Birkhoff invariants is given by

(6.1) (A0; A’; (V,), u 1, 2,..., m).

Moreover, the system of invariants (6.1) is free in the following sense: If Ao is any
constant matrix having n distinct eigenvalues, if A’ is any constant diagonal matrix, and
(depending upon the geometry of the eigenvalues of Ao which determines the support
of the matrices V) if the entries of V are arbitrarily prescribed aside from their
diagonal and zero positions, then there exists a differential equation [A(z)] satisfying
(al) which has exactly these Birkhoff invariants.

In Theorem 2 ( 5) we have shown that the connection system (V) is in one-to-one
correspondence with the elements of C for any integer u. Hence the connection system
(V) may be replaced by any single matrix C to obtain the following:

THEOREM 4. Let [A(z)] be a differential equation satisfying our natural assump-
tions, let H(z) denote any admissible formal fundamental solution matrix, let yk(t; r/),
l<-k<-n, denote the associated functions corresponding to ([A(z)], H(z)) and let
C C(rl) for any (’1+, q) and any integer u (see (1.3)). Then the collection

(6.2) (a0; A’; C)

forms a complete system ofBirkhoff invariants for [A (z)]. Moreover, ifAo is any constant
matrix with all distinct eigenvalues, A’ is any constant diagonal matrix with no integer
entries, and C is any constant matrix with diagonal equal to I, then there exists a

differential equation [A(z)] having these Birkhoff invariants.
Remark 6.1. As noted in 4, Theorem 1 shows the Birkhoff invariance of

the quantities in C, (for any integer u). The completeness and freedom of the in-
variants (6.2), on the other hand, is shown via their one-to-one correspondence to
the invariants (6.1). It appears to be easier to establish these properties working
with the invariants (6.1) rather than with the associated functions.

Remark 6.2. As an application of the invariants (6.1), we showed [4] how the
vanishing of certain blocks in the matrices V corresponds to the reducibility of the
differential equation [A(z)]. In particular we showed (see [4, Corollary to Thm. IV])
that [A(z)] has a convergent solution vector i.e., a column of the formal series F(z) in
H(z)=F(z)za’eaz converges if and only if the corresponding columns of all the
matrices in the connection system (V), u 1, 2,.. , m vanish aside from the diagonal
element, or equivalently, that the matrices C both have all zero elements in the kth
column aside from the diagonal element. According to Proposition 5 one sees that this is
equivalent to C having zero in all offdiagonal positions of its kth column. This property
can also be explained directly from the structure of the associated functions, as we now
see.

PROPOSITION 6. I the situation o] Theorem 4, let [A (z)] have J’ormalJundamental
solution matrix f(z)z A’ e Az and let C be the matrix of constants corresponding to the
associated functions ]’or any integer ,. Then the kth column oJ’ F(z) converges for Izl
sufficiently large if and only if the kth column of C vanishes aside from the diagonal
element.
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Proof. Consider the associated function defined locally by

yk(t) fk(u)F(h’ + 1- u)(t-hk)-’-a.
o

If the formal series Yo f(,)z converges for ]z] sufficiently large, then

(6.3) (t-

is an entire function; hence the associated constants ci 0 for all j k.
Conversely, if ci. 0 for all j k, then (6.3) represents an entire function. The

associated functions corresponding to standard differential equations have polynomial
gro.wth at hence for a standard differential equation (6.3) must be a polynomial, i.e.,
the formal series Y0 fk(P)Z is a polynomial in z +a. Using the result of Birkhoff-
Turrittin (see 4.1), the kth column of each formal series corresponding to a general
differential equation is the product of the meromorphic transformation at c times a
column vector which is a polynomial in z -a, hence the kth column of F(z) converges.

Postscript. After this paper was finished we obtained a copy of the dissertation of
R. Schifke [20] where he investigates connections between the solutions of the
standard equation (0.1) and those of

dy
(A- tI)-l(Ax pI)y,(*) d--;

p being a complex parameter. Apart from normalizations, he also obtained the
connection formula between Y and Y* and various continuation formulas for Y* and
Y (cf. 1, 2). Furthermore, he discussed how the Stokes’ multipliers V are related to
the connection coefficients C under the additional assumption that no three A lie on
the line. (Compare this with the general case treated in Proposition 5, Theorem 2.) Our
discussion of the special differential equation (1.1) and the construction of Y* should be
considered a preliminary step for the treatment of the general equation (0.3) and its
associated functions. Our proofs differ in that they extend immediately to the general
case, and the assumptions we make are necessary and sufficient for our results (cf.
Propositions 1, 2). On the other hand, (*) is somewhat more general than (1.1) and
Schiifke has various interesting results concerning the dependency upon p.
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VECTOR LIFTING AND FACTORABLE DIFFERENTIAL OPERATORS*

L. R. BRAGG5-

Abstract. Let (a) be a x n vector function of a real parameter with components i(a) E Cn-1 in a and
let q(o)=eE(a)=Y’.i=-lo (]!)-lEiD(o), in which E denotes the n xn matrix with l’s on the super-
diagonal and O’s elsewhere. We say that the operator eE lifts the vector (c) into the vector (a) with
respect to a. If the components of (a) are nontrivial and independent, solutions of some linear differential
equation involving the parameter a, then the first component of q(a) is the solution of an associated iterated
or factorable differential equation. Vector liftings with respect to parameters (and operators) are employed
throughout this paper to construct solution representations for a variety of factorable linear abstract and
partial differential equations.

1. Introduction. Iterated differential operators appear frequently in the theory
and application of partial differential equations. Two of the more familiar examples of
equations having repeated operators are the biharmonic equation A2u 0 and its
polyharmonic generalization Au 0, p --> 3, in which An denotes the Laplacian opera-
tor in n variables. Extensive studies of the structure of solutions of these equations were
carried out by M. Picone [9]. In his investigations of the solution structure of the Cauchy
problem for the singular (or exceptional) Euler-Poisson-Darboux (EPD) equation,
A. Weinstein [10] established the basic role assumed by polyharmonic data. He also
made systematic investigations into the solution structure of the iterated equation of
generalized axially symmetric potential theory (GASPT) [11] and, later, the iterated
wave and EPD equations [12]. In this, Weinstein noted that if Lk is an operator of the
form Lk =An +(D2 +k/yDy) (or An-(D2y +k/yD,)), with k real, then the general
solution of L,.LtW=O, fl#a-2, is given by W=Ut+U’-:z, in which U
denotes a general solution of LkU 0. The reader is referred to [12] for further details
about the mthod employed along with pertinent references. J. C. Burns [5], [6] has also
treated questions that pertain to the iterated GASPT equation.

In this paper, we give an alternative method for constructing solutions of linear
evolution type problems with underlying equations that involve iterated differential
operators and other types of products of differential operators. This approach draws
upon notions about functions of matrices [8] and their uses in solving systems of
ordinary differential equations. We start with a solvable "scalar" equation (heat, wave,
etc.) that involves one or more basic operators and/or parameters. A matrix translation
operator is then employed to "lift" a vector of solutions associated with the scalar
equation, into a second vector that satisfies a matrix-vector equation which involves a
Jordan block. The first component of this lifted vector then satisfies a scalar equation
that involves an iterated differential operator or a product of differential operators.
Initial data for a variety of these factorable equations can be incorporated into the
vector to be lifted. Depending upon the circumstances, the lifting operation is carried
out with respect to either a parameter or an operator. For the purposes of this paper,
lifting with respect to an operator will be handled in precisely the same way as lifting
with respect to a parameter. A completely rigorous treatment of operator lifting would
appear to require further developments in the perturbation theory of operators.
Nevertheless, the results obtained by the formal procedure will be seen to be valid.

In 2, we present the essential features associated with the lifting operation. We
illustrate this approach through the treatment of a problem involving an abstract heat
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equation. In this, the lifting is carried out on a vector determined by a semi-group of
operators with respect to the infinitesimal generator of that semi-group. Sections 3 and
4 will be concerned with problems involving abstract versions of the iterated EPD and
GASPT equations. For the iterated heat and EPD problems, we relate the initial data to
the entries in the vectors to be lifted. In the case of the GASPT equation, we apply a
transmutation operator that relates solutions of the GASPT equation to solutions of the
heat equation. The remaining two sections treat examples in which the lifting is carried
out with respect to a real parameter. The first of these involves the radial heat equation
and the second involves the EPD equation. Questions on lifting that require further
developments in operator theory will be noted.

2. Lifting of vectors. Let Mn denote the set of n x n matrices over the reals with
identity Eo and let E1 be the matrix with l’s on the superdiagonal and O’s elsewhere. Let
E E{, j 0, 1, 2,.. . Then Ei.E Ei+i and E. 0, the zero matrix, if j >_-n. It is
clear that if P and Q are any two matrices of the form 2=o %.E. with %. real, then
P.O=O.p.

Next, let (b(x) be a i x n vector function in which all components Cn-1. Then we
have the following symbolic version for Taylor’s expansion:

(2.1) e YElP (I)(x) nl ].D{rb(x).i=0

If (x) has analytic components and y is real, it follows that

Y EiDi Op(x) (P(XEo + yE1)(2..2)

and that the right-hand side of (2.2) is simply the vector function (P with matrix
argument xEo translated by yE1. Let F(x, y)denote the vector function appearing in the
right member of (2.1). We refer to (2.1) by saying that the operator e yE’Dx or

Y.i=o (YiEi/j!)D lifts the vector dp(x) into the vectorF(x, y) with respect to x. We refer to
F(x, y) as the lifted vector. In this lifting, there are a variety of possible choices for y, the
choice being dependent upon the type of problem under consideration. One can
similarly define lifting operators e yEkt:), k 2," n 1, by

[(n-1)/k] ’Ji" kDidp(x)(2.3) eYkDdp(x) Y
;=o

but we will not use them in the discussions to follow.
We now make use of the lifting procedure associated with (2.1) in connection with

an abstract heat problem. For this purpose, let X be a Banach space and let A be the
infinitesimal generator of a holomorphic semigroup in X. We assume that the domain
@ (A’) is dense in X for r an arbitrarily large positive integer. Then the "scalar" version
of the abstract heat problem is given by

(2.4a) u’(t)-Au(t) O, > O,

(2.4b) u(0+) , b e (Ar),

in which (2.4b) is understood to mean that Ilu(t)-l[ -t-.b+ o. The solution of this
problem can be written in the form

(2.5) u(t) Ta(t)" b,

in which Ta(t) is the semigroup of operators generated by A. Next, let bk (A’),
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k 1, 2, , n, and let denote the 1 x n vector with kth component dk. Then the
vector U(t)= TA(t)’= (TA(t)qk), is the solution of the vector problem

(2.6a) U’(t)-AU(t)=O, t>0,

(2.6b) U(0+) ,
where (2.6b)means that maxlk=n U (t) &k t_,0+ 0with U(t)the kth component
of U(t)(U(t)= TA(t)c&).

To apply the lifting procedure with respect to A, we make use of the relation

(2.7) DATA(t)c tTA(t), (ar),

which is an operator generalization of Dx et= te ’ for x, a scalar parameter. Now, we
define the lifted vector (t) of U(t) by

(t) e U(t) U(t)
i=o j

DA
(2.8)

"- t%U(t)
=o j

the last equality following by repeated applications of (2.7). This lifted vector (t) is a
solution of the matrix-vector problem

(2.9a) ’(t)-(AEo+E)(t)=O, t>0,

(2.9b) (0+) .
Moreover, the first component (t) of (t) is given by

k-1

(2.0) (t) 2= ( ). TA(t)4,

which is clearly a solution of the iterated abstract heat equation

(2. ) (Or-A) .Z(t) 0, >0.

If a solution Z(t) of (2.11) is required to satisfy the conditions Z)(0+)= 6,
k 0, 1, , n 1 with 6 D(A), then the reader can verify that the 6 in (2.6) can
be selected as follows:

(2.12) + (_1)
k AO_i k O, 1 ., n -1.

Remark. The relation (2.7) can be motivated as follows. Let h be real and let I be
an identity operator in X. Then

The literature on perturbations of operators does not appear to provide a general
development of (2.7). Further research on operators is indicated for derivations of the
type used in this and the following section.
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3. The iterated EPD problem. Using the Banach space setting of 2, suppose that
A B2, in which B is the generator of a continuous group in X. If a >- 0 and b @(A r),
then the solution w (t, 4) of the following scalar version of the abstract EPD problem

aw’(t)=Aw(t), t>O(3.1a) w"(t)+-
(3.1b) I[w(t)- 4,11 ,0, I[w’(t)l]

tO+ t->O+

can be written in the symbolic form

(3.2) wa(t,&)=F(a,A,t)’&,

in which the operator F(a, A, t) has the formal representation

.3) F(a, A, t)= 2(a-1)/2rt.a/ +2 1) (tA)(1-a)/2I\

(a-l)/2 (tn ),(3

with L denoting one of the modified Bessel functions [4, p. 264]. As in 2, let
&,"" ", bn @(A r) and let be the 1 x n vector with kth component 0k. Then the
vector problem

a lYv’(t) A I(t), t>0,(3.4a) lYg"(t) +

(3.4b) Max II(t) ll 0, Max Ilwe’’
<:kNn t->O+ <_kNn t->O+

has the solution

(3.5) W(t, )=F(a,A, t).=(F(a,A, t)ckk)=(wa(t, ;k)).

The lifted matrix-vector problem

(3.6)

a
lt/"’(t) +lt/"(t) (AEo + Ea) 7/l/’(t), t>0,

Max llT’k(t)-,ll ; 0, Max II(t)}l o,
lkn tO+ lkn tO+

with 7g’k(t) the kth component of 7g’(t), has its solution vector given by

(3.7)

7/U(t, )= eEIDa l(t, )

=o -[(.DAF(a,A,t)*.
But from the fact that (z-lDz)m{z-Io(z)}=z-(+")Io+m(z) [7, p. 67], it follows
formally that

DiaF(a, A, t) F(a + 2i, A, t).
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Using this in the right-hand side of (3.7), we get

(3.9)

-1 F(a+l)’2 t2i
74/’(t, dO)=

=0 22./! F _a
2

+

--1 r(,a,,-]- 1)t22=y

=22;/"r(a+l/’)"2
+

Ei" F(a + 2j, A,

E(w+(t,)).

The first component cl(t) of the vector 7if(t, ) is given by

(3.10) F(a +1)2
//’l(t) E

(a+l ])=o 229! F +
t2iwa+2i( t,

and clearly satisfies the iterated abstract EPD equation

( a
(3.11) D2t +-Dt-A 7#*(t)=0, t>0.

For r sufficiently large, Taylor’s expansion yields

k 1 1 2w (t, qg)=qg+/2Aq+ t4A q9
2(k + 1) 8(k + 1)(k + 3)

+ t6A +
2.4.8(k + 1)(k + 3)(k + 5)

Using this in (3.10) with the various choices for k there, one can show that if the solution
of (3.11) is required to satisfy the conditions

(3.12)
c//ff’*(2/)(0-}-) /’, f 0, 1,’ ", n 1, G E (Ar),

c:(2j+l)(0q") 0, f 0, 1, ’, n 1,

then the components of are given in terms of the G by

(3.13) &k+l . j=O j /=1 21- 1

in which the product is assigned the value 1 when j k.

4, The iterated GASPT equation, Taking A =B2 as in 3, it follows that if
& E @(At) and a < 1, then the solution of the scalar abstract GASPT problem

(4.1)
( aD2y+-Dy+A o(y)=0, y>O,

y

tlo(y)-6ll ,o,
y-O+
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is given by the transmutation

(4.2)
v (y, q) l-a

[2, p. 333]. Then a solution of the lifted matrix-vector problem

(D: +D)(y)+(AEo+E)t/’(y)=0, y>0,

(4.3) 72(0+) cp (k), 0k e @(At), k 1, 2,. ., n

can be obtained from the vector solution (2.9) via (4.2). Thus

(y) 22i]j--0

1--a

(4.4) 1 a 2/’)1 y2i F
2 Ejva+2i(y, ),22i] (l-a)i=o F.
2

in which Va+2j(y, cb) is the vector function obtained by replacing & in (4.2) by and a
by a + 2f. Reading off the firstcomponent of 7/’(y) from (4.4), we see that the iterated
equation (D2y + a/yDy +A)nZ(y) 0 is satisfied by

n-1 F( 1-a -2j)
Z(y)= E

2 y2i a+2j(y, j+1),
i=o F(12 a) 22ij v

provided that a + 2n -2 < 1.

5. The radial heat equation. We now consider the radial heat problem

2a+l
ut(r, t)= urn(r, t)+tlr(r, t), t> O, a >-,

(5.1)
r

u(r,O+)=&(r),

with (r) bounded and continuous. We next carry out a lifting on a 2-vector associated
with (5.1) corresponding to the choice a 0.

The scalar problem (5.1) has the solution

(5.2) u(r, t)= Io Pa (r, ,, t)&() dj,

in which

(5.3) Pa(r, , t)=-e Ia

with la a modified Bessel function see [1]. (The notation here is slightly different to
avoid confusion with one of the types of Bessel functions.) Now, let U(r, t) be the
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solution of (5.1) with the scalar data function q(r) replaced by the 2-vector (r)=
(Ck(r)). Let

(5.4) (r, t) e zla/2 U(r, t).

Then /(r, t) is a solution of the lifted matrix-vector problem

t(r, t)=D2’ll(r, t) + 1-{(2a + 1)Eo+E1}Dr-ll(r, t)
(5.5)

r

//(r, 0) O(r).

From (5.3) and [7, p. 71], it follows that

(5 6) Oa{(%)aI.a\2t,]}a=O--Io(F2t) In () K(t),
in which Ko denotes one of the modified Bessel functions. Applying (2.1) in (5.4), it
follows from (5.6) that the solution of (5.5) that corresponds to a 0 is given by

t,

(r, t)= Jo Po(r, , t)() d:

(5.7) +-1 Po(r, e, t)In () d:

--E e Ko () d.

The first component (r, t) of (r, t) is given by

1
(r, t)= o Po(r, , t) t ()+()In ()} d

(5.

e K0 2() d, > 0.
4

It is not difficult to show, from (5.5) with a 0, that (r, t) satisfies the equation

(5.9) (t -2r --3r)’(Ot-2F r)I(F, ) 0, 0,

6. The EPD equation revisited. In 3, we carried out a lifting with respect to the
operator A in a vector problem associated with (3.1). We now carry out a lifting with
respect to the parameter a for an analogous vector problem for the case n 2.
Although we can make use of the formal operator (3.3) for this, we take a slightly
different but, nevertheless, formal approach.

With the change of variables = t2/4, the problem (3.1) transforms into the
hypergeometric problem

a 1)-A](sc) 0, t(0+) b,(6 1) [D(sCD +
where tT(:)= u(2@. The solution of (6.1) is given formally in terms of a hyper-
geometric operator by

(6.2) (:,}=oF1 ",
2 :A ".
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As before, we consider the vector problem obtained by replacing in (6.1) by the
vector

(I) (ql), piE(Ar).
q2

If we denote its solution vector by (:), then the components of r(:) are gi()=
t(:, &i), i= 1, 2. Now, let 0(:) denote the vector solution of the following lifted
problem (with respect to a)

(6.3)
a-i)

This solution function is given by

(6.4)

1)+E -A o(:) O,

(0+)

a+l
2

0()= eE1D,{ oFI(.
(Eo + EDa)oF(" a+l :A)2

Since

and

0 1 1 1
0 a+---- a+l Fl(a+2k 1)

2 2

it follows formally that

1 [’ o"2i)r(1-
kEl J0 2 &r,

(a +2k- 1) 1-er

DAoFI( "’a+l2 ;sCA)
(6.5)

Iol ’a-1 [ ( a+l ) ( a+l ) ]
Using this in (6.4) and taking the first component 1() of 0" (), we get

I01 o’a
(6.6) q/l(:) t(:)

1 -o-2 [t2()- t2(g2:)] do-.

Splitting (6.3) into component equations, one can show that ()satisfies the factored
equation

a-1 -A]
If we return to the original variable t, it follows that the function

o.a t20.2,
(6.8) V(t)=/1(--)- I0 1 0.: {/2(-’) --/2(T) } do’,
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is a solution of the factored equation

(6.9) Dt + Dt-A D2t +-[Dt-A v(t)=O.
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IMPLICIT DEGENERATE EVOLUTION EQUATIONS AND
APPLICATIONS*

EMMANUELE DI BENEDETTOt AND R. E. SHOWALTER$

Abstract. The initial-value problem is studied for evolution equations in Hilbert space of the general
form

d
se(u)+ N(u) l:,

dt

where and are maximal monotone operators. Existence of a solution is proved when 1 is a subgradient
and either is strongly monotone or 9 is coercive; existence is established also in the case where 1 is
strongly monotone and is subgradient. Uniqueness is proved when one of or is continuous self-adjoint
and the sum is strictly monotone; examples of nonuniqueness are given. Applications are indicated for various
classes of degenerate nonlinear partial differential equations or systems of mixed elliptic-parabolic-pseudo-
parabolic types and problems with nonlocal nonlinearity.

1. Introduction. Let and 3 be maximal monotone operators from a Hilbert
space V to its dual V*. Such operators are in general multi-valued and their basic
properties will be recalled below. We shall consider initial-value problems of the form

(1.1) deg(u) + (u) f, egu(O) vo,
dt

where f
is a compact operator from V to V*. In applications to partial differential equations this
assumption limits the order of the operator to be strictly lower than that of . Both
operators will be required to satisfy boundedness conditions, and one or the other is
assumed to be a subgradient.

The objective of this work is to prove existence of a solution of (1.1) when
are possibly degenerate. Observe that we must in general assume some condition of
coercivity on the pair of operators. T.o see this, we note that if one of them is identically
zero then (1.1) is equivalent to a one-parameter family of "stationary" problems of the
form M(u (t)) F(t), whereM is maximal monotone. But ifM is, e.g., a subgradient in a
space of finite dimension, it is surjective only if it is coercive. Thus it is appropriate to
assume that at least one of or is coercive. In accord with this remark our work will
proceed as follows. First we replace by the coercive operator s + e, where e > 0
and V V* is the Riesz isomorphism determined by the scalar product on V, and we
solve the initial-value problem for the "regularized" equation

d
(1.2) d-- (g + eY)(u) + (u)

Here we may take e 1 with no loss of generality and we make no coercivity
assumptions on either or . Next we assume is coercive and let e 0+ in order to
recover (1.1) with (possibly) degenerate . Since is of the same order as this

* Received by the editors September 27, 1979, and in revised form January 12, 1981.This research was
sponsored in part by the United States Army under contracts DAAG29-75-C-0024 and DAAG29-80-C-
0041. This material is based upon work supported by the National Science Foundation under grants
MCS78-09525 A01 and MCS75-07870 A01.

" Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
Department of Mathematics RLM 8.100, The University of Texas at Austin, Austin, Texas 78712.
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regularization is analogous to the Yoshida approximation. The operator is assumed
to be a subgradient in the above. Finally, we show the initial-value problem can be
solved for (1.2) when Y3 (but not necessarily 4) is a subgradient.

We mention some related work on equations of the form in (1.1). The theory of
such implicit evolution equations divides historically into three cases. The first and
certainly the easiest is where 5o-1 is Lipschitz or monotone in some space [6], [23].
The second is that one of the operators is (linear) self-adjoint, and this case includes the
majority of the applications to problems where singular or degenerate behavior arises
due to spatial coefficients or geometry [2], [25]. These situations are described in the
book [9] to which we refer for details and a very extensive bibliography. The third case is
that wherein both operators are possibly nonlinear. This considerably more difficult
case has been investigated by Grange and Mignot [12] and more recently by Barbu [4].
In both of these studies a compactness assumption similar to ours is made. Our
boundedness assumptions are more restrictive than those in the papers above, but they
assume f is smooth and that both operators are subgradients. By not requiring that 5 be
a subgradient in (1.1) we obtain a significantly larger class of applications to partial
differential equations, especially to systems.

Our work is organized as follows. In 2 we recall certain information on maximal
monotone operators and then state our results on the existence of solutions of the
initial-value problems (1.1) and for (1.2). The proofs are given in 3 and 4. Section 5
contains elementary examples of how nonuniqueness occurs, and we show there that
uniqueness holds in the situation where one of the operators is self-adjoint. Section 6 is
concerned with the structure and construction of maximal monotone operators
between Hilbert spaces which characterize certain partial differential equations and
associated boundary conditions. These operators are used to present in 7 a collection
of initial-boundary-value problems for partial differential equations which illustrate the
applications of our results to the existence theory of such problems.

2. Preliminaries and main results. We begin by reviewing information on maxi-
mal monotone operators. Refer to [1], [3], [11] for additional related material and
proofs. Then we shall state our existence theorems for the Cauchy problem (1.1).

Let V be a real Hilbert space and A a subset of the product V V. We regard A as
a function from V to 2v, the set of subsets of V, or as a multi-valued mapping or
operator from V into V; thus, fA(u) means [u,f]A. We define the domain
D(A) {u V: Au nonempty}, range RE(A U{Au: u e V} and inverse A-(u)=
{v V: u A(v)} ofA as indicated. The operatorA is monotone if (fl f2, u u2) v --> 0
whenever [uj, f.]e A for f 1, 2. This is equivalent to (I + &A)-1 being a contraction for
every > 0. We call A maximal monotone if it is maximal in the sense of inclusion of
graphs. Then we have a monotone A maximal monotone if and only if Rg(I + hA) V
for some (hence, all) > 0. If A is maximal monotone we can define its resolvent
Jx -(I + &A)-, a contraction defined on all V, and its Yoshida approximation Ax
,-a(I-Jx), a monotone Lipschitz function defined on all V. For u e V we have
Ax(u)A(Ja(u)). We denote weak convergence of xn to x by xn---x.

LEMMA 2.1. LetA be maximal monotone, [x,, y, A for n >-_ 1, x x, y, y and
lim inf (yn, x,) v --< (y, x) v. Then Ix, y A. Ifin addition lim sup (yn, x)v --< (y, x) v, then
(y,, x,) v (y, x) v. We observe that A induces on L(0, T; V) a maximal monotone
operator (denoted also by A) defined by v cA(u) if and only if v(t)A(u(t)) for a.e.
t[0, 7"].

A special class of maximal monotone operators arises as follows. If q: V (-, ]
is a proper, convex and lower semicontinuous function, we define the subgradient
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0qc Vx V by

Oq(x)={z V: o(y)-q(x)-> (z, y-x)for all y V}.

The operator Oq is maximal monotone. Furthermore it is useful to consider the convex
conjugate of o defined by

q*(z)-=sup {(z, y)v-q:(Y), Y e V}.

The following are equivalent: z Oq(x), x Oo*(z), and p(x)+q*(z)=(x,z)v; thus
0q* is the inverse of 0q. We mention the following chain rule [1]. Let Ha(0, T; V)
denote the space of absolutely continuous V-valued functions on [0, T] whose deriva-
tives belong to L2(0, T; V).

LEMMA 2.2. I ueHa(O, T; V), vL2(0, T; V) and [u(t)v(t)]Oq for a.e.
e [0, T], then the function t- q(u(t)) is absolutely continuous on [0, T] and

d
d-- p(u(t))= (w, u’(t)v), all w Oq(u(t)),

for a.e. [0, T].
There is a version of a monotone operator from V to its dual space V* which is

equivalent to the above through the Riesz map :V- V*. Thus, c V V* is
monotone if and only if A ---Y-lo is monotone in V V and maximal monotone if
and only if Rg(5 + sO)= V* in addition. We shall use these two equivalent notions
interchangeably. Our applications to partial differential equations will lead to opera-
tors on V V*. Also the subgradient is naturally constructed in the W- W* duality of
a Banach (or topological vector) space W. Finally we cite the following chain rule.

LEMMA 2.3. Let V and W be locally convex spaces with duals V* and W*. Let
A:V W be continuous and linear with dual A*: W* V*. If q: W (-o, o] is
proper, convex and lower semicontinuous then so also is q A: V (-, ], and if q is
continuous at some point of Rg(A) we have [11]

O(q oA) A*o0q: oA.

Our results on the existence of solutions of the Cauchy problem (1.1) are stated as
follows.

THEOREM 1. Let W be a reflexive Banach space and V a Hilbert space which is
dense and embedded compactly in W. Denote the injection by i" V- W and the dual
(restriction) operator by i* W* V*. Assume the following:

[Aa] The real-valued q is proper, convex and lower semicontinuous on W, continu-
ous at some point of V, and Oq i: V W* is bounded.

[Ba] The operator 9: V- V* is maximal monotone and bounded. Define sg =-
i*oOqoi. Then for each given fL(O, T; V*) and [Uo, Vo]S4 there exists a triple
u e Ha(0, T; V), v Ha(0, T; V*), and w L2(0, T; V*) such that

d
(2. la) d--- (u(t) + v(t)) + w(t) f(t),

(2.1b) v(t) sg(u(t)), w(t) Y(u(t)), a.e. [0, T],

(2.1 c) 9u (0) + v (0) 9Uo + Vo.

THEOREM 2. In addition to the above, assume:
[A] Opoi:L(O, T; V)L(0, T; W*) is bounded.
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[B2] :L2(0, T; V) L2(0, T; V*) is bounded and coercive, i.e.,

lim o v(t)(u(t)) dt= +.
[u,v]

Then foreach given fL2(O, T; V*) and Vo Rg() there exists a triple u 6 L2(0, T; V),
v Ha(0, T; V*), w L2(0, T; V*) such that

d
(2.2a) dS v(t) + w(t) (t),

(2.2b) v(t) (u(t)), w(t) (u(t)), a.e. [0, T],

(2.2c) v(0) vo.

Remarks. From Lemma 2.3 it follows that =0(lv) where ely oi is the
restriction of to V. Since : V V* is bounded it follows that D()= V; hence,

v =D() = dom () = W,

and is continuous on the space V. Also, since (0) < we may assume with no loss of
generality that (0) 0 and thus *(z)0 for all z V.

From the compactness of i* W* V* it follows that : V V* is compact, i.e.,
maps bounded sets into relatively compact sets.

Since is bounded and maximal monotone we have D() V. It is important for
our applications that we .have made no assumptions which directly relate and .
Specifically, we do not compare (x) and (x) in angle or in norm.

Finally, we give a variation on Theorem 1 in which only the second operator is a
subgradient. The compactness assumption on is retained.

THEOREM 3. Let the spaces V and W be given as before. Assume the following:
[m3] The operator: V V* is maximal monotone with Rg() W* and: V

W* is bounded.
[B3] The real-valued is proper, convex and lower semicontinuous on V and
0: V V* is bounded.
Then for given f6L2(O,T; V*) and [Uo, Vo] there exists a triple u

Ha(O, T; V), v H(O, T; V*) and w L2(0, T; V*) satisfying (2.1).

3. Proofs oi Theorem 1 and Theorem 3. These proofs are very similar; let us
consider first Theorem 1. We formulate (2.1) in the space V. Set A -o, B
-o, etc., and consider the equivalent equation

d
(3. la) d(U(t)+v(t))+ w(t)=(t),

(3.1b) v(t)eA(u(t)), w(t)eB(u(t)), a.e. re[0, T].

Let A > 0 and consider the approximation of (3.1) by

d
(3.2a) d- (ux (t) + vx (t)) + Bx (ux (t)) f(t),

(3.2b) vx(t)A(ux(t)), t6[0, T].

Since (I + A)-1 and B are both Lipschitz continuous from V to V, (3.2) has a unique
absolutely continuous solution ux with ux (0) + v (0) Uo + Vo. Since (I + A)-I is a
function, we have ux (0)= Uo and vx (0)= Vo.
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We derive a priori estimates on ux. Take the scalar product in V of (3.2a) with ux (t)
and note

d
(v’ (t), u (t)), - *(v

by Lemma 2.2, where q* is the conjugate of qlv in V. Integrating the resulting identity
gives

1 .Ilu (t)[I]+ (v (t))

-<-Iluoll,/ *(,o) / (ll(s)llv / IIB (0)ll,)llu (s)llv ds, 0 < <= T.
2

Since {Bx (0)} is bounded bythe fact that 0 D(B), q* ->0 and fG L2(0, T; V), we have
proved the first part of the following lemma.

LEMMA 3.1. The following are bounded independent of )t > 0:

(b) [lull=0,;,,), IIvll
Proof. The second and third terms of (a) are bounded because the operators

1: V W* and Jx -= (I + 1B)-1 V V are bounded. Since Bx (ux) B (Jx (ux)) and B is
bounded, the last term in (a) is bounded.

To obtain (b) we take the scalar product of (3.2a) by u’x(t), note that (v’(t),
u’ (t))v >= 0 by (3.2.b) and the monotonicity of A, and thereby obtain

Ilu (t)llv--< (llf(t)ll v / liB. (u. (t)llv)llu’

so we bound the first term in (b). The second follows from (3.2.a).
Note that we have {Ytvx} bounded in LZ(0, T; W*) and {Ytv[} bounded in

L2(0, T; V*). Since W* is compact in V* it follows from 1-17, p. 58] that {Ytvx} is
(strongly) relatively compact in LZ(0, T; V*). From this observation and Lemma 3.1 it
follows that we may pass to a subsequence, again denoted by ux, vx, for which we have

(3.3a) ux u, Bx (ux) w, ux u

’v’ inL2(0, T" V),(3.3b) vx v (strongly), vx

(3.3c) ux(t)---u(t) and vx(t)-v(t), allt[0, T].

Since ux -Jx (ux) ABx(ux)O there follows

(3.3d) Jx (ux) u in L2(0, T; V).

It remains to show that u, v, w satisfy (3.1) and the initial condition. First we use
(3.3a) and (3.3b) and Lemma 2.1 to obtain v cA(u). Next we take the scalar product of
(3.2a) with any x e V and integrate to get

(ux(t)+va(t),x)v+ (Bx(ux(s)),x)vds= (f(s),x)vds+(uo+vo, x)v.

Taking the limit as A 0 gives (since x is arbitrary)

u(t)+v(t)+ Io (w-f) ds uo+vo, O<=t<= T.
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From this identity we obtain (3.1a) and u(0)+ v(0) Uo+Vo; since v(O)A(u(O)) and
(! + A)-1 is a function we have u(0) Uo. In order to show w B(u), and thereby finish
the proof of Theorem 1, it suffices by Lemma 2.1 to show

lim sup (Bx(ux),J,(ux)-u)(o,7-;v<-O.

We note further that

(B(ua),J(ux))= (Bx(ux),Jx(ux)-u)+(B(ux), ux)

=-,(Bx(ux),Bx(ux))+(Bx(ux), ux)

so it suffices to show

(3.4) lim sup (Bx (ux), u U)L2(O,T;V) O.

By (3.2a) it follows (3.4) is equivalent to

(3.5) lim inf (u +v, u- u)(o.r;v-> 0.
AO

Define O(x)- 1/211xll+ q,(x), x g so that 0, I +0q. From (3.2b) and Lemma 2.2
we obtain

d
(ui(t)+vi(t), ux(t))v=- q*(ux(t)+vx(t)),

and integrating yields

(ux +vx, ux)L2(o.7;v) (ux(T)+vx(T))-*(Uo+Vo).

Similarly we have from (3.1a)

’, *(u(T) + v(T))- *(Uo + Vo)(u’+v u)(o,r;v

By (3.3c) and weak lower semicontinuity of * we have

O*(u(T)+v(r))<-lim inf O*(ux(T)+vx(T)),
hO

and our preceding calculations show that this is equivalent to (3.5).
Remark 3.1. From Lemma 2.1 we find that

(Bx (ux), Jx (ux))L2(o,r;v)- (w, u)(o,r;v.

If we also have B (or Y3) strongly monotone then we can take the limit in the estimate

2(B (u w, J (u u =(o,; v) >- cllJ (u u II=o,;v)

to conclude that {Jx (ux} and {ux} converge strongly to u in LZ(0, T; V).
Remark 3.2. It is clear that we actually have v(t)A(u(t)) for every t[0, T].
The proof of Theorem 3 closely follows the preceding pattern. That is, formulate

(2.1) as the equivalent initial value problem for (3.1) and approximate this by (3.2) with
ux (0) + vx (0) u0 + Vo for each X > 0.

To derive a priori bounds we take the scalar product of (3.2a) with u’(t) and
integrate to obtain

T T

(3.6) Io Ilu’xllv+O(u(T))<=O(u)+Io (f(t),u’x(t))vdt.
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Here 0h is the Yoshida approximation of 0. We may assume , is nonnegative and the
same holds for 0, so we have the first part of the following.

LEMMA 3.2. The following are bounded independent of A > 0:

(b) II’IIL,O,T;V),

Proo[. The bound on the first two terms in (a) follow from (3.6) and the remaining
terms in (a) are bounded by [A] and [B3]. Next we take the scalar product of (3.2a) with
v’ (t), and obtain (b) as was done in Lemma 3.1.

We may pass to a subsequence satisfying (3.3) and we obtain as in Theorem 1 the
triple u, v, w satisfying the equation (3.1a) and initial condition and v(t)Au(t),

[0, T]. It remains to show w B(u) and this is equivalent to showing (cf. (3.5))

(3.7) lim inf (u + vx, UX)L2(O,r;V) >--_ (U + V’, U)L2(O,T.V).,0
Since U[ L2(0, T; V) we may integrate by parts to compute

+(vx(T), ux(T))v-(Vo, Uo)

and similarly, since u’e L2(0, T; V),

(u /v u)=(o,;v)-1/2(liu(T)ll-Iluoll)-(v, u ) (o,;v)
(3.8b)

+(v(T), u(T))v-(Vo, Uo)v.

Finally we observe that (3.7) follows immediately from (3.3) and (3.8).
Remark 3.2. If in addition B is strongly monotone, then {ux } converges strongly to

u in L2(0, T; g).

4. Proof of Theorem 2. Choose uoA-l(Vo). For each A >0 let u, v
Hi(0, T; V), w L2(0, T; V)satisfy

(t) + v’ (t) + wx (t) f(t),(4.1a) Au

(4. lb) vx (t) A(ux (t)), wx (t) B(ux (t)), a.e. e [0, T],

(4. lc) Aux (0) + vx (0) AUo + Vo.

The problem (4.1) has a solution by Theorem 1, and our plan is to show that we may
take the limit as A 0 in (4.1) to obtain a solution u, w e L2(0, T; V), v e Hi(0, T; V) of

(4.2a) v’(t) + w(t) f(t)

(4.2b) v(t)A(u(t)), w(t)B(u(t)), a.e. t[0, T],

(4.2c) v(0) v0.

With our notation A -oM, etc., (4.2) is equivalent to (2.2).
We proceed to derive a priori estimates. Consider first the initial condition. Since

(AI + A)-a is a function it follows from (4.1c) that

(4.3) u (0) Uo, v (0) Vo, A > 0.
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(a)

(b)

LEMMA 4.1. The following are bounded independent of > 0:

Proof. Take the scalar product of (4.1a) with ux (t) and integrate to obtain

(4.4) - ][ux (t)]lv+ q va (t)) + (wx, Ua)v

’ Io-<-Iluoll/,*(vo)/ (I; u)v,
-2

O<=t<_T.

We drop the second (nonnegative) term in (4.4) and note by the monotonicity of B that
(wx, u)v >= (, Ux)v for some B(0). Thus (4.4) gives

T

(W, u)v <=llfllo,T;>llullO,T; / c,

and the coercivity of B implies the boundedness of the first term in (a). The second now
follows from (4.4) and now part (b) follows from our assumptions fAll and [B1].

LEMMA 4.2. The following are bounded independent of , > 0:

live’ La0.T; v>, IIu L20,T; v>

Proof. Take the scalar product of (4.1a) with v (t). Since (u’ (t), v’ (t))v >=0 bythe
monotonicity of A, we obtain

IIv i (t)l[ ],--< (lift t)ll / IIw (t)ll v)llv i (t

from which the first bound is immediate. To obtain the second we take the scalar
product of (4.1a) with u (t) and drop the nonnegative term (u’ (t), v’ (t))v. This gives

Ilu i (t)[["-< (llflt)ll v / IIw (t)llv)llu i (t)l[ v,
and hence the desired bound.

We have now shown that {Yv} is bounded in L2(0, T; W*) and that {Yv[} is
bounded in LZ(0, T; V*). Since W* is compact in V* it follows that {vx} is strongly
compact in L2(0,,T; V*). From this observation, Lemma 4.1 and Lemma 4.2 it follows
we may pass to a subsequence (which we denote again by {ux}, {vx}, {w}) for which in
L2(0, T; V) we have

L/ t/ WA W VA V) V A V

Note that ,ux 0 and it follows that Au x 0 by standard arguments. Furthermore, we
may assume v(t) v(t) in V for all [0, T] by equicontinuity of {vx}, and similarly
Aux (t) 0 in V for all [0, T].

It remains to show that the triple u, v, w obtained above constitutes a solution of
(4.2). Let x V, take the scalar product of x with (4.1a) and integrate to obtain

i0 i0(Xu(t)+v(t),x)v+ (w(s),x)= (f(s),x)vdS+(Uo+Vo, X).

Since weak convergence in L2(0, T; V) implies weak convergence in L:(0, t; V) letting
A 0 gives that

(v(t),x)v+ (w(s),x)vds= (f(s),x)vds+vo, xV, t[0, T].
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That is,

v(t)+Io w(s)ds= fof(S)ds+vo, a.e.t[0, T],

and this implies (4.2a) and (4.2c). From Lemma 2.1 there follows v A(u) so it remains
only to establish w B(u). For this it suffices by Lemma 2.1 to show

(4.5) lim sup (wx, UX)L2(O,T;V) (W, LI)L2(O,T;V).
h0

In order to prove (4.5) we first note by (4.1a) and (4.2a) that it is equivalent to

> (v’, U)L2(O,(4.6) lim inf (/Uh -[-VX, Llh)L2(O,T;V) T;
h0

Since ux (t) A-a(vx (t)) &p*(vx (t)) a.e. on [0, T], where q* is the conjugate of qlv, we
obtain from Lemma 2.2

A
*(vx (r))

A ,(Au /, u)=O,T;V=-llu(T)ll/ -lluoll- (o)

_-> q*(vx(T))- Iluoll
Similarly we compute

(v’, U)C2(0,T;V q*(v(T))-q*(Vo).

Since {v } are equi-uniformly-continuous we have vx (t) --> v(t) at every [0, T], so the
lower semicontinuity of q* gives

lim inf o*(vx(T))>=q*(v(T)).
A0

In view of the preceding computations this is exactly (4.6).
Remark 4.1. If B is strongly monotone then {ux} converges strongly to u in

L2(0, T; V).

5. Remarks on uniqueness. We first present an example which shows that gross
nonuniqueness of solutions of (1.1) can occur, even if both operators are strongly
monotone subgradients. Moreover the nonuniqueness occurs in each term of the triple
u, v, w, not just in the latter two terms selected, respectively, from A(u) and B(u). Next
we shall show that uniqueness does hold for (1.1) when at least one of the operators is
continuous, linear and symmetric and the sum of the operators is strictly monotone. Our
last example shows that symmetry of the linear operator is essential.

Example 1. Let V W R, the space of real numbers, and define

where
A(s)=B(s)=s+H(s-1),

r>0,

H(r) [0, 1], r O,

0, r<0

denotes the Heaviside function and f= 0. Consider the initial-value problem (1.1),
which takes the form

(5.1)
v’(t)+w(t)=O, v(0) 2,

v(t)- u(t) e H(u(t)- 1), w(t)- u(t) H(u(t)- 1).
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Let g be any maximal monotone graph or continuous function from R to R such that
g(s) s for s [1, 2] and g(s) c [1, 2] for s [1, 2]. Then, if v is a solution of

(5.2) v’(t) + g(v(t)) O, >--_ O, v(O) 2,

it follows that with u(t)=-A-(v(t)) and w(t)---v’(t) we have a solution of (5.1). This
procedure yields an abundance of solutions.

We display some special cases of the above. Pick c [, 1] and define g to be the
maximal monotone graph such that g(t) {c-}, (1, 2), and g(t) {t}, t [1, 2]. The
corresponding solution v of (5.2) is given by

Vc(t)=2 -t, 0<t<c, v(t)=e c-’ t>=c.

With the two functions u and w given by

u(t) 1, w(t) =-1 for 0-< < c,

Uc(t)=w(t)=e-t, t>=O,

this provides a continuum of solutions of (5.1).
We can give the following elementary sufficient conditions for uniqueness to hold

for (1.1) or, equivalently, for (4.2).
THEOREM 4. Let A and B be monotone operators on a Hilbert space V. Suppose

A +B is strictly monotone and that one ofA or B is continuous, linear and symmetric.
Then ]:or each function f: [0, T] V and Vo V there is at most one solution u, v, w of
(4.2).

Proof. Suppose A is continuous, linear and symmetric. For ] 1, 2 let u., v, w. be a
solution of (4.2). Take the scalar product of the difference of (4.2a) with u-u2 to
obtain

1 d
---(A(u(t)-u2(t)), u(t)-ua(t))v+(W(t)-w2(t), u(t)-u2(t))v=O.
2 dt

Integrating this identity and using (4.2c) gives

l(A(ua(t) u2(t)),Ul(t) u2(t))V+fo(W W2,/,/1 Uz)vds O, 0<t<T,
2

and this implies

aua(t) auz(t), (w(t)- w2(t), ua(t)- Uz(t))v 0 a.e. [0, T].

Since A +B is strictly monotone we have ux(t) Uz(t); hence va(t) Au(t) Au2(t)
v2(t) and, by (4.1a), Wl(t)= w2(t) a.e. on [0, T].

Suppose now B is continuous, linear and symmetric. Starting with two solutions as
above we integrate the corresponding equations (4.2a) to obtain

(5.3) vi(t)+B(Oi(t)) Vo+ f, j= 1, 2,

where Oi(t) o ui. Taking the difference of (5.3) for f 1, 2, then the scalar product with
0 -0 and integrating gives us

Io zl(5.4) (Ol-/)2, 0-O)v+-(B(O(t)-Oz(t)), 01(t)-O2(t))v=O.
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Since v.(t) A(O(t)) a.e., each term is nonnegative. It follows that B(O(t)-O2(t))- 0
on [0, T], and thus from (5.4) that

(Vl(t)--v2(t), ul(t)--U2(t))v--O a.e. t[0, T],

so the desired results follows by strict monotonicity of A + B.
Finally we cite an example to show that the symmetry condition cannot be

eliminated from Theorem 4.
Example 2. Let Hi(0, 1) be the Sobolev space of those absolutely continuous

functions on the interval (0, 1) whose first derivatives belong to L2(0, 1); set V
{vHl(0,1)’v(1)=0} and note that VL2(0,1)cV*. Define ’VV* by
sO(v) -v’. Clearly is linear and we have

(v)(v)-- v’vds--lv(O) cO,

so is monotone. Let/3 be given by

r
r<0or r> 1

/3(r)
r2-, 0 <_-- r _--< l,

and define " V V* by

(u)(v) Io (u’(s))v’(s) ds, U, vEV.

It is easy to check that is a strictly monotone subgradient on V.
Consider the Cauchy problem

d
s4(u) + 9(u) 0, 4u(0) -1(5.5)

with the above operators. A solution u of (5.5) is a weak solution of the initial-
boundary-value problem

(5.6a)

(5.6b)

(5.6c)

(--Ux)t--((Ux))x -"0, O<x < 1,

Ux(O,t)=u(1, t)=O,

--Ux(X,O)----1,

0< t,

where the subscripts denote partial derivatives. Consider the following two functions:

2 2
X +

(1)(X, t) 2t
-1, 0<x<t<l,

0<t<x <1,

u(2)(x, t)= fI- 1,

--1, O<<x<l, t<l.
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It is a straightforward computation to check that both u (1 and//(2) are solutions of (5.6),
hence, both are solutions of (5.5). Note that the only condition of Theorem 4 not met in
this example is the symmetry of s4. It shows also that being a subgradient is not a
satisfactory substitute for 5 to be continuous and self-adjoint.

6. Construction of differential operators. We have been discussing evolution
equations which contain a pair of nonlinear operators from a Hilbert space V to its dual
V*. In our applications the generalized solutions obtained in our theorems may satisfy
natural or variational boundary conditions (e.g., of Neumann type) which are implicit in
the functional identity

d
eg(u(t))+ Y3(u(t))f(t)(6.1) d-

in V*. Such boundary conditions are classically recovered by Green’s formula so we
shall describe an appropriate extension of this formula which requires a minimum of
regularity of the generalized solution. The objective is to resolve each term in (6.1) into
two parts, a differential operator in distributions over a region , the formal operator,
and a constraint on the boundary F, the boundary operator. Then we briefly recall basic
facts on Sobolev spaces and construct a rather general nonlinear operator Y3 which will
be used in the next section to illustrate theorems in some examples of initial-boundary-
value problems.

Assume we are given a linear surjection y" V --> T, called a "trace" operator, which
is a strict homomorphism onto its range T, called "bound,ary values" of V. Let V0 be the
kernel of y and note that the dual operator, y*(g) go T, is an isomorphism of the dual
space T* onto the annihilator V- in V*. Suppose there is given a continuous seminorm
[. [on V for which Vo is dense in the seminorm space U---{ V,[. [}. Then we naturally
identify U* simultaneously as a subspace of V* and of V0*.

We resolve the operator d" V- 2 v* into a formal part in V0* and a boundary part
in T*. For each u e Did] set Ao(u) {Flvo: F e s4(u)}, the set of restrictions to Vo of
functionals in d(u). Then set D[d0]={u V" Ao(u)f’l U* s } and define do" V
2er* by o(U)= Ao(u)71U*. That is, s40 is the set of those functionals in Ao(u) which
have (unique) continuous extensions in U* c V*. Now let u D[4o] andF (u) with

Fo=Flvo U*; hence, Fo4o(U). Then in V- we have F-Fo= y*(g) for a unique
g T*, so we can define O(u) T* to be the set of all such g. Thus, for each F 4(u)
for which F0 FI Vo U*, there is a unique g T* for which

F(v) Fo(V) + g(yv), v V,
and we indicate this by

(6.2) 4(u) S4o(U) + V*(0a (u)), u Dido].

In our applications Vo* is a space of distributions over f and T is the space of boundary
values of the Sobolev space V, so (6.2) is the abstract Green’s formula for the
operator

In many examples the solutions of (6.1) will have the additional regularity
properties described below.

LMMa 6.1. Let vH(O, T; V*) with v(t)eg(u(t)) a.e. on [0, T], and set
Vo(t)=v(t)lvo for each t[0, T]. Let Vo(t) U* and define g(t).T* by v(t)=
Vo(t)+y*(g(t)) [ort[O, T]. I[v’o(t) U* a.e. on [0, T], then gH(O, T; T*) and

v’(t)=Vo(t)+y (g’(t)), a.e. t6[O, T].
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The preceding situation occurs, for example, in the case of linear symmetric and in
certain other special eases [2,], [9], [17], [25].

Suppose the operator is given as above and let a second operator " V 2v* be
given. Resolve it likewise into two parts"

(6.3) (u) o(U) + y*(O(u)), u O[Y3o].

Let there be given/o L2(0, T; U*), go e L2(0, T; T*), Vo Rg[Ao] and go e T* with

Vo + y*(go)e Rg[so]. Consider a solution of the Cauchy problem

d
(u(t)) + (u(t)) ]o(t) + y*(go(t)), a.e [0 T],

dt

/(u (0)) vo + v*(go),

that is, a triple u, v, w for which

v(t) (u(t)), w(t) Y3(u(t)),

(6.4) v’(t) + w(t) ]o(t) + y*(go(t)), a.e. [0, T],

v(0) Vo + *(go).

By restricting the above functionals to Vo we obtain

vo(t) e ao(u(t)), Wo(t) e Bo(u(t)),

(6.5) V’o(t)+Wo(t)=fo(t) in Vo*, a.e. te[0, T],

vo(0) vo.

If Lemma 6.1 applies, then we obtain Wo(t) U* and the identities (6.2) and (6.3) give

g(t) o(u(t)), g(t) o(u(t)),

(6.6) g’(t) + ga(t) go(t) in T*, a.e. e [0, T],

g(0) go.

Thus (6.4) implies (6.5) and, in the situation of Lemma 6.1, also (6.6), so we call a
solution of (6.4) a weak solution of the pair (6.5), (6.6). The first will give a partial
differential equation and the second yields variational boundary conditions in our
examples.

Let 1" be a bounded open set in R which lies locally on one side of its smooth
boundary F. HI(I) is the space of functions q in L2(fl) for which each of the partial
derivatives Diq Oq/Oxi belongs to L2(’), 1 -- ]" n. Letting Do denote the identity on
L2(I)), we can express the norm on Ha(O) by

1/2

We shall let V be a closed subspace of Ha(fl) containingC (1) and let y" V L2(1-’) be
the indicated restriction to V of the trace map [19]. We let T be the range of y (a
subspace of Ha/2(F)) and denote the kernel by Vo -=H (1). Since F is smooth there is a
unit outward normal vector n(s)= [n(s), , n,(s)] at each point s F. Note that the
test functions C (fl) are dense in Vo so the dual Vo* is the space of (first order)
distributions on 1". We refer to (19) for information on these Sobolev spaces.
Specifically, we shall use the trace operator between Sobolev spaces of fractional order.



744 E. DI BENEDETTO AND R. E. SHOWALTER

We shall construct an operator ’V2v* which will occur in many of our
examples. For each integer k, -1 _-< k-< n, let there be given a continuous, convex
function Ok R R whose subgradient,/3k 0Ok, satisfies

(6.7) Iwl--< C(Isl / 1) if w /3k(s), s R, -1 -< k _-< n,

where C is some large constant. Then define " V R by

0(.)= fa tk(DkH(X))dx+ Ir 0-(y(u(s)))ds, u V.

From the estimates (6.7) it follows that 0 is a sum of continuous convex functions so we
can compute its subgradient term by term. Recall that the subgradient F of the convex
function v Ia k(V) dx at w e L2(II) is determined by F(x) k(W(X)), a.e. x e f.
Since Dk" VL2(f) is continuous linear, the subgradient of the convex function
v a Ok(DkV) dx at u e V is given by {D’F" F e g(Dku) a.e.}. See [11, pp. 26-28] and
[1, p. 47] for proofs of these facts. These observations show that the subgradient of 4’ is

(6.8) t(u)=OO(u)= D’k(Du)+y*-l(yU), u V.
k=0

To be precise, we have F (u) if and only if there exists fg k(OkU) in L2(),
0 _-< k <_-n, and f-1 /-l(yu) in LE(F) for which

F(v) In ,=o f(x)Dv(x)dx+Irf-l(S)V(s)ds’ v6V.

By restricting the above to v Vo Ho(f) we see the formal part is the distribution

FI Vo Okfi, +fo V*o.
k=l

We denote this by the equality (of sets)

(6.9) Bo(u)=- i Dkfl(Du)+o(U).
k=l

Let us interpret (6.3) with U* L2(). First, if Df U* for 1 -< k <- n, then by the
classical Green’s theorem we have, from above,

Thus u D(@) and we have shown

i fknk +f-1 C O(U) with fk fl(Du).
k=l

That is, when the terms are as regular as indicated we have

(6.10) 0(u)= 8(Dku)n +fl-l(U).
k=l

Furthermore, Oa(u) is defined without these regularity assumptions on the individual
terms; it is sufficient to have Flvo U*. Finally, we note that from (6.7) it follows that
satisfies the assumptions [B1] of Theorem 1 and [B3] of Theorem 3. It is also bounded
from L2(0, T; V) to L2(0, T; g*) and it will satisfy [B2] of Theorem 2 if, in addition,
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there is a pair of numbers K, c > 0 such that

clk(S) ClSI2--K S E R, 1 <= k <-_ n and one of the following:

Ja o(v(x)) dx + Jr q-l(y(v(s)))ds, v E W,

a continuous and convex function : W--> R with subgradient

se(u o, (u o(u)+ ,*(-(vu)),

bounded from W to W*. That is, F s(u) if and only if there exist f0 ao(U) in L2(tq)
and f-1 o_(y(u)) in L2(F) for which

(7.1) F(v)= Info(x)v(x) dx + IFf-I(S)V(S) ds, v V,

so the formal and boundary parts of s are given, respectively, by

(7.2) Ao(u) Ceo(U), O(u) o_(yu).

From Theorem 2 we obtain the existence of a weak solution of the initial-boundary-
value problem

0
--Ao(u)+Bo(u)fo
Ot

in L2(0, T; H-a(f)),

(7.3)
Aou(O)vo,

0
-o(u)+oa(u)go
Ot

in L2(0, T; H-a/2(1-’)),

0au (0) bo.

This is made precise in the form (6.5) and (6.6), where the operators are specified in
(6.9), (6.10) and (7.2).

(a) the estimate holds for k 0, or

(6.11) (b) the estimate holds for k 1, or

(c) v E V and v constant imply v 0.

From (6.11) we can show that

O(v)>-callvll- gx, v v,
and this implies the coercivity condition in [B].

7. Examples of partial differential equations. We shall describe some examples of
initial-boundary-value problems for partial differential equations to illustrate the
applications of our results. These examples were chosen merely to suggest a variety of
problems that can be resolved by our Theorems, and they are not intended to be best
possible in any sense.

(a) Elliptic-parabolic equations. For k 0 and -1, let qk" R R be convex and
continuous with subgradient, ak --Oqk, satisfying

Iwl<=C([s[+l) ifwc(s), sR,

Set W Hr(D,), 1/2 < r < 1, V H(fl), and note that V--> W is compact and y" W-->
Lz(F) is continuous [19]. Thuswe can define by
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Remarks. By our choice of V HI(Iq), all boundary conditions in (7.3) are of
variational type. Dirichlet-type constraints are obtained by taking subspaces of

We require that fo and go be square-summable, with values in H-I(Iq) and
H-1/2(F) respectively, and we assume (6.11) to obtain coercivity of . The bounded-
ness assumptions on ak (k 0,-1) can be relaxed somewhat by using embedding
theorems, e.g., of W into LP(f).

There is no bound on the degeneracy permitted in the operator; we include even
the (uninteresting) elliptic case sO-= 0. The case of A0 0 leads to an evolution on the
boundary subject to an elliptic equation in the interior; such problems arise from
diffusion in a medium bounded by material of markedly lower diffusivity [25].

The classical porous-media equation and the weak form of the two-phase Stefan
free-boundary problem are included in (7.3). In the latter, the enthalpy is given by
ao(S) (1 +cH(s))s +LH(s), where L >0 is the latent heat of fusion and H(. is the
Heaviside function 14], 16]. Such problems arise in welding, with the nonlinear term
rio(U) representing a source of heat due to electrical resistance.

Note that each solution of (5.1) is also a (spatially independent) solution of (7.3), so
there is much nonuniqueness in (7.3).

(b) Pseudoparabolic equations. Here we set V H(I)), so T {0} and all boun-
dary conditions are of Dirichlet type. The operator is given as above by (7.2); the
operator is also given as before but we shall only assume (6.7), not (6.11). On the
space V we take the (equivalent) scalar product and corresponding Riesz map

u(v) In =" Du(x)Dv (x) dx, u, v V,

so we have =-A, ----_ -y=a D. Assume 1o 6 LZ(0, T; H-(fl)) and Vo 6 Ceo(Uo), Uoe
H (fl) are given. Then either from Theorem 1 or from Theorem 3 we obtain existence
of a solution of the problem

u n(0, T; H(fl)),
v H(0, T; H-()),
w L2(0, T; H-(fl)),

(7.4)

u(O) uo,

v(O) vo,

0
(v(t)- A,u(t)) + w(t) fo(t),

Ot

v(t) Ao(u(t)), w(t) Bo(u(t)).

The operators Ao and B0 are given by (7.2) and (6.9) respectively.
Remarks. The partial differential equation in (7.4) is of the form of a nonlinear

parabolic plus the term (O/Ot)A,u(x, t). Such equations are known to arise in various
diffusion problems and are called pseudoparabolic [9], 15], [28]. Similar problems with
variational boundary conditions can be considered; we obtain weak solutions in the
form (6.4). However, since Rg(Ao+Y)=H-I(F), we cannot use Lemma 6.1, in
general, to deduce (6.6). This situation occurs even in the linear case [26].

The operator -A, in (7.4) can be replaced by the Riesz operator of any equivalent
scalar product onH (I1). This trivial observation is useful in introducing elliptic linear
operators in its place.

We have not made use of the fact that only one of the operators sO, need be a
subgradient. In particular, we are free to add to one of or Y3 any linear combination of
first order derivatives. (See Example (d) below.)
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Nonuniqueness of solutions of (7.4) follows from that of solutions of (5.1).
In the preceding examples the nonlinearity arises from the local dependence on the

solution, e.g., from nonlinear functions of the values of u or Vu at each point of f. We
next display examples of global nonlinearity arising from the "total energy" or the
"total flux" in the system. The following preliminary result will be useful.

LEMMA 7.1. Let a (.,.) and b(.,.) be continuous, bilinear, symmetric and non-
negative real-valued functions on the Hilbert space V. Then for a, R, the function

q(u)---1/2 max {a(u, u)+ a, b(u, u)+ [3), ueV

is convex, continuous and its subgradient is given by

{A(u)}
oo(u) J{(aa + (1 a)B)(u), 0 <- a <- 1}

/

{B(u)},

where Au(v)= a(u, v), Bu(v)= b(u, v), v V.
Proof. We need only to compute 0q (u). For the first and last cases we compute the

Gateaux derivative limt_,o {(q(u+tv)-o(u))/t} to obtain the desired results. Now
assume a(u, u)+a b(u, u)+. An easy computation gives

ira(u, u)+a > b(u, u)+,

if a(u, u)+a b(u, u)+,

ira(u, u)+a <b(u, u)+,

{ }t-l(q(u + tv)-q(u))=max a(u, v)+- a(v, v), b(u, v)+- b(v, v)

so we have the equivalence off 0q(u),

and of

f(v) <= t-l(q(u + tv)- o(u)), v V, t>0,

/(v)<_-max {a(u, v), b(u, v)}, veV.

This is equivalent to f hAu + (1 h)Bu for some h, 0 -<_ h _-< 1.
(c) Energy-dependent elliptic-parabolic equation. We shall use Theorem 2 with the

operator given by (6.8), so we agsume (6.7) and (6.11). Choose V H1(12) so the
space of boundary values is T H1/Z(F). Define on WL(f) the function

q(u) max 1, [u(x)[ dx uW.

The subgradient s4 0q is given by Lemma 7.1 and we have s Ao S4o, Rg(C)--
LZ(fl). Finally, let Vo L2(), foL2(O, T; L2()), go L2(0, T; H-1/Z(F)) be given and
define

f(t)(v) Ja fo(X, t)v(x) dx + go(t)(yv),

Then we obtain a weak solution of

vV.

(7.5)

OV
--+Bo(u) f0Ot

v (x, o) vo(x)

o(u)go

in L2(0, T; H-l(fl)),

in L(II),
in L2(0, T; H-1/2(F)),
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where v is determined by

"(0}, if lu dx < 1,

{Au" 0_-__ _-< 1} if In u 12 dx 1,

{u}, if Jn [ul2 dx > 1.

Thus, the type of the equation is either elliptic (with parameter t) or parabolic and
depends on the total energy n [ul2 dx.

(d) A ]tux-dependent equation. Take V Ho (12), W L2(Iq) and T {0}. Let the
convex function qo and its bounded subgradient ao 0(o be given as above in Example
(a), and define M Co in L2(f); cf. (7.2). Denoting the gradient of u by Cu, we define
the continuous convex

4’(u) max N, Iu(x)l2 dx uV.

Let/ R" and define " V- 2v* by

b Vu + O O(u).

Note that is maximal monotone, bounded and coercive. Let Vo Rg(M) and 1o
L2(0, T; H-l(f)). From Theorem 2 we obtain existence of a solution of the problem

u L2(0, T; H(f)), v Hi(0, T; H-a(fI)),

--+ b Vu -K Iu dx A,U=fo,(7.6)
Ot

v(x, t) Oo(U(X, t), v(x, O) Vo(X),

where the maximal monotone K" R R is given by

{o}, s < N,
K(s) [0, 1], s N,

{1}, s>N.

Remarks. In the region where Ia Iu[2 dx <N the equation in (7.6) is a conser-
vation law of the form

(7.7) --+bVg(v)fo,
Ot

where the maximal monotone g: RR is the inverse to c0. Thus (7.6) suggests a
penalty method [18] to approximate solutions of (7.7). We shall develop these obser-
vations elsewhere.

In order to consider (7.6) in the form (6.1) it is essential that is not required to be
a subgradient.

(e) Elliptic-parabolic systems. Our final example consists of a pair of equations of
the type given above in Example (a) that are (nonlinearly) coupled. For 0, 1 and
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k=O,-1, let k’RR be convex and continuous with subgradient, Ol.kO(k
satisfying

(s) sR.(7.8) Iwl<-C(Isl/a) forwag

On the product space W--Hr(fl) Hr(l), } < r < 1, we have the continuous trace
operator y([u 1, u2]) [y(u 1), y(u2)] which maps W into L2(F) L2(F). Thus we define
by

q(v) Y qio(vi(x)) dx + q_ (yv (s)) ds, v =[/)1,/92]E W,
i=1

a continuous and convex function whose subgradient is given by

(U) 0(U) [C (U 1) _t_ ,(0/1 2) ,(21
_

(,(u’))), (u + , (v(u=)))],
b/ [Ul, U2] E W.

The operator s4" W2W* is bounded; its formal and boundary parts are given,
respectively, by (see (7.2))

(7.9) Ao(u) [a(u’), a2o (uZ)], o(u)=[ -1 (’(U 1)), -1 ((U2))]

Hereafter we restrict y to the product space V Ha(fl) x HI(’)). Assume we are given
a set of continuous and convex functions 0k’R-*R for l, 2, -l <_- k _-< n, whose
subgradients/3 k 00 all satisfy the estimate (6.7). For 1, 2 we define 0i" Ha(fl) -* R
as in 6; its subgradient is then given by (see (6.8))

i(u i) oOi(u i) Dfli (Dgu
k=O

U HI(I").

The formal and boundary parts of Y3 are given by (6.9) and (6.10) for each of 1, 2.
Thus we have two pairs of operators similar to the pair in Example (a). The coupling of
the corresponding equations will be attained by a maximal monotone graph/z" R 2R

which is bounded, i.e., (7.8) holds for w /z (s). Then we define a maximal monotone
operator M on R x R by

M([s, sz])= {[w,-w]: w m x(s- sz)}, [sa, s2] e R x R.

This operator M induces a corresponding operator on L2(’) L2(I’), hence, from V
into V*, which we also denote by M. Finally we define

([Ul, U23)--[l(ul), 32(u2)]+M(u1, U2), [Ul, U2]E V,

This is the sum of maximal monotone operators, each of which is defined on all of V,
so 5 is maximal monotone. Similarly is bounded, and we note that 5 is coercive if
both of and Y32 are coercive.

Assume that we are given the following data:

i=1,2,
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If the functions {k"-1 _-< k _-< n} satisfy (6.11) for both 1 and 2, then from
Theorem 2 it follows that there exists a weak solution of the system

--a(u (x,t))+B(u (x,t))+tx(u (x, tl-u2(x,t)lfo(X,t),
Ot

(7.10)

0 2 2aZo(U (x, t)) +B(u (x, t))- Ix (u (x, t) uZ(x, t)) f(x, t)
Ot

in L2(0, T; H-I(f)),
19

ila_ (yu (s, t)) +O,(u (s, t)) v go, 1, 2, in L2(0, T; H-1/(F)),
Ot

i(x) i=l 2, inLZ(f),co (u (x, 0)) vo
ogi---I (’yU i(S, 0)) V/--I (S), 1, 2, in L2(F).

Remarks. All of the operators in this system are (possibly) multi-valued, so each of
the "equations" should be made precise as was done in our preceding examples. See
(6.9), (6.10), (7.2) and (7.9) for related computations.

The only requirement on the a k is that they be maximal monotone graphs in R
which satisfy the bound (7.8). Thus much degeneracy is possible in the leading operator
given by (7.9). Related Stefan-type free-boundary problems can be so considered.

Interesting examples of the coupling term arise in applications to diffusion prob-
lems. These include problems with a semipermeable membrane,/z(s) s + (where s +

denotes s if s > 0 and 0 otherwise), or those with a threshold phenomenon /x(s)=
(s-e)+-(-s-e)+. The operator M as given above is a subgradient; this is easily
verified by showing it is cyclic monotone 1]. However we may add to M nonsymmetric
monotone terms, for example, [-s2, s], and thereby obtain systems of the form (6.1) in
which is not a subgradient.

Systems of equations of pseudoparabolic type can be resolved similarly by
Theorem 1. For example, we can choose V H0 (f)x H0 (11) with scalar product on
each factor as given in Example (b), and obtain existence of a solution of the problem

O--(a(ua(x, t))-A.ua(x, t)) + B(ua(x, t)) + lx(u(x, t)-u(x, t))f(x, t),
Ot

0--(aoZ(U2(X, t))-Anu2(x, t))+ BZo(uZ(x, t))-tx(u(x, t)-uZ(x, t))/2o(X, t)
(7.11) 19t

in L(0, T; H-I(I)),
u H(0, T;Ho(f)), uJ(x, 0)=ui(x), aio(Ui(X, O))vi(x)

f 1, 2, in Le(f)
where the data are given as above with v Ao(u) for f 1, 2.
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POSITIVITY OF WEIGHTED WIGNER DISTRIBUTIONS*

A. J. E. M. JANSSEN"

Abstract. In [4] a number of inequalities involving Wigner distributions and their moments are given.
The present paper gives theorems on the positivity of weighted Wigner distributions, where the weight
function is assumed to be radially symmetric. The main tool is a formula expressing weighted Wigner
distributions of a function in terms of its Hermite coefficients and certain integrals involving Laguerre
polynomials.

1. Introduction. If f L2(R), g L2(R), then the (mixed) Wigner distribution of f
and g is defined by

W(x, y; f, g)= I e-2Zriytf(x + 1/2t)g(x dt
j_

for x ff, y . If f g, then we call W(x, y; f, g) the Wigner distribution of fi Note that
W(x, y; f, g) is continuous, bounded and square integrable over 2. See, e.g., [4, 2],
[5, 12, 13, 14, 15] and [12, 4] for general information about the Wigner dis-
tribution; we like to refer in particular to the first reference, where an interpretation of
the Wigner distribution as an energy density function in time and frequency is given.
The Wigner distribution can also be defined for tempered distributions, or for general-
ized functions of the class S* associated with the space S of smooth functions (an entire
function ) is called smooth if there are A>0, B>0 such that f(x+iy)=
O(exp (-TrAx2+ 7rBy2)); cf. [5, 2, 27] and [10, Appendix 3, 2]). We shall derive
our formulas and inequalities for functions f S only (the Wigner distribution of such an
f depends smoothly on its two variables; cf. [5, 7, 13]); in many cases, however, the
result considered can be proved to hold in S* (and in particular in L2()) as well by
noting that the space S is S*-dense in S* (cf. [5, 17, 18]).

An important role is played by the Hermite functions On(n 0, 1,.. ’). We take
the same normalization as in [4, 3] and [5, 27, 6.3], i.e. we have for x C, w C

exp (Trx2-27r(x -w)2) E c,w’,(x),
n-----0

Cn (n !)-l/:z2-1/4(47r)"/2, n 0, 1,"

The Laguerre polynomials L, (n 0, 1,...) of zeroth order are given by (cf. [14,
5.1.6])

We have (cf. 14, 5.1 ])

L,(x)
=0 () (-x)i/f!’ n->_0.

(1- w)-1 exp (-xw(1- w)-1) Y. w’L,(x)
n=0

for x =>0, wC, Iwl<l.
We note that every fS has an expansion =o (f, ft,)6,, where the series

converges in S-sense to f (cf. [5, 27, 6.3 and 23]).

* Received by the editors August 12, 1980, and in revised form December 2, 1980.
5" California Institute of Technology, Pasadena, California 91125.
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2. A formula for weighted Wigner dfstributions. This section gives a formula for
weighted Wigner distributions, where the weight functions are assumed to be radially
symmetric. The methods for deriving this formula are essentially the same as the ones in
[4, 4. The starting point, a formula for the (mixed) Wigner distribution of Hermite
functions is from Groenewold (cf. [9, (5.16)]). For the sake of completeness, we include
a proof.

2.1. LEMMA. Let n O, 1,..., m O, 1,..., and let cn, c,, be as in the Intro-
duction. For x R, y we have

min m)

Cn,CmW(x, y; On, m)--21/2 exp (-27rlzl2) (-47r)i (47r’)n-i (47rz)’-i
i=0 j! (n-j)! (m-j)!’

where z x + iy.
Proof. Abbreviating "the coefficient of vnw in" by C.wm, we get

c,c,W(x, y;G, ’m)

C.wm I_ exp (-27riyt + 7r(x + 1/2t)2

-27r(x + 1/2t- v)2 + Tr(x t)2- 27r(x t W)2) dt

for x , y . This can be written as

21/2 exp (-27rlz [2)C.w exp (-4rvw + 47rv + 4rrzw ).

The lemma follows on expanding exp (-4rrvw +4rv + 4rczw) as

, (-47rvw) , (4rev)k (4zrzw)’
i=o j! k=0 k! /=0 l!

2.2. Taking n m in the lemma, we get

W(x, y; G, ,,)= (-1)"2 exp (-2rlzlZ)L,(4rrlzla).
In [11, formula 17], a similar expression is given for what is called the ambiguity
function of 6, (cf. also [13], where weighted integrals of ambiguity functions are
considered). This is no surprise since ambiguity function and Wigner distribution are
related by a double Fourier transformation (cf. [10, Appendix 3, 1.2(v)]).

2.3. THEOREM. Let K [O, c)-> C be a measurable function such that
o IK(x)lZexp(-ex) dx <00 for all e >0. Then we have for fsS, where indicates
integration over

2 (-1)l(f, 4’)1 e-K(r)L(2r) dr.

Pro@ The double integral converges absolutely, and so does the series at the
right-hand side (cf. [5, 27, 6.3] and [16, Chapt. VI, 6]). We have (cf. Introduction)

W(x, y; f, f)= .. , (f, 4’) (f, 4’m) W(x, Y; 4’,,, 4%)
=0 =0

for x s , y s R. If we multiply this formula by K(27r(x + y)) and integrate over ,
then the terms in the series with n m cancel by the lemma (use polar coordinates).
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Hence

W(x, y; f,/)K(27r(x2 + y2)) dx dy

E I(f,$,)l2 W(x,y;$,,$,)K(27r(x2+y2))dxdy,
n=0

and the theorem follows easily from 2.2. [-1

3. Applications. We use the theorem to show that certain weighted integrals of
Wigner distributions are nonnegative. We consider weight functions with radial sym-
metry around the point (0, 0), but, as in [4], our results can be extended to weight
functions with elliptic symmetry around any point (a, b) in the plane. We are especially
interested in nonnegative weight functions.

3.1. The following lemma and examples show that alternating series involving
Laguerre polynomials are often nonnegative.

LEMMA. Assume that a,,O, 2Y’.,=o a, <_-oo. Then Y,=o (-1) a,L,(x)>=O a.e.
Proof. From orthonormality of the functions e-/2L(x) on (0, oo) (cf. [14,

(5.1.1)]), we see that ,--o (-1)"a,L,(x) converges locally in L2-sense. Now S(x)=
=o (-1)L(x) -->0 for all x _->0, n =0, 1,. by [14, Problem Section, Problem 100].
We get by partial summation for N -0, 1,...,

N N

E (-1)"a,,L,,(x)= E S,,(x)(a,,-a,,+l)+au+Su+a(x).
=0 =0

It follows from [15, Chapt. IV, 7, l b, d] that SN(x). is bounded in N for every x _-> 0.
The lemma follows by letting N oo. I-1

COROLLARY. IfK(r) n__o (-1)nane-rL(2r), where the a,’s are as in the lemma,
then K >-O, and we have for f S

W(x,y;f,f)K(2rr(x2+y2))dxdy=- a,, I(f, 0,,)12

3.2. In many cases the positivity of Y,--o (-1)nanL (x) can also be established by
employing identities for Laguerre polynomials. In the list of examples below we assume
f S.

(i) Taking -1 < w < 0,

we find that

K(r)= Y. (-1)"lwl"e-rL,(2r)
n=0

(1- w)-1 exp (-(1 + w)(1- w)-Ir),

(1 w)- W(x, y; f, f) exp -27r
1- w ) 1

I(f,  .)121wl ".(X 2 + y2) dx dy
n=o

Cf. also [4, Thm. 4.2]. We can also use o e-StL,(t) dt= s-"-X(s 1) with 0<s _-< 1 (cf.
[14, Problem Section, Problem 19]) to derive the same formula.

(ii) We have Y’,n= o w"L,(x)/n!=exp (w)Jo(2ilwlX/Zx)(cf. [6, 5]), where Jo is the
Bessel function of first kind and zeroth order (cf. [14, Chapt. I, 1.71]). Note that
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Jo(it)=,=o (t/2)2/(v!)>O for t->0. By taking the appropriate K we get for w <0

-2 2 [(1, .)1
--o n!

(iii) We have x Y,n=o (-1)nF2(a + 1)L,(x)/n IF(a-n + 1) for a >-1 (cf. [16,
Chapt. VI, 8]). By taking the appropriate K we get for a >-1

(47r)’ I I W(x, y; f, f)(x a + y2), exp (-2"rr(x 2 + y2)) dx dy

-2
y" I(f, 4’,,)l:ZF2(c + 1)/n !F(a -n + 1).
n=O

In case a is an integer, the sum is a finite one, and if c is not an integer, the sum contains
non-positive terms (viz. the terms with n [c]+2, [a]+4,...).

(iv) We have 2n! k=O (--1)kLk(2x2 / 2Y 2) k=0 ()H (x)H-k (y), where the
Hk’S are the Hermite polynomials (cf. [14, Problem Section, Problem 100]). We get by
taking the appropriate K

(v) We have (--1)k+m+n Io Lk (x )L,, (x)L (x )e dx >-0 for k, m, n =0, 1,... (cf.
[14, Problem Section, Problem 94]). Let k 0, 1,..., and take K(r)= e-rL2k(2r). We
get

I I f)L2k(4"n’(x2 + y2)) (_27r(x 2 + y2)) dxW(x, f, dyy; exp

1 )"Io -rL’= ,E-- 1(/, ,)1:(-1 e (r)L,,(r) dr

and the terms in the right-hand side series are nonnegative.
(vi) We have

L:(x)=2-2" (2)(2(n-k)’L2k(2X)
k=O \ n-k ]

(cf. 14, Problem Section, Problem 101]). We derive

dy

k=O n-k ]

(vii) In [2] it is claimed and in [7] it is proved that

(-1)(x + 1)._(x + 1)L(x)/k(n-k)lO
k=O
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for A=>0, x->0. Here (a)o:=l, (a ), := a (a -1) (a+k-1) for ae, k=
1, 2,.. . For example, if we multiply by n !A-" and let + oo, we get

W(x, y; f, f) exp (-er(x + y))K(47r(x e + ye)) dx dy - k
I(L 6)1,

where K(r) Ek--o (- 1)k (,)L (r) => 0, r => 0.
(viii) We have o xge-X/eL,(x) dx 2"F(/z + 1)bn, where bn is the coefficient of r

in (1- r)’(1 +r)-’-1 for/x >-1, n =0, 1,... (cf. [14, (9.5.20) and (9.5.21)]). It can be
shown that (-1)"b, => 0 for n 0, 1,... and /x->-1/2. Indeed, if we put (1 + r)’(1
r)-"-1= E,=o a,,(tx)r", then an is a polynomial in/x, and a2n(-1/2) 2-e" (2n), a2,+1= 0
for n 0, 1,. . For the derivatives of an with respect to/x in the point - we have

(1 + r)"(1 r)-"- =-
Cr.[log (1 + r) t’//1-1.2> O,

(1 r)] /

where Cr. abbreviates "coefficient of r in", as

log =(1+ r)
2 o r2l 1

Y. a, r".
(l-r) l= (21+1) 41’ re .=o

It follows that a, (/x)_>-0 for n 0, 1,...,/x >=-1/2.
Taking K(r)= (2r)" we get

(47r)" I I W(x, y f, f)(xe+ ye), dx dy

=n= (-1)hi(f, I//n)l 2 e-r/ert’L,,,(r) dr

for/x > -1. This is nonnegative for/x ->-1/2 (even for noninteger values of Ix; compare
(iii)). For/x =-3 we get

II 1 (2n)2_4n[(f, i//2n)[2"(4r)-/2 W(x, y; f, f)(x 2 + y2)-,/2 dx dy
,/ .=0 n

We note that in [4, Thm. 4.3] the case that is a positive integer is considered.

3.3. If f is an even function, then sharper results than the above ones can be
obtained. This is no surprise since W(0, 0; f, f)=> 0 if f is even. Note that for an even f
the terms in the series of the theorem in 2.3 with odd index cancel (as (f, 4,2n/1) 0 for
n 0, 1, .). Hence we can use now functions K that have an expansion in Laguerre
functions with nonnegati.ve even coefficients only. So assume that f $ is even.

(i) In 3.2(ii) we can take -1 < w < 1. We thus find that

f f W(x, y; f, f) exp (-rrS(x 2 + ye) dx dy >= 0

for all => 0. This follows, of course,.also from the formula for H,,, (0, 0; f, f) in the proof
of [4, Thin. 4.2].
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(ii) We have 0 Lk(X)Lm(x)Ln(x)x-1/2e-3x/2 dx >=0 for k,m,n =0, 1,... (cf. [1,
3.4]). Hence, for k =0, 1,...,

(4"rr)-1/2 I I W(x, y; f, f)(x 2 -t- y2)-1/2 exp (-47r(x + y))L(47r(x + y)) dx dy

2 I(f, 4’,,)1 e-r-/L(2r)L(2r)dr>--O,
n=0

and the integrals in the right-hand side series are nonnegative.
(iii) It follows from a result of Askey and Gasper (cf. [8, (9.7)]) that

Lk (x)Lm (x )Ln (x -o,, dx >= 0e

for p_->2, k, m, n 0, 1,. . Hence, for k 0, 1,. ,

I I W(x, y; f, f) exp (-2r(p + 1)(x z + yZ))L,(4zr(xZ + yZ)) dx dy

2 I(L 4,)1 e-L(2r)L(2r) dr>-O,
n-----0

and the integrals in the right-hand side series are non-negative.
(iv) The coefficient of r2n in (1- r)" (1 + r)-"-1 is positive for all n 0, 1,... and

all e [. For/x => -1/2 this follows from 3.2 (viii), and for -<_ -1/2 we can use the fact that
the coefficients of r2n in (1 r)" (1 + r)-"-1 and (1 r)(1 + r)-’-1 are the same if
tr =-/x- 1. This implies (cf. 3.2 (viii)) that

I I W(x, y; f, f)(x 2 + y2)" dx dy >= 0

for all/x >- 1.

3.4. We ask ourselves how restrictive the condition an -> 0 for a function K(r)=
.,n=O (-1)nane-rLn(2r) is. It follows from 3.2(iii) and Parseval’s formula that

FZ(a + 1)
L(a) := 2" x" e-’K(x) dx E an

,=o n !F(ce n + 1)

for every a>-l. Suppose K(x)=O(e-mx) for some m>l. Then L(a)=
0(2%!/(m + 1)) if c oo. Taking integer values for (so that the series contains
nonnegative terms only), we get L()=>c !c(c- 1)... (o-n + 1)an/n! for all n. It
easily follows that an 0 for all n, whence K 0. In particular, a K with an -> 0 cannot
have a compact support.

In a similar way one can show from 3.2(iii) that

W(x, y; f, f) O(exp (-zrA (x 2 + y))

iff0, A>2.

3.5. We finally note a stability property of the class U of all K" [0, oo) [0, o) for
which (- 1)n e-"Ln (2x)K(x) dx >= O. Assuming proper integrability conditions, we
put/,(x, y) := K(2zr(x+ y)) for K e U, and/1 */2 for the ordinary convolution of
/ and/2. Now note that/ /2 depends on 2zr(x + y2) only, and that for every f S,
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if K1 U, K.-> 0,

II 2(a, b)(ff W(x+a, y +b)l(X, y)dx dy)dadbO
by the remark in the beginning of this section. Theorem 2.3 shows that 2 3 for
some K3 U. An explicit formula for K3 is

K3(t) g(s) K(t + s 2cos 0) dO ds.

The case K(t)= e- gives: if K U, then K e U, where

1 e_t e_K(s)Jo(2i) ds.

REFERENCES

[1] R. ASKEY, Certain rational functions whose power series have positive coefficients, II, this Journal, 5
(1974), pp. 53-57.

[2] R. ASKEY AND G. GASPEr, Positive Jacobi polynomial sums, II, American J. Math., 98 (1976), pp.
709-737.

[3] .., Certain rationalfunctions whose power series have positive coefficients, Amer. Math. Monthly, 79
(1972), pp. 327-341.

[4] N. G. DE BRUIJN, Uncertainty principles in Fourier analysis, in Inequalities, O. Shisha, ed., Academic
Press, New York, 1967.

[5] A theory of generalized functions, with applications to Wigner distribution and Weyl cor-
respondence, Nieuw Archief voor Wiskunde, 21 (3) (1973), pp. 205-280.

[6] W. N. BAILEY, On the product of two Laguerre polynomials, Quart. J. Math., 10 (1939), pp. 60-66.
[7] G. GASPER, Positive sums of the classical orthogonal polynomials, this Journal, 8 (1977), pp. 423-447.
[8],Positivity and special functions, in Theory and Applications of Special Functions, R. A. Askey,

ed., Academic Press, New York, 1975.
[9] H. J. GROENEWOLD, On the principle of elementary quantum mechanics, Physica 21 (7) (1946), pp.

405-460.
[10] A. J. E. M. JANSSEN, Application of the Wigner Distribution to Harmonic Analysis of Generalized

Stochastic Processes, MC-tract 114, Mathematisch Centrum, Amsterdam, 1979.
11 J. R. KLAUDER, The design ofradar signals having both high range solution and high velocity resolution,

Bell System Tech. J. 39 (1960), pp. 809-820.
[12] J. C. T. POOL, Mathematical aspects of the Weyl correspondence, J. Math. Phys. 7 (1966), pp. 66-76.
[13] R. PRICE AND E. M. HOFSTETTER, Bounds on the volume and height distributions of the ambiguity

function, IEEE Trans. Inform. Theory, 11 (1965), pp. 207-214.
[14] G. SZEGO, Orthogonal Polynomials, 4th ed. Colloquium Publication, Vol. 23, American Mathematical

Society, Providence, Rhode Island, 1975.
[15] G. SANSONE, Orthogonal Functions. Rev. Engl. ed. Interscience, New York, 1959.
[16] F. G. TRICOMI, Vorlesungen iiber Orthogonalreihen, 2nd rev. ed., Die Grundlehren der mathe-

matischen Wissenschaften, Vol. 76, Springer-Verlag, New York, 1970.



SIAM J. MATH. ANAL.
Vol. 12, No. 5, September 1981

1981 Society for Industrial and Applied Mathematics

0036-1410/81/1205-0008 $01.00/0

THE NONCHARACTERISTIC CAUCHY PROBLEM FOR A CLASS OF
EQUATIONS WITH TIME DEPENDENCE.

I. PROBLEMS IN ONE SPACE DIMENSION*

JOHN B. BELL

Abstract. The noncharacteristic Cauchy problem is considered for a general class of operators in one space
dimension which are second order in space and first order in time. A weighted energy technique is used to
prove uniqueness and logarithmic continuous dependence on the data. The technique is also applied to two
problems of higher order. The results are then extended to systems of equations which are coupled in lower
order derivative terms.

1. Introduction. Several authors [1]-[4], [6], [8] have considered the noncharac-
teristic Cauchy problem for the heat equation. These works share the common feature
that the results depend on the analyticity properties of the solution as well as special
representations of the solution to prove the desired estimates. Ewing and Falk [5]
treated a similar, somewhat more general operator using data in addition to the
noncharacteristic Cauchy data.

We wish to study a more general class of equations in which we cannot apply
analyticity considerations. In particular, we wish to consider the second order operator

Lu a(x, t)uxx + b(t)ut F(x, t, u, ux)= ;(u),

where a (x, t) >- c > 0 and

IF(x, t, u, Vl)-F(x, t, u2,

(Throughout, c is an explicitly determinable, generic positive constant depending only
on coefficients and geometry. Another notational convention will be the omission of
the arguments of functions. Furthermore, x and subscripts denote differentiation.) In
addition, we assume thai Oa/Ox and db/dt are bounded functions.

Let fl be a space-time region with boundaries

(sx(t), t) for0<=t,

(sz(t), t) for 0-< t,

(x, 0) for st(0) <- x <- s2(0),

where sl(t) and s2(t) are piecewise C curves with s(t)<sz(t) for all t. We let
Z {(sx(t), t)to <- t<=tx}. is thus a noncharacteristic segment of the boundary of

We can now pose the problem PI"

Lu (u) in

P1 u g on Z,

--=h onZ.

In 2 we will prove uniqueness and continuous dependence on the data within a
restricted class of functions for problem P1.

* Received by the editors February 1, 1980, and in revised form December 16, 1980. This work was
supported by a National Science Foundation Graduate Research Fellowship and the NSWC IR Fund.

Naval Surface Weapons Center-R44, White Oak, Maryland 20910.
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We will consider analogous problems for the fourth order operators

(1.2) Utt + kuxxxx ;, k > 0

and

(1.3) -utt + kuxx ;, k > 0

in 3. In 4 we will extend the results for operators (1.1), (1.2), and (1.3) to weakly
coupled systems of equations.

Our approach to the problem will be based on the use of level sets of a function
f. We thus introduce

D ={(x, t): f(x,

s
E aDs f3 Off.

Payne [7] used surfaces of this type in conjunction with logarithmic convexity tech-
niques to treat second order elliptic equations; we will use them with a weighted energy
argument. Precisely, we will show that for functions f satisfying explicit criteria set forth
in the theorems we can bound certain integrals over D,, from which uniqueness and
logarithmic continuous dependence on the data can be deduced.

The fifth section exhibits an example of a suitable family of surfaces and some
concluding remarks.

2. Second order problem. In this section we prove the basic inequality from which
we deduce uniqueness and continuous dependence estimates for problem P1. We
approximate u by a function & in fl, where & is assumed to have bounded second
derivatives in fl and bounded first derivatives in fl (J E. Letting

we see that

(2.1) tw (y;(u) ;(4, )) + ((4, L,t, ).

We now substitute w e’rv in (2.1), yielding

Le’rv [(a(A 2f2 + Alex) + bft)v + 2Aafxv,, + aVx,, + bvt]e ’.

We next form groups of odd and even terms, where odd and even refer to the number
of derivatives of v appearing in the expression. This leads to defining

Lov 2Aafxv,, + bvt,

Lev h 2(afx + ah-f, + A-lbft)v + aVxx.

It then follows that

(2.2)

a-1(2 x Lev Lov) <- a-(Lev + Lov)2

-1a e-2Xf[5(u)-(&)+(;(&)-L&)]2

--< C e-2M[l’(u) (b)[2 _+. [tu (&)[2].
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Expanding (2.2), integrating over D, and using the Lipschitz behavior of F yields

f fD {[2A3 3
vvt + bvxxvt} dx dtaf + O(a 2)]VVx + 2a.af,,v,,v,,,, + O(h 2)

(2.3) <=C fro e-2Xf(w2+w 2 fro
c l f (a2v2+v2) dxdt+c l fox [L&-(&)]2 dxdt.

Integrating by parts we find that

4xnx + O(a 2)]D2 dS + [hafnx + O(1)]v dS + bvvtnx dS
D D D

If we now assume that

and

fx>-c>O inD,,

(a (x, t)f3x)x <= -c < 0 in D,,

(a (x, t)fx)x --< -c < 0 in D,

then for sufficiently large h

f fD {[l 3 3 2(afx)x+O(h2)]v +[h(afx)x+O(1)]Vx}dxdt>=O.

Thus for sufficiently large h, (2.4) becomes

h3 Is av2[Vf1-1 dS +h Is v2x IVf[ -1 as

<-c Is b(t)VxVtlVfl- dS+c It. (av2+av2 +v’2) dS

Substituting e-Xrw for v and applying the arithmetic geometric mean inequality then
yields

d$

(2 5) + c e2 Ix (a 3w2 + hw + w)dS
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Integrating (2.5) with respect to a then yields the following theorem"
THEOREM 1. Suppose u is a solution to problem P1 and c is a function as described

previously. Suppose further that there exists a function f such that

1) D c Dt and , .for 0 < ce < fl <- 1,
2) fx-->c >0 in D1
3) (a(x, t)fx)x <- -c < 0 in DI, (a(x, t)f3x)x <- -c < 0 in D.

Then, for all a, 0 < <-_ 1, we have the estimate

3 IID (b/ __t)2 dx dt<-c fro b2(t)(blt--tt)2 dx dt

+c e2 Iz [AZ(u-c)Z+(ux-&x)2+A-(ut-c’)2] dS

for A sufficiently large.
The inequality presented in the above theorem can now be used to prove

uniqueness and continuous dependence on the data for problem P1. First, however,
we must digress a moment to prove a technical lemma required to appropriately fix the
stabilization class.

LEMMA. LetD c l) be a domain containingD f3 f and such that OD f’) Ofl Z. Let
Cto be a cutofffunction such that to 1 on and to 0 on l)/D. Then

IID b2(t)(ut- bt)2 dx dt

_-< c I,. [(u 4,)2 + (Ux 4,x)2 + (u,- 4,,)2] dS

+ c I Io u cb )2 dx d + c I Io Lcb Y;(cb )12 dx dt.

Proof. First we see that

f fD, b 2(ut ft)2 dx dt

f fDto4b2(ut-tDt)2 dxdt

IID to
4b U qb a txx Uxx + c; u )-- ; 49 + a; c Lob] dx d

-- to4b 2(ut 4))2 dx dt
-2

+c (to4(u &)2 + to ux-))dxdt

-Jr-t7 I, (Ut tt)2-l" (Ux 4)x)2 dS + c I5o I(cb)-Lcbl2 dx dt.
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Next, observe that

I fo w2(u c)2 dx dt

w (u-)(u-)nd$

[(ol(u -4,(u-+ u -l(u -]

(u-)(u-)nS- (u-)[(u)-()]xt
D

+ -(u -)(u -)tdx dr- (u -)(u -) dx dt
a

+ a (u )(L ()) dx dt

Nc (u-)+(u-) dS+ (u- dxdt

Combining these two results then yields the desired inequality.
The inequality derived in the theorem can now be used to prove uniqueness and

continuous dependence on the data within a restricted stabilization class.
Let

The result follows from applying the inequality of the theorem, substituting for
a function a which solves a problem with data close to the data for problem P1, i.e.,
where

i10 Ila gllH) + h + IIt (a)ll==)
L2(E)

is small.
We can then prove the desired uniqueness and continuous dependence results.
COROLLARY. ff a solution to P1 exists, then it is unique. Furthermore, for u,

satisfying the properties described above we have the following estimate for 0 < 1:

D. { 2(-1M2 4M2(M2/e2)} log
1

(u a)2 dx dt < c e +log (M/e)"

Proof. In the situation described above, the inequality in the theorem becomes

2

For uniqueness we have e =0. Letting A oe then gives the desired result. For
continuous dependence, letting A =1/2 log (M2/e 2) yields the desired result.
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3. Fourth order problems. In this section we treat problems analogous to problem
P1 for operators (1.2) and (1.3). We will begin with operator (1.2) which, in the classical
theory, describes the deformation of an isotropic beam loaded normal to the beam.
Some generality may be added to the problem by allowing k to be a function of x and
t; however, we will restrict our attention to the constant coefficient case for the sake
of simplicity. We are thus led to the problem P2"

Lu =- u,, + kuxxxx F(x, t, u, ux, bit, Uxx, blxt, blxxx) ,5(U) in f,

u r(t) one
OR

P2 r/(t) on ,
On

02U
-O(t) one,

On

where F is Lipschitz in its last 6 arguments. We will now prove an estimate analogous
to Theorem 1 from which we can deduce uniqueness and continuous dependence on
the data for problem P2.

THEOREM 2. Suppose u satisfies problem P2 and cb is any function possessing
bounded fourth order derivatives in f and third order derivatives in Y. Furthermore,
assume there exists a function f which satisfies

DcDt, c, 0<a</3-<l,

fx >- c > O in D1, fxx <- -c < O in D1,

and

f(x, t) fl(x) + f2(t).

Then, for sufficiently large h, we have
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Proof. Without loss of generality, we may take k 1. As before we let (u-b)
eXrv. Thus v satisfies

Since we intend A to be large, we may omit lower order terms in A from the
remainder of the proof. This leads to definitions of odd and even parts of the operator
as was done previously; viz.,

and

Let) A 4fxo q- 6A 2fV,x + v,.,. + v.,

3 3Lov 4A fxv. + 4AfxVxx + 2Xftvt.

The key to success in the use of the weighted energy technique employed is the
reduction of the initial inequality to a form in which the volume terms can be discarded.
To accomplish that we must, in this case, begin with a more complex initial inequality.
Hence, we form

(3.2)

Expanding the first term we find

(3.3)
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The expansion of the second term yields

-fro ,710f6xfxxl)2dx dr} O(/ 6) 0 /)2 dS

(ffxx)V dx dt + O(A vv dS
D

D D D

Mv dx dt

lO3e-f((u)-())vdxdt.

Note that

(3.5)

A3 f fD 10 e-Xt(;(u)-;(&))ffxv dx dt

+l(u -)xxl+l(u )x,I + I(u )tl)v dx dt

C (62422 2 2 22+Vx+V+ )dxdt.

Combining (3.3) and (3.4) and using the estimate (3.5), we find that (3.2) becomes

(3.6)

for A sufficiently large.
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Applying Schwarz’s inequality and the arithmetic-geometric mean inequality to
(3.6) yields

IS 56 2 56(2A7fSv2+ 10A fxVx +4A fxVxxV+4A3VxxVx
2 2 2

(3.7) c s (Z 3v + vt)lVf[-’ dS

Next observe that

and

56 34 2 fxD >04A fxVxxV + (8A fxV + 1/2h 7 s 2)

2 24A 3xUxxxlA "nt- (8A 5fx6Vx2 -[- -hf V O.

Discarding unneeded positive terms on the left of (3.7) and using the two preceding
inequalities we see that for h sufficiently large (3.7) becomes

A7fS v2lWI dS

_-< c fs (A 3vt2 + vt2t)lVf1-1 dS

q- fy (h 7/)2 nt h 5/)2 3 2 3 2 2 2 2"+" h V "Ar" h V + hV -f- A V xt + V tt) dS

IIo 
Substituting for v we obtain

(U 4))21Vf[-1 dS

C fs (/ -4(u’ t)2 -[- X -7(1At )tt)2 dS

+c e2X Ix ((bl--()2-[-l-2(blx--)x)2-[-i-4(blt--)t)2
"1- I --4

Uxx (Dxx 2 "Jr" l --6
Uxx )xxx 2

+ -6(u- 4)x) + a -(u. .)) d$

2Ace IIo+ (4) (4f dx d

for A large. Integrating with respect to a then yields the desired result.
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For this problem we require a more restrictive stabilization class. Let

L2(’))

We can now establish uniqueness and continuous dependence on the data for problem
P2 by letting & t corresponding to the solution of a related problem, i.e., where

I1’- ullg( / + 0 + + IIL7 (a)llL2(n e

is small.
COROLLARY. If it exists, the solution to problem P2 is unique. Furthermore, for

u l, a solution of P2 and ( ill as described above we have the continuous dependence
estimate

IID (u t)2 dx dt<=c{ M2e2(1-) + 8M2

2)]3
] 1

[log (M2/e log (M2/e 2)

for 0<a -< 1.
Proof. In the above described situation, inequality (3.2) reduces to

(u /)2 dx dt < h-4MZ + h-a 3 2Ac(3.8)

For uniqueness we have e 0 and let h oe in (3.8). Continuous dependence on the
data follows immediately upon setting h 1/2 log (M2/e 2) lq

Notice that we needed to impose a much more restrictive stabilization condition
to prove continuous dependence on the data for this problem.

The cause of the problem is, in fact, the sign of k. We will now turn our attention
to operator (1.3). This operator corresponds to the composition of a forward heat
operator and its formal adjoint; namely, a backward heat operator.

We now pose the problem P3:

Lu =--utt + kuxxxx (u) in

u =((t) onE,

OU
P3 r/(t) on E,

On

02U= O(t) onE,
On

03U
on3=(t)

Proceeding as before we prove the following theorem.
THEOREM 3. Suppose u is a solution to P3 and is a function having bounded

fourth derivatives in II and bounded third derivatives on II . Furthermore suppose
there exists a function f such that

D c Do, Z c ,, O<a </3__<1,

fx >-_c >0 in II,

fxx <- -c < 0 in f,

f(x, t)=fl(x)+ f2(t) in 12.
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Then, the following inequality holds for I sufficiently large"

12 II (u-qb)2 dxdt

C ffD (Uxxt--txxt)24-12(Uxt--Xt)2dXdt
(3.9)

+c16e2XI:E [(IA--t)+(Ux--tx)9+(Uxx--Cxx2

+ (g/t- t)2
4- (Uxt- (Dxt)2 4- (Uxxt- (Dxxt)2] d$

4-CI-1 e2a fro ILqb -r(&)l- dx dt.

Proof. We again assume k 1 and ignore lower terms in I. Substituting (u -b)
eXrv, we see that v satisfies

33 22Lv 14v + 41 f,v + 61 fvx +41fvx + v,, 2Aftvt- l.)tt 4-1.o.t.

e-Xr(;(u)- Y;(6)) + e-(z(qb) L6).

Breaking this expression into odd and even parts we form the inequality

(3.10)

where

and

I Io [(Lev) x (Lov)f71 11/2(Lev + Lov)Vxx] dx dt

4-11/2 ff ffD e-xf(l’(u (b)l 4- [’(b) L()l)vxx dx dt,

2 2Lev 14fxV 4- 61 fxvx + Vxxxx vn + 1.o.t.

33Lov 41 fVx + 41fxv, 21ftvt + 1.o.t.

Expanding, integrating by parts and applying the arithmetic geometric mean inequality
as was done previously yields

(3.11)

5,5 2 3,,3 2 2 33 2(17fTxv2 + 21 lxV + 21 lxV + hfxV + 21
D

+ O(X)v 2, + O(X)vxtv, + O(h)vxvxt)Vfl- dS

53 2 3 2(12A 7fsxfxxv2 + 24A llVx + 12A ffv

+4A 3fxfxxV2 1/2V2 1/2V2+ A + A t) & dt

+ I ID, [Lb ;()[2 e-2xr dx dt"
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The first volume term on the right-hand side of (3.11) is negative. Thus, when we
substitute e-r(u-&) for v in (3.11), the inequality becomes

for A sufficiently large. Integrating with respect to a then yields the desired result. I-I
As was the case for problem P1, we can prove a technical lemma which will allow

us to use a less restrictive stabilization class than was used for problem P2.
LEMMA. Let D be a subdomain of f such that

D, CI I’) _D and OD CO E.

Then, for A sufficiently large, if u satisfies (1.3) and b is as described in Theorem 3 we
have

Proof. Let to be a cutoff function such that to -= 1 in D and to 0 in f3 D c.
If we let w denote u- b, we then have

(3.12) (Wx,,+A w,t) dxdt < (to, 2 n--22 2
W xxt + to W xt) dx dt.
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NOW,

to w xxt dx dt to WxxtWxtnx dS to wtwt dx dt
D

(3.13)

to nWxtWxxxrtt dS

n-2
W xt dX dt + to WxtWxxx dx dt

< (to nWxxtWxtnx to WxtWxxxnt + to wttWxxxnx dS
D

+ to w xxt dx dt + c to W Xt dx dt

+ c to w dx dt to xWttWxxx dx dt to WttWxxxx dx dt.

If we now substitute for Wtt using the equation, (3.13) becomes

(3.14)

2
to Wxxt dx dt

__{< (onw,w,n owwn+ oo w.wn) d$

I ID n-2 2 2-JI- C to W -l- to W dx d

f fD ton (Wxxxx [(-(/g )__ ,5())+ [;’(1) t)])Wxxxx dx at

2 2 2<- c (2 + , + + .) dS

II n-2 2 2 2 2 2 2"+- C to W xt -- W -- W + w + w + w dx d- o w dx dt + c 1(6) Lob dx dt.
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Let us now examine our other term"

ffo"-22dxdt,o Wxt

09 WxtWtnx dS o WxtW dx dt to
D

(3.15)

WxxtWt dx dt

n-2 IIo Wxt+Cto wt)dxdtto (WxtWtrlx WxxWtnt) dS + (ton-2 2 n-4 2

D

+ to wt dx dt + to WxxWtt dx dt

<-- to WxtWtnx WxxWtnt) dS
D

III ,-2 IIo wt+to Wxx)dxdt+2 to wxtdxdt+c (to n-4 2 n-2 2

+ to wxxwt dx dr.

Substituting the equation into the last term of (3.15) we find

to wxxw. dx dt

Wxx(Wxxxx- [((u)-()) + (@(6)-L6)]) dx dt

to WxxWxxxnx dS to w dx dt to
D

Wx,cWxxx dx dt

(3.16) to VVxx[((u)-(ck))+(;(ck)-Lck)] dx dt

+ w xxx) dS-- to w dx dt

f fD n-2 2 2+C [ton-4W2xx+to (wZ+wt +Wx)]dxdt

+
4

to W xt dx dt + c 1@($) L$12 dx dt.

Combining (3.14), (3.15) and (3.16) we see that for , sufficiently large

IID 2 2 n-2 2(to"wxxt + , to wxt) dx dt

(3.17)

/,

<C Jr [W2 2 2 2 2 2 2 2 2xxt+Wxt+Wxxx+Wtt+, (Wxt+Wt+Wxx+Wxxx)]dS

to w dx dt a to w

-I"X 2 [ton-4Wxx+to W +Wt +Wx)]dxdt+ I()-LI2 dxdt.
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Finally, we need to examine

Wxx +o wt + wx)] dx dt.

Integrating by parts we find that

IID n-2 2 2[oon-4W2xx "+" O0 (W + W )] dx dt

wwxn. + wn-Z(ww,n, + wwnx)] d$

I ID (C,O -4WxxWx + OO
-4 -2
WxxxW + (.0 WWt

n-2 n-2 n-2+ w wwtt + w, ww, + w ww) dx dt

<_c I (w -1- Wx q- Wt dr" W 2) dS

2 1 .- 2 1 .-2 t)w +c ,O w +c ,O w dx d

-t-cII((.on-6w2x-F.O. n-4w2) dx dt- to WWtt dx dt.

However,

n-6w2x dx dt

c9 n-6 ffD n-6 ff n-6eo ww,,n, ds o,, ww, dx dt oo ww,, dx dt
D

< W2 + WZx dS + 09 n-6W2 dx dt

+4c w n-4
Wxx n-8W2 dx dt.

Thus, (3.18) reduces to

(3.19)

I ID [(’On-4W2xx +Ca) q- dx dt--2( Wt2 2

<clr.(w:Z 2 z 2) i IID"F" Wx "- Wt -I- W dS +c o n--2 2w dx dt

+ClfDtO"-8w2dxdt--ffDtO n-2
WWtt dX dt.
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Finally, observe that

O0 WWtt dx dt

w w(w,,,,,,, [((u) ’(b)) + ((b) Lb)] dx dt

< z dxdt+ w (W2 2 2 2 2+ W + Wt + W + W) dx dt
2 cA

+C2ID n-4 2w dx dt + c I()-L[ dx dt.

Using this estimate in (3.19) and applying (3.19) to (3.17) then yields the desired result
when we take n

If we now let {u: Ilull=(.M}, we can prove uniqueness and stability for
problem P3.

As before we let , the solution to a related problem in the sense that

H() H ()

L2()+
Lz(E)

is small. Using the lemma, the following corollary follows from Theorem 3 by the same
argument as used earlier.

COROLLARY. If a solution u exists for P3, then it is unique and depends con-
tinuously on the data. In particular for u a solution of P3 and b defined above
we have

fro 4 2)]2} 1
2)(u Ft)z dx dt <-_ c M2e2x-’) +

[log (MZ/e log (MZ/e
forO<a<-l.

4. Extensions. In this section, we show how to extend the results of the previous
two sections to weakly coupled systems of equations. The treatment of systems will be
given explicitly for second order systems. The techniques and results for the two fourth
order problems are completely analogous.

We wish to consider systems of the form

Lku ak(x, t)Uk,xx + bk(t)Uk, Fk(x, t, Ul, ", UK, Ul,x, ", UK,x)
(4.1)

---(u,..., u,,)

(4.2) uk=g onE, k=l,.’.,K,

(4.3) Ore,_ hk on X, k 1,. , K,
On

inf,, k l, K,

where each ak is positive and bounded away from zero and each Fk is Lipschitz in its
last 2K arguments. We now extend our basic inequality to systems.

THEOREM 4. Suppose (Hi,"" ", UK) satisfies (4.1), (4.2) and (4.3) and suppose
bx,"’, Ck are functions with bounded second derivatives in 1 and bounded first
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derivatives in f U Z. Suppose further that there exists a [unction f satisfying

DD, ZZ, O<a </3-<_1,

[,=>c>O in l2,

(akfx), <------C < O, (akf3x), <--_--C < O, k=l,. .,Kin II.

Then, for all a, 0 < a <- 1 we have the estimate

(4.4)

, 3 Y (Uk Ck dx dt

<=C b(t)(ut,t-ctc,t)2 dx dt

+ c E [L,b, ,.’k(b/1, ’, Uk)] dx dt
,k=l

)2 2 -1+ c e ( 2(Uk )k q- (Uk,x )k,x) q" 1 (Uk,t- k,t)2) dS

provided h is sufficiently large.
Proof. The idea of the extension to systems is to begin the treatment of each

equation separately, then combine everything to essentially uncouple the equations.
More precisely, we set u -b efv for k 1,.. , k. Then form odd and even

groupings for each equations as in the proof of Theorem 1. We then form

a (LlceV)" (Lkov) dx dt
o,k=l

--2hf=<c e [(-(ux,""’, u:)-(x,"’’, Cg))

+ (5(u,. ., )-L)]) dx dt

c e-2 ((u & + (u. .x dx dt
k=l

k=l

Note that we have used the Lipschitz behavior of the in deriving this inequality.
Observe that we now have the same inequality we would obtain by treating k

uncoupled equations (with the exception of the last term which is a data term). The
remainder of the proof proceeds as though we were treating k separate equations.

Uniqueness and continuous dependence on the data are also derived by essentially
summing the results for one equation.

CoaOAa. Let ={(u,..., u): lull[(mNM}. Suppose there exists
(u ,. , u) which satisfies (4.1)- (4.3). Then (u,..., u) is unique. Further-
more, i we substitute or (, ) in (4.4), the unctions (, ) which solve a
related problem, i.e., that

2 2
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is small, then we have

lid
K

]2 {M2 2{1-)E lUk--lk dxdt<--c e +

for O<a _<- 1.

4M2 ] 1
[log (M2/82)]2 log (M2/82)

5. Examples and comments. Now that we have derived conditions on a function

f which allow us to prove uniqueness and continuous dependence on the data estimates,
it is beneficial to exhibit an f satisfying these conditions.

If we restrict our attention in (1.1) to constant coefficient case, then the conditions
in Theorem 2 reduce to f(x)=f(x)+f2(t), where f =>c >0 and f-<-c <0. For any
point (Xo, to) e Yt 2/f/near and any ’, ’2, st3 > 0, if we let

f(X, t) g"l(t to)2 + st2 In [sr3(x -x0)]

then f clearly satisfies the above conditions. The level surfaces of this function are
illustrated in Fig. 1.

FIG.

This work raises two questions. The first concerns whether the results contained
here can be extended to multiple space dimensions. For the second order case the
answer is affirmative.

These results will be expostulated in Part II [8]. Our technique appears insufficient
to answer this question for the generalization of problems P2 and P3 to multiple
dimensions.

The second question concerns the continuous dependence estimate. It is well
known (cf. [4]) that for the 1-d heat equation with a somewhat more restrictive
stabilizing class, a stronger H61der continuous dependence holds. The use of a weighted
energy technique usually forces one to accept logarithmic continuous dependence on
the data. Thus, one may well ask for what class of equations does a stronger continuous
dependence result hold. As yet, no progress has been achieved on this front either.

Acknowledgment. The author would like to thank Professor L. E. Payne for many
valuable discussions during the course of this research.
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THE NONCHARACTERISTIC CAUCHY PROBLEM FOR A CLASS OF
EQUATIONS WITH TIME DEPENDENCE

II. MULTIDIMENSIONAL PROBLEMS*

JOHN B. BELL

Abstract. The noncharacteristic Cauchy problem is treated for a class of equations which are second
order in space and first order in time. The spatial part of the operator considered is multidimensional. A
weighted energy technique is used to prove uniqueness and continuous dependence on the data within a
restricted class of functions. The results are then generalized to treat systems. The technique is also applied
to the noncharacteristic Cauchy problem for the time-dependent Navier-Stokes equations. Uniqueness and
continuous dependence on the data within a restricted class of functions are again shown to hold.

1. Introduction. In [1] we treated the noncharacteristic Cauchy problem for some
operators in one space dimension. In this work we present the generalization of the
results for operators which are spatially second order elliptic in several space
dimensions.

The situation in multiple dimensions is much more complex. The straightforward
generalization of the weighted energy technique used in [1] leads to essentially
contradictory conditions on the function f defining the surfaces used in the analysis.
To surmount this difficulty it is necessary to distinguish one of the spatial variables.
More precisely, we will only consider functions f which depend on one space variable
and time.

Needless to say, in this framework Cartesian coordinates yield satisfying results
only in cases with unusual problem geometries. We must, therefore, introduce other
coordinate systems to obtain meaningful results.

The type of system we need is a generalized polar coordinate system where
Wl," , wn-1 denote the coordinates on a surface and : denotes the coordinate which
is orthogonal to the surface. In our new coordinate system, the Laplace operator takes
the form

02bl -ii OU

where , ii, and Ki depend, in general, on , w,..., w,_. Furthermore, the
ellipticity of the Laplacian at each point is equivalent to the conditions

fi c > 0 and tlij Cii

for arbitrary (n 1)-vectors (Pl, ’, Pn-1).
Motivated by these considerations, we will study the noncharacteristic Cauchy

problem for the more general equation

(1.1) Lu=-pu,ee+y u,ii+bu,t--F(t, , o91, tOn_lU, U,, u,1. U,n_X)-c;(u),

* Received by the editors February 1, 1980, and in revised form December 16, 1980. This work was
supported by a National Science Foundation Graduate Research Fellowship and the NSWC IR Fund.

Naval Surface Weapons Center-R44, White Oak, Maryland 20910.
Summation convention is used throughout, and a comma is used to denote differentiation. In a

(, o,..., wn_l)-coordinate system summation is from to n 1. In Cartesian coordinates, summation is
from to n. In other cases the limits of the summation are clear from the context. When an explicit summation
symbol is present, the summation convention does not apply. Note that for notational convenience
v,=-(ov/o).
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where p and the y,1 depend on :, tol," ", ton--l, and and b depend on t. In addition,
we require that p, y’1 and b be bounded and have bounded derivatives, and that the
following technical conditions be satisfied:

p ->c >0,

and ,ytll]iUi CPil/i, (b’l," Pn-1)n-1
and

IF(t, , tox, tOn-l, U
2 2

P 1," ", Pn)-F(t, , tOa, tOn-a, u , u,)l
C(lU 2[ 2 2

It should be emphasized that although p and the y’ were motivated by the expression
for the Laplacian in alternate coordinate systems, we do not intend that they be
interpreted solely as arising from the metrical coefficients of some coordinate system.
Rather, the theory is intended to fit any equation which can be transformed to the form
of (1.1).

We are now ready to pose the noncharacteristic Cauchy problem for (1.1). We let
D, be a domain in /n+l and Y_, c Of. We require that ,g be closed and nowhere
characteristic. The second condition is equivalent to saying that the spatial components
of the normal to never vanish simultaneously at any point of . The first condition
guarantees that does not degenerate at its boundary. We may now pose the problem2

ii
Ou,ee + 3’ u,gi + bu, -(u) in

P1 u=g onE,
O__u h on X,
On

iiwhere p, y b and F satisfy the properties specified earlier.
As in 1 ], a weighted energy technique is used to prove uniqueness and logarithmic

continuous dependence on the data within a restricted class of functions. As before,
the method involves the use of the level sets of a function f. Hence, we introduce, for
a function f(t, ),

D,--{(, tO1,’’’, tOn-l, t)" f(t,

It is also assumed that
In 3 we indicate how to extend the uniqueness and continuous dependence

results to systems of equations which are coupled in their lower order derivative terms.
The above ideas are modified to treat the noncharacteristic Cauchy problem for the
time-dependent Navier-Stokes equations in 4. In the final section we exhibit a
suitable coordinate system and function f satisfying the hypotheses of the theorem.

2. Problem 1. The theorem which follows shows that under certain conditions on
the coordinate system, the function f and an auxiliary weighting function, it is possible
to bound certain integrals over D in terms of available data. We will then use this
bound to deduce uniqueness and continuous dependence on the data for problem P1.
Thus we prove the following estimate.

The arguments of all functions are suppressed throughout the remainder of this section.
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THEOREM 1. Suppose u satisfies (1.1) in 12. Let O be any function with bounded
second derivatives in 2 and bounded first derivatives in 12 E. Suppose also that there
exists a function f(t, ) and a function o-(t, , col,." w,_) which satisfy"

1) DD,ZE, 0<aI,
2) Lc >0 in D1,
3) (2p2f3,), --C < O, (2p2L), --C < 0 in Da,
4) (2pf,Tii), is positive semidefinite in D1,

2 ij5) ( f,py ),i=O in D,
6) (2bTii), 0 in D1,
7) (2p), c > 0 in D.

Then, for all a (0, 1], we have the estimate

3IID (u-)2 dmd

c f f_ a(u,i-&,i)(u,i-&,i)+(u,,-&,,)2 dmdt

(2.1)
+c e2a [ (A2(u-)2+(u,e-&,e)2+(u,i-,i)(u,i-,i)+A-(u,,-&,,)2) dS

+ca -1/2 e2 f f_ (&)-LO{2 dm dt

for X sufficiently large.
Proof. We let u -& efv. Substituting for u in (1.1) and multiplying through by

yields

e-e[(y(u) ()) + (() L)]

(2.2)

where fi crp, y,1 ry and/ o’b. We now define odd and even parts of the operator
as

Lev [X 2f2, + O(a)]v + o,e + T u,i], Lov 2afif,ev,e + b,,.

We now form the inequality

I fD {Lv x Lv +(Lv)2-A /2(Lv +Lv)v} dm dt

I/e-[((u) ()) +(() L)]v} dm dr.

We now expand the first term on the left of (2.2) and integrate the result by parts. Thus,

I{Lv xLov} dm dt

-ff [2a "2 IID Pbf’e+O(a)]vv’dmdtP I ,e + O(a 2)]vv,e dm dt + [a 2 2

+ID 2a2f’ev’eev’edmdt + ff 2, .ii
eY v,iv,e dm dt



(2.3)

NONCHARACTERISTIC CAUCHY PROBLEM II. MULTIDIMENSIONS 781

"+" I ID fiv,v,t dm dt + I ID "iil),ii,t dm dt

, + 0( Z)]nv dS- [A 3(2f3,), + O( Z)]V2 dm dt
D

+ f,v2n dS 0(2)v2 dm dt + A2f,v,,n dS

dm dt + 2 Af,y v,v,ni dS
D

Af,y v,iv,in dS 2 A (f,y),iv,iv, dm dt
D

,ni dS(),v,v,, dm dt + (b ),,v , dm dt + iiv,iv,
D

y bv,iv,in, dS- (ii),iv,iv,,dm dt+ (sii),tv,iv,idm dt.

The third term on the left o (2.2) can also be expanded and integrated by parts yielding

, + O(A)]v dm dt- v , dm dt

(2.4)
y v,v, dm dt + [Af,n + O(1)]v 2 dS

O

+ v,vn dS + y v,ionidS

Substituting (2.3) and (2.4) into (2.2) and using the Lipschitz properties o , we
find that

o o [2f’n + O(-l/Z)]v2’ dSa [f,n + O(a-)]v aS+D=

(2.5)
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q_/ 1/2 [ "+" 0(1 1/2)]l),iV,i dm dt (by),jlA, i),t dm dt

<= I Io (e)’ev’ev" dm dt 1/2(2af,ev,, + ev,t): dm dt

+chl/2II e-2’l()-L12dmd,.

Applying assumptions 2)-6) to the volume terms on the left side of the inequality, we
find that they are all greater than or equal to zero for , sufficiently large. Thus, (2.5)
becomes

A t [f,n+O(A-I/2)]v2a [,ene + O(-)]v dS+ ,edS

=< C { O,iO,ilVf] -1 dS + fO 2(t)2’t [Vf1-1 dS
(.

+I /e-f(()-L) dmdt

We now claim that assumption 7) implies that

[(b),ev,ev,t 5(21[,ev,e + v,t)] dm dt N O,

provided I is suciently large. To see this, observe that

< (’e
(a,ev,e + v,,,(),ev,ev,

4,

since by 7) (),e c > 0 and the denominator is, by definition, positive. Hence, we
may conclude that

(),ev,ev, (,ev,e + v, ) < (’
1 (a,ev,e + bv,,) 0

for I large.
Therefore, we may conclude from (2.6) that for I suciently large

s 11- dS

dS + c ( + Iv,e + Iv,v, + v,) dS
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Substituting e-Xr(u c) v then yields

_-< c [_ (h (u b),i(u b),i + b2(g,t- b,t)2)[Vf]-1 dS

+ce2x’ [_ (h3(u-)z+h(u,e-,t)2+h(u-dp),i(u-),i+(u,t-,t)2) dS

+ [ f_
Integrating with respect to a gives

h3 f lD (u-ck)Z dmdt

+ c e I (u b) + (u,e b,e) + (u b) (u b) + )2 d$

+A-’/:z ezx ff_ IL I()l2 dmd,

for A sufficiently large.
We are now almost ready to use the estimate of the theorem to prove uniqueness

and continuous dependence on the data. First, however, we prove a lemma bounding

IIo [h (u -b)’i(u-b)’i + b2(u’t-qb’t)Z] dm dt

in terms of Ilu- and data terms.
LEMMA. (The lemma is stated and proven in Cartesian coordinates.) Suppose u

satisfies

( Ou Ou)Lu a,(t, x, x)u,q + b(t)u,t F t, x, ., x, u,, (u)
OXl OXn

in 1 where aqvvg >-cvv for all v, v, at each point of Ft and agi ai and b is a

function as defined earlier. In addition we assume the a and b are bounded and possess
bounded derivatives in . F is assumed to be Lipschitz in its last n + 1 arguments. Then,

f[ (b(t)(u,- b,t) + (u b),g(u b),) dm dt

+c IIo(u-d)2 dmdt+ IIo[Lc-(c)12 dmdt},
where D c f such thatD f3 f D and

CProof. Let w be a cutoff function such that w--- 1 on D and o 0 on I\D.
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Using the equation and integrating by parts we have, substituting w u- 4,,

(2.7)

To complete the proof we must show how to estimate the gradient of w in terms of w
plus data terms. We again make use of the equation and the ellipticity of aii 02/Oxi Oxi
to obtain

(2.8)
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<-__ C (to2aqww,ni + to (t)w2nt) dS +- to w, iw, dm dt
D

+c IIow: dm dt+c IIo (l(u)-(&)12 + I(b)-Lbl2)dm dt.

Combining (2.8) with (2.7) and using the Lipschitz behavior of completes the proof
of the lemma.

Let ={u: [lullc(aNM}. Using the lemma, we now obtain uniqueness and
continuous dependence on the data within as a corollary of the theorem by letting

ff which satisfies a problem close to P1 in the sense that
2

L2(X)

is small. In this situation we have the corollary"
COROLLARY. If there exists a coordinate system, a function f, and a function

satisfying 1)-7) of the previous theorem for a (0, 1] then, if P1 has a solution, it is
unique and depends continuously on the data in D1 within the class. In particular, for
u, as described above we have

lID { 2(1-)M2a
(M2/e 2)2M2} log (M2/el 2), 0 < a 1.(u if)2 dm dt c e +log

Proof. By use of the lemma, in the above situation the estimate in the theorem
becomes

For uniqueness, e =0, so let I. For continuous dependence, setting I
log (M/e) yields the desired result.

3. Syse. In this section, we will extend the results of the previous section to
systems of equations which are coupled in their lower order derivative terms. More
precisely, we wish to consider systems of the form

P2

OkUk,41 2c" Llk, ij d- bkUk, i;k U 1, LIK

Uk gk

OUk

in fl for k 1,. , K,

on Zfor k 1,. ,K,

on X for k 1,... ,g,

where

C;k(Ul, blk) fk(t to1,"" ", ton-l, Ul, ", UK, Ul,tj, ",

U1,1 UK,n-1) for k 1,...,K

for functions Fk which are each Lipschitz in their lastK (n + 1) arguments. The following
analogue of Theorem 1 then holds:

THEOREM 2. Let ul, , u: solve P2 and let 1, , qbx beKfunctions possessing
bounded second order derivatives in II and bounded first order derivatives in f E.
Suppose further that there exists a function f and functions trl, try: satisfying 1)-7)
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of Theorem 1 ]:or each k. Then, for all a (0, 1 we have the estimate

h3f[ (U--)(U--k)dxdt
dl

<-_c [,(u,i-,i)(u,i-,)+.Y b(t)(u,t-,t)]dmdt

+ c e" [_ Ix (u )(u )+ (u,e 6,e)(u,e

+ (u,i- ,i)(u,i- ,i) + a-l(u,t- ,t)(u,,- ,)]
provided A is suciently large.

Pro@ The proof is essentially a summation of the proof of Theorem 1. For each
k we set u + eXfv and expand each equation as done before. We then define
(without summation convention)

and

where

Lgov 2hf,ev.e + bk(t)Vk.t,

We now form

fi or,2 yo’ and /(t)= b(t)r.

E (LkeVk XLkoVk)-1-1/2 E (LgoVk -1/2 E (LkeVk +LkoVk)Vk dm dt
k=l k=l k=l

After applying the Lipschitz property of 1, , : we have essentially decoupled the
system. If we now expand term by term the result follows from the same argument as
was used in the proof of Theorem 1.

Proceeding analogously to the one-equation case, we can now prove uniqueness
and continuous dependence on the data for problem P2. In particular, let

We now wish to replace (1,. , :) by the solution (t, , tr) to a problem close
to P2 in the sense that

is small. We then have the following result"
COROLLARY. The solution to problem P2, if it exists, is unique and depends

continuously on the data within the classAt. In particular, if (u,. ., uK), (t,. , t:) s
l are as described above and there exists a function fandfunctions try, .., try: satisfying
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the hypotheses of Theorem 2, then

IIO (Llk lk)(Uk tk) dmdt<c{M2 2(1-tx) 2M2(M2/e2)} 10g
1

e +log (M21e2).

for 0<a <_- 1.

4. Navier-Stokes equations. In this section we wish to consider the noncharac-
teristic Cauchy problem for the time-dependent Navier-Stokes equations

(4.1) us.t + ujus.j
P,s

_
F +- Aug, 1, 2, 3,

O O

(4.2) ui.i O.

More precisely, we wish to study the stability properties of (4.1) and (4.2) with
data given only on E. However, the question remains as to what data is required to

pose the problem. The answer comes from "Cauchy Kovalevsky" type arguments; i.e.,
we wish to pose data which would allow us to formally resolve the power series of the

us if everything were analytic.
It should be recalled that for the initial boundary value problem, because of special

orthogonality conditions one does not specify any boundary condition for the pressure
(cf. [3]). However, since this orthogonality condition cannot be applied to the non-
characteristic Cauchy problem, one would not expect specifying us and Ous/On for 1,
2, 3 to be sufficient to resolve the problem. This is indeed the case, for we find that we
cannot resolve

(4.3) uu,,. -P,s,

where s represents a tangential direction on Y,, and n the normal to Y,,. (Note also that
the divergence condition imposes a compatibility relation on our boundary data.) We
will circumvent (4.3) by assuming that the pressure gradient is available on E. Thus,
we pose the problem P3,

-+ ujus. txAui-P’--J+F in 11, 1, 2, 3,
P

us.i 0 in

P3 us gs on ,E, 1, 2, 3,

-n=hi onE, i=1,2,3,

p,=Os onE, i=1,2,3,

where/x u/O and 0 are constants as defined before. In posing the data for P3 we have
simply used boundary data which are convenient for the analysis; other choices are
possible. (In fact, the normal derivative of both the pressure and the normal velocity
component can be expressed in terms of the other available data; but this does not
affect our analysis.) Two other possibilities.merit consideration. We can resolve all of
the data required from the velocity field and the first and second normal derivatives of
the tangential velocity components. From a more physical perspective, the required
data can also be determined from the surface tractions

(u.i + uj.)ni + pns on .
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In addition to the fully nonlinear equations, we also wish to examine the equations
in their linearized form. Aside from interest for its own sake, we will treat the nonlinear
equations simply by restricting our consideration to a class of functions in which the
nonlinearity can be treated as a Lipschitz function. We will then discuss the effect of
the nonlinearity on our stability results. Rather than linearize about a constant velocity
field, we will use any divergence free, C velocity field. Thus, we are led to the linearized
version of P3; viz.,

P4

-0--+ Ufi,+ i.U,. xAa-P’--!+/ in
0

a, 0 in ,
a on Z,

=i onE,

p, on Z,

where./i represents ui linearized about Ui and the boundary data and forcing terms
have been suitably modified.

As was the case in 2-3, to obtain meaningful results we need to use a coordinate
system other than the usual Cartesian system. However, in this case we will restrict our
consideration to a triply orthogonal coordinate system defined by the variables :, 0)1

and 092 with metrical coefficients y, yl and ’Y2. We will assume that y, 71 and y2 are
bounded, bounded away from zero and possess bounded derivatives.

If we let we, w and w2 represent the velocity components in our new coordinate
direction, the equations of motion become

(4.4) --Wk, 3r" Wk, nt- Wk,11 .t.__. Wk,22 Gk --Fk P,k, k 0)1, 0)2,

where Fe, F,, and F,, are the components of the external force. Ge, G1 and G2 contain
the remaining terms of the equation. Nash and Patel [5] contains the exact form of
these functions. For our purposes the exact form of these equations is not important;
their behavior is sufficiently characterized by

4’, w 1 W2 W, W,,I W2,2)

(4.5)
2-Gk(t, j, 0)10)2, w, w, w,. ., w2,2)1

2-< c(max (Iw l, Iwll, Iw l)/max (Iw l, Iw l, Iw=[))
2 2(Iw w l+lwl w l+ w2,21) fork ,0) ,0)2.1

The linearized equations for ve, 1 and #2 also takes the form of (4.4) with right-hand
side functions Fe, F,ol, F,,2, Ge, G1 and G2. The difference between the two cases is that Ge,
GI and G2 are actually Lipschitz functions (the Lipschitz constants depending, of course,
on the velocity field U).

Having established the framework of the problem, we now prove an a priori type
inequality which will be used to treat the pressure term in the equation.
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Using the previously defined triply orthogonal coordinate system in 3, we define
for , a function only of , and D a domain in 3,

d ={(:, w, w2): f()<-a}fqD, s =Od fqD, r =Od,, CLOD.

We then have the lemma:
LEMMA. Suppose there exists a ]’unction f() and a cr(:, Wl, w2) > 0 satisfying

1) d,,cd, O<-_a<<-_A

2) f,-> c > 0, f,e<=-c<O

in dA,

in da,

in dA,

Then, for any function p,

f fd ( 2q2 + q2, + q2, + q2,2 dm

IId e-2xr
e -2Aa p2< C , (Ap)2 dm + c ,1 +p2,2) ds

+ C [ (A 2p2 + p2, +pZ, + P2,2) ds,

for all sufficiently large where q erp.
Proof. The lemma is, essentially, an abortive proof of stability for the Cauchy

problem for the Laplace equation using the technique of the previous sections. In the
(, w, wz)-coordinate system

1 02 1 02 1 02 0 0
+++n +n +n2;

so, letting q eafp, we find that q satisfies an equation of the form

9e[(a f,e + O(a))q + 2aLeq,e + q,ee] + 9q,1 +
(4.6)

where

o" e-Xr(Ap -Af,eneq neq,e- nlq,1- n2q,2)

=, =-, %=-.
Y5 T1 T2

We now multiply (4.6) by (q, + 1/2f-l,d’,q) and integrate over d to obtain

Ifd
2

+ %q,:q,+(,,+ o(-))q +,qq,

q, q +- f,t
q,22q dm
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(4.7)

q- " (q q- q2,2) dm.

Integrating by parts and regrouping terms we find

-f [f,ef,ee + O(a-1)]q 2 dm+ a’e[f,e+O(A-)]q2,edm

--ffdo‘T [- f---
q" 0(/-1 ,1 dm-fLo‘ T/f-- nt- 0(> ,2 dm

(4.8)

+IL (1’q2 [/’+O(a )] nedS+a 9eq ,enedS,1 q- "2,fq2,2) dm + , 2 -i q2 2

do, do,

"+" ’2q2,2)n dS
do,

I L 2 e-2)tf
_--<c tr

A
(Ap)2 dm.

Applying the assumptions for f and r we see that the volume terms in (4.8) are greater
than

C(IId(A2q2+q2, 2, q2+q + ,2) dm

for A sufficiently large. Similarly, the sum of the boundary terms can be bounded above
by

__C fs (q2,1+q2,2) dS c[fr A2q2 dS+ fr (q2, +q2,1 + q2,2) dS]
for large A. Combining these results we find that for A large

fL (’ 2q2 + q2,: + q2,1 + q2,2) dm

dS + c ls (q2,1+ q2,2) dS + c l (A2q2+q2 2,,f+q l+q2,2) dS.
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Substituting back for p yields

f lct (A 2q2 + q2" + q2’l + q2’2) dm

=< c A (Ap dS + c e (p2 -}" ,2) dS

+ c (Ip+P,e +P, +Pa,) dS
F

for suciently large I.
We are now ready to prove the analogue of Theorem 2 for the fluid flow equations.

We will treat the linearized version of the equation first, then indicate the modification
required to treat the ull nonlinear equations.
TuOM 3. Suppose (a, , a3, ) satisfies P4. Let (, ,,p) be unc-

tions such that each andp possess bounded second order derivatives in and bounded
first order derivatives in U and such that

is bounded in . Suppose further that there ex&ts a function f(t, ) and a (t,
satisfying

1) DD, EE, O<a<l,

2) Lc>O, fi-c<O in ,
,e=-c<O , ,e <-c<O in,3) f <

4) ,e0, i=i, 2 inO,

5) ((,=0, i=1,2 in,- /

for the triply orthogonal coordinate system defined earlier in this section. Then, for all
0<al,

A3 II (Oi-,i)(i-i) dmdt

CD
[(],i--],i)(],i--],i)(i,t--i,t)(i,t--i,t)

+ (,-p6,)(,-p6.)] dm dt

+ c e [_ [(ai- )(ai-)+ (a,- ,)(a,i-,)

c e [ (p,-p.i)(,-p.)+ dS

for all A sufficiently large.
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Proof. We will prove the estimate using the transformed form of the equation
given by (4.4). To denote the transform of 1, 2 and 3 we will use , &,l and ,,2.
Furthermore, F, F and F will denote the transformed equivalents of the F,.

-xfWe now let Vk-.Al:(l’k--;k) for k- :, 0)1, 092 and q-e (p-p). Subst’tuting
into (4.4) we obtain

O’/)k -1- [A 2 2 -1Ye(f ,e + O(a ))Vk + 2a’ef,ev,,e + "ev,,ee + ’iv,, + "2Vk,2]

e-AZtr[c(w, wo,,, wo,2)- Ck(6t, 6, 6o)-- (Pk
(4.9)

-t" tr
8kh’qf- q,k, k , o)1o)2

where 3e tr/y, 331 /g and 2 g/y. Also, 8e denotes the Kronecker 8 which is
1 if k and zero otherwise. We now group terms as odd or even and define the
operators

Lkev=[A2(f2,+O(A-))Vk +Vk,+1Vk,1+2Vk,22, k=,w,m2
and

LkoVk --Vk.t + 2Af,Vk.e, k , w, w2.
Next, we form

L 1/2E (LkVk N tkeVg) + ( koVk)2 A Z (tkeVk + LgoVk)Vk
k ,,2 k ,,2 k #,ma,2

2

c E ce-2r2(k(We, w,, w)-- k(O ,, ))+
4.1o) c e-%lP -FI

}q -tr Vk

Note that the left-hand side of (4.10) is exactly the same as the left-hand side of the
inequality used to prove Theorem 2. In fact, after integrating over D we find that the
only term on the right-hand side which causes problems is

(4.11) c f f_ (A2q2q-q2, q-q2,1 q-q2,2)dmdt.

To treat this term observe that, for fixed t, f(, t) by the above assumptions satisfies the
hypotheses of the lemma. Computing A(p -p,) by taking the divergence of the system
treated as a single vector equation, we note that for A sufficiently large we may bound
(4.11) by

cff_ , (v + v -(+ v o, + A v,e + v o,,e +" + v ,o,,o dm dt

+c e-2x f (p2, +p2,.,_p2,,.,,_p2,,.,,)iVfl-, dS

+c [._ A2(p-p4,)Z+(p,e-p,,e)2+(p,.,-p,,.,)2+(p,.,._-p4,,.,)2 dS

k ,to x,to2
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Proceeding as in the proof of Theorem 2, and returning to our original variables,
we obtain

,3 f fD (fii-i)(ui-bi) dmdt

f f... A(i,i--ti,i)(j,i--t],i)+(ai,t--ti,t)(li,t--ti,t) q-(p,i--p4,,i)(P,i--p,b,i) dm dt<-c

+ CA - e2x f_ A 3(/i_ ti)(a i) qbj.i )( aj.i ],i)

-[- (i,t ()i,t)(i,t i,t) dS

+ cA- eX’ I. [A (p -pc,) + (p -Pe,),i(P --P4,),i] dS

+ cA-2 e2X I I (Pk.k -F6k,k)2 dm dt.
o,k=l

Finally, since p is only determined up to a constant at each time level, by appropriately
selecting the constants we can bound A 2(p_p)2 dS by c (ff-p),i(ff-p6),i dS
which yields the desired result.

We can now apply the estimate to prove uniqueness and continuous dependence
on the data for problem P4. Let3

{ (tl, 2, 3)" ff (i.tti, + ,,i,,i) dm dt<=M2}.
We establish the following corollary to Theorem 3:

COROLLARY. Given a triply orthogonal coordinate system , to1 and to2, suppose
there existfunctionsfand cr satisfying conditions 1)-6) of Theorem 3 for 0< a _-< 1. Then,
if there is a flow solution to P4 it is unique and depends continuously on the data in DI
within the class [. In particular, /f (t, t2, t3)s with associated pressure solves
a problem close to P4 in the sense that

i=1
+I[P,i - 2 2]’i -nll L2(X) L2(O)

is small, then

f ID (i--li)(i--)dmdt<=c(M2eZ(a-)+ 12M2
2) log(M2/e2)log (M2/e

Proof. Substituting t, t2, t3 and/ for b, b2, b3 and p, in Theorem 3, we see
that we need only bound Io (P,i-,i)( -’,i) dm dt in terms ofM and data terms. Let
to be a C cutoff fu’nction which is one onD and identically zero outside a subdomain
D of l’l, satisfying (/ f-) fl) D and 0D f’) 01l

_
,v_,. Then, denoting/ =/ p’, t =/i --/i,

Note that we have chosen to eliminate information about the pressure from our stabilization class. If
pressure information is available, less restrictive conditions on the velocity field can be used.
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and Fi Fi Fe,, yields

fro ’i’i dm dt <-- I Io c2’i’i dm dt

IIDto2p,i(pld, Ali-oUl.ti,j-ptj]’i,j-pti,t-"i) dm dt

2

N P,iP, dm dt + c a],ij,i + aii @ i,ti,t dmdt

+ to p,ipl Ati dm dt + c FiFi dm dt.

Now observe that

,iAli ,i(li,]- l],i),].
Thus,

to P,iP Ati dm dt

2,
to p,iptz (ui.j u.i), dm dt

P,O (a, u,)n dS ,N,O(a, u,) dm dt
D

2

N p,p, dS + ,fi, dS + -,, dm dt + c ,, dm dr.

Using the resultant estimate for I,, dm dt we find that

uu dm dt

(4.12) N c (lu,u, + u,u,) dm dt + c e ( uiu + u,u, + u,tu,) dS

+ce2XI:x,i,idS+CIIDiidmdt.
The estimate of the theorem now becomes

(4.13) IID itidmdt<cA-2M2+A - 2 2x

Uniqueness follows by letting A --> oo since e 0. The continuous dependence result
follows by letting A 1/2 log (M2/e) in (4.13)

We are now ready to extend the results for problem P4 to the full nonlinear case.
We will handle the nonlinearity by initially restricting consideration to a class of
functions in which we can deduce a linear bound on the nonlinear functions. Thus, we
let {(u, u2, U3): [ui.l2 m at each point of }. Within this class all of our functions
are Lipschitz. The analogue of Theorem 3 can now be shown with no alteration in the
proof.

TEOREM 4. Suppose (u, u2, u3, p) where (u, u2, u3)s satisfies P3. Let
(&l, 2, &3, P) be functions such that each i and p possess bounded second order
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derivatives in f and bounded first order derivatives in and such that

P6’iI(i, -[" )](i,.i A( "4-
/

F6

is bounded in . Suppose further that there exist a function f(t, ) and a (t, , 1, )
satisfying 1)-6) of Theorem 3 for the triply orthogonal coordinate system described earlier.
Then, for 0 < a 1,

A 3 f lD (ui i)(ui i) dm dt

c f (ui,]- i,])(i,]- i,]) + (i,t- i,t)(i,t- i,t) + (P,i-P,i)(P,i-P,i)] dm dt

c e2A [A 2(u/- i)(i- i) + (i,] i,])(ui,j- i,j) + A-l(ui,t- i,t)(ui,t- i,t)]+ dS

+ce2ha fA(P,i-P6.i)(P,i-P6,i) dS+ce2xD (fi-f6i)(fi-f6i) dm dt,

provided h ho(1 + m) where ho is a computable constant which depends on the problem
coefficients, the geometry and coordinate system with its associated f and

The following corollary examines the effect of the condition h ho(1 + m) on the
uniqueness and stability results. Let . We then have"

COROLLARY. Suppose there exist a function f and satisfying the assumption of
Theorem 4 for all a (0, 1]. Then g there is a flow field solution to problem P3, it is
unique and depends continuously on the data in D within the class . In particular,
suppose (1, 2, 3,) satisfies a problem which is close to P3 in the sense that

2 2 2e Ilgi i hi
OnllL2()

L2(X)+ +1 6,- ,ill +11 -
i=1

2 2o(1+m)satisfies M2 e e where o is a computable constant. Then

(ui ai)(ui ai) dm dt N c Mea(-+log
Pro@ The proof is essentially identical to the proof of the corollary to Theorem

3. The condition

2 2o(l+m)MNe e

results from requiring I =log (M/e for continuous dependence while simul-
taneously requiring I to be suciently large to be used to dominate m.

The effect of the nonlinearity is thus seen to create a relationship between the data
and the stabilization class. In particular, the estimate sets an explicit requirement qn
the size af the boundary data for two related problems in terms of the stabilization
hypothesis. We must in addition restrict our consideration from H functions to W1"

functions.
Finally, it should be remarked that conditions 1)-6) of Theorems 3 and 4 are simply

the restriction of the conditions of Theorem 1 to the representation of the Laplacian
in a triply orthogonal coordinate system. Thus, the example of the next section will
satisfy the conditions of the theorems in this section.
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5. Examples of surfaces. In this section we will exhibit a coordinate system and
functions f and tr satisfying the hypotheses of Theorem 1. For our,discussion we will
initially restrict ourselves to equations of the form

(5.1) a(t)Au + b(t)ut F t, Xl, , x, u, Oxa’
The first step in treating multidimensional problems is to introduce a generalized polar
coordinate system :, 001," ’, 00,-1. To introduce our new coordinate system we must
first locate our axes in a convenient place. This will be done by moving the origin in
the (t 0)-plane until the t-axis is near E but never intersects O.. Fig. 1 is an illustration
of what is intended here.

FIG.

We next transform to polar coordinates, where (5.1) becomes

a(t) lg,rr -["V m)u "Jr" b(t)u,t G t, r, 001," (.Dn-lbl, (9091’ ’0

where A is the Laplacian on an (n 1)-dimensional sphere. We now transform again,
letting log r. We then get

Ou Ou )a(t)[e-2eu,ee + e-2eA.,u]+ b(t)u,t H t, , 001," ", 00,-1, u, u,e,, ,
0001 000n-1)

If we now require f, >_- c > O, o- e2#f,- 1/2, the conditions of Theorem 1 reduce to

f, _-<-c < 0,

since y 0 if j, "}/ii, 0 and, ,)/ij e-2iJ where ’}/,-iJ 0 so that a (t)cr2 e-2f, e-ZiJ
is independent of :. The conditions on f are now just the one-dimensional condition
used in [1]. Therefore, for all r, st2, ’3 0,

f(, t) ’l(t- t0)2 + ’2 log (sr3 + :)

satisfies the conditions of Theorem 1.
Finally we note that in (5.1) we may replace a(t)Au by a smoothly varying, time

dependent elliptic operator. The technique is simply to change the independent
variable diagonalizing the spatial operator as was done in Protter and Weinberger [6]
for a constant coefficient operator. Since the problem here is assumed smoothly varying
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in time, we can perform their change of variable at each constant time level smoothly
in time. Thus, we can explicitly exhibit surfaces for the equation

aii(t)u,ii + b(t)u,, F(x, t, u, u,a, u,,).

In conclusion, it should be remarked that we have raised some difficult questions
here because of the use of the weighted energy technique: Namely, is there a class of
equation for which we can prove a sharper H61der continuous dependence on the data.
The answer to this question remains unknown except in cases with special symmetries
which render them essentially one-dimensional.

Acknowledgment. The author would like to thank Professor Larry Payne for
many valuable conversations during the course of this research.
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A CONTINUUM LIMIT OF MATRIX INVERSE PROBLEMS*

P. DEIFT" AND E. TRUBOWITZ

Abstract. In this paper the authors consider the Lanczos algorithm for periodic Jacobi-matrix inverse
problems. In the usual form this algorithm does not have a continuum limit, but by mixing periodic and
antiperiodic spectra and introducing a set of weights, the authors show that the modified Lanczos scheme
does indeed have a continuum limit. Moreover, this limit is precisely the inverse scheme for the Schr6dinger
equation which was introduced by the authors in [Comm. Pure Appl. Math., 32 (1979), pp. 121-151].

1. Introduction. In the past few years much work has been done on the inverse
spectral theory of ordinary differential operators, and many unexpected connections
have been discovered with integrable Hamiltonian systems, Riemann surfaces and the
representation theory of Lie groups. At the same time the inverse spectral problem for
difference operators (equivalently, band matrices) has been studied and similar connec-
tions have been found. However, the exact relationship between the discrete and
continuous inverse spectral theories has not been fully understood, and clearly it is of
theoretical and computational interest to make the relationship precise.

Case and Kac [1973] and Case [1973] discretized the Gel’fand-Levitan inverse
method for second order ordinary differential operators, but they found that the
corresponding discrete operator is not the usual centered second difference approxima-
tion. In the other direction, Boley and Golub [1977], [1978] refined and generalized
the Lanczos computational inverse scheme for periodic Jacobi matrices (i.e., centered
second difference operators), but their algorithm has no immediate continuous
analogue. The purpose of this paper is to show that by supplying suitable weights, the
Lanczos algorithm for periodic Jacobi matrices does indeed have a continuum limit.

Let q(x) be a real smooth function of period 1 and let Ln,p (n -> 1) be the periodic
difference operator on R defined by

[-n:y(n)+2ny(1)-n y(2)]+q y(1), l= 1,

(Lpy)(l)= [_n2y(l_l)+2n2y(l)_n2y(l+l)]+q()y(l), l</<n,

[-n2y(n-1)+2n2y(n)-ny(1)]+q(1)y(n), l=n.

Let /P,1 </P,2 AP,3 <- < Ap, be the spectrum of Lp and gl," gn an associated
orthogonal frame of eigenfunctions normalized by 1/n Eln=l g(/)= 1. Now, by the
spectral theorem for matrices, we have

LP (-n gj

0
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and, in particular

q =-2n2+ ,p,kg,(l),
nk=l

l<_l<_n.

The following is a common inverse problem. Recover q(l/n) (1 -<_ _<- n) from hp, k,

(1 _--< k -<_ n) and the auxiliary data gk (1), g (2) (1 _--< k _-< n)2. There is a simple solution.
First, reconstruct q(1/n) from hp.k, gg(1), (1 --< k _-< n) and the identity

q =-2n +- hp,g (1).
nk=l

Next, construct gg(3), (1 <_-k <_-n) from q(1/n) and hp,k, gk(1), g(2), (1 <_-k <_-n) by
writing the difference equation as

gk(3)=n q +2n --he,k gk (2) gk (1), l<_k<__n.

Now, reconstruct q(2/n) from he, k, gk(2) (1-<k_-<n) and the identity q(2/n)=
--2n2+(1/n)Yk=lhe,kg2(2). Once again, use q(2/n), he,k, gk(2), gk(3) and the
difference equation to construct gk(4), (1 -< k -< n). Iterating this procedure we obtain
q(1/n), (l <-k <=n).

This scheme cannot converge as n c, because

q =-2n2+ y’. ,p,kg2(l),
nk=l

as it stands, has no continuum analogue (see also 4). Our point is that the way around
this difficulty is to introduce a set of weights, the antiperiodic spectrum and modified
auxiliary data.

Let LA be the antiperiodic difference operator on n defined by

=l[n2y(n)+2n2y(1)-n2y(2)]+qi()y(1), l= 1,

(LAy)(1)
}(Ley)(/), 1 < < n,

[-n2y(n-1)+2n2y(n)+n2y(1)]+q(1)y(n), l=n.

Let/A,1 ----</A,2 ( ----< lA,n be its spectrum and h a, , hn a corresponding orthogonal
frame of eigenfunctions normalized by (l/n)l=a h(/)= 1. The spectra hp,k, ,A,k
(1 _-< k _-< n) have a band structure

/n,O hn,1 hn,2 hn,3 hn,4 hn,2n-3 hn,2n--2 hn,2n-1,

where h,o he, a, hn, hA, l, hn,2 hA,2, hn,3 hp,2, hn,4 hP,3 and so on. Let f,o ga,
f,.a ha, f,.. h2, fn.3 gz, f,.4 g3"" and introduce the weights3

2n-1/-n (,,,,.,)
_>(),n-1 (1n,2] /n,Zk)]

O<=k<=n-1,

2 There is some redundancy in this data’ a reduction to minimal data can be found in Boley and Golub
[1978].

0
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where

A(/ )--2 nt-(-1)n+l(n,O-/. )[ H
=2,4,6,...

Then, as we will show in 2,

and

n-1

l 8n,k,
k=O

n-1

1 Y 2
8n, kfn,2k (1), 1 --< <-- n,

k=0

n-1 n-1
2q Y A,,,2ke,,,f,,,2k(1) E e,,,k(f,,,2(l+ll--f,,,2k(l))2.

k =o k =o

Now, the appropriately modified inverse problem is: Recover q(l/n) (1-<_ l-<_n) from
Ae,, (l_-<k_-<n) and the auxiliary data fn,2(1), fn,2(2) (0_-<k_-<n-1). To solve this
problem, first recover the AA’S from the &e’S (this is done in 2) and then construct the
en,’s. Next, reconstruct q(1/n) from &.,2k, f,2(1), f,2k(2), (0-<-k--<n-1) and the
identity

(1) nl 2 2
n-1

q An,2ken.kfn,2k(1)-- n E 8n,k(fn,2k(2)--fn,2k(1))2,
k =0 k =0

and then continue iteratively, as before, to recover q(l/n) (1 <_-l<_-n).
This scheme has a continuum limit as follows.
Consider Hill’s operator -(d2/dx 2) + q(x), with band spectrum

and normalized eigenfunctions fo, fl, f2," We will prove in 3 that limn_, en,k ek
exists and

1= Y ekfk(X), O<--X<--I.
k>=O

This identity among squares of eigenfunctions appears in McKean-Trubowitz [1976]
and motivated the use of the weights e,,k. Now differentiate the identity twice to obtain

q(x)= A2kekf(X)-- e(fk(X))2,
k>--O kO

which is the continuum limit of

n-1 n-1
2 --n 2q E An,2ke. n,kfn,2k(l) Y. 8n,k(fn,Zk(l+ 1)--/.,2k(l))2.

k =0 k =0

The iterative inversion procedure becomes the infinite system of ordinary differential
equations

fn(X)+h2nf2n(X)= [ h2kSkfk(X)--Sk(fk(X))2]f2n(X), n >-_O,
k>_O

and the auxiliary data become, in the continuum, the initial data. Deift and Trubowitz
[1979] used an analogous system to solve the problem of inverse scattering on the line.
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We will not carry out all the technical details necessary to justify this picture, but
the heart of the matter is in 3, where we show that for each 0-< x -< 1 and k -> 0,

2 2lim gn,kfn,2k([tlX]) ekf2k(X),

where [nx] is the smallest integer => nx.
In 4 we point out some of the peculiarities of this continuum limit.

and

2. Some identities for Jacobi matrices. Let

al 0

b2 a2

a2 b2 a3

bn--1
an-1

b a 0

a b2 a2

0 a2 b3 a3

-an
an -2

--an

bn-1 an-1

an-1 bn

denote n n periodic and antiperiodic Jacobi matrices, respectively, with bt real and
at < O. We will only consider the case n odd, which is sufficient for 3. The spectra4

{lP,i}i=l,...,n, {a,i}i=l,...,n of Jp and JA have a band structure

where

/ 0 --/P,1, /1 =/A,1,
/ 3 --/P,2 / 2

h4 hp,3,

A2n-3 AP,n-l
A2n_z Ap, A2_1 AA,

The gap (h 1, h2) closes if and only if h /2 is a double eigenvalue of LA, and so on.
Set A (I-[/=1 al) and extend al and bl by periodicity; al+,, al, hi/, bl to all of Z.

Fix h > 0, and let yl(/, A, a, b), y2(/, A, a, b)5 denote the solutions of

at_lyi(l 1, + blyi(l, h + alyi(l + 1, h Aye.(/, ), heC, /’=1,2, IeZ

with initial conditions

yl(0,/)-- l, yl(1,/)-- 1, y2(0,)=0, yz(1, A)=h,

respectively yl(/, A) and [y2(/, A)/h] are polynomials in A, with identical leading terms

See Hochstadt [1974] and van Moerbeke [1979] for the basic spectral theory of Jacobi matrices.
a (al an), b (bl," , bn). The dependence on a or b will most often be suppressed.
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A l-a/[[Ii-=al ai]. Now define the discriminant

A(h,a,b)=yl(n,h)+
y2(n+l,h)-y2(n,h)

which is a polynomial with leading term h "/A. The zeros of A(A) 2 are the eigenvalues
of Lp while the zeros of A(A)+ 2 are the eigenvalues of LA. Thus,

and

A(A)- 2 Ao-X[ l-I-A =2,4,... ,n--1
(A2i--1 A)(A2i -/)1

-A i=1, ,...,n-2

It follows that the aA’S can be recovered from the ae’s. Finally,6 (a2k)= 0 if and only
if azk a2k-a. For i= 0, 1, 2,..., 2n- 1, let fi(1) denote the normalized periodic or
antiperiodic eigenvectors h Y=I f,.2 (l)= 1, corresponding to

LEMMA 2.1. If a2 is a simple eigenvalue, then

and

]or all l. Otherwise

0,5,
(a zt,) -h A(A2,)ft, (1)

Obl

OA
(a 2k

OA
--b-7(a2k) 0.Oa-

Proof. We calculate (O/Ob)(h2); the a-derivative is calculated similarly. Assume
first that h2 is a simple eigenvalue. Then h2 (b) is a smooth function of b and, by first
order perturbation theory, 0az/0b hf(1); indeed,

0 0

bh2

{oh ) h

Now dierentiate the equation (1(b), b)= 2(-1) to obtain

d
0 -7 A(a2k (b), b)

0b 0b

c3
A(A 2t,) + ,(a 2t,)h (ft, (1)).

Obt
This proves the lemma when A2 is simple.

6
/-l--ga’n

0
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It is not hard to prove the second assertion by taking a limit through matrices with
simple eigenvalues.

Remark. We may write (OA/Obl)(AEk) -hz(AEg)fg(/), even when AEg- AEg is
degenerate. In this case, obviously, any choice of lEg will do.

THEOREM 2.1. Let

Then

and

hAA(A2g)
e

_
(A;-A)]’[1-I;_-o,

k=0,...,n-1.

n-1

1= F. ekf2k(l),
k=O

n-1 n-1

(’0--/2n-1) + E (A2--A2i-1)=4a/ E ekf2k(1)f2k(l+l)= k=0

bl
A2n_l --’0 1 n--1 n-1

2 - j=l k=O

for all l. Moreover, eo>O and ek-->0, (k 1,..., n-l) with equality if and only if
Azk Azt-l.

Proo[.

-A(A-2) (Ao-A) 1-I (,2i-1 -/ )(/2i -/
2,4,...,n--1

det (Lp A

1=1 l<i<]<=n
bibi- a h"-2 + O(h"-3).

Here (OA/Obl)(A) is a polynomial of degree n- 1 which can be interpolated off the n
points ho < A2 < < A2._2 to get

ob ,, =o ;=o A A;
(x,,)

so that

A n-1 Ekf2k(1) -X e XE
k =o k =o

jk

+ O(A"-3).
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n-1 2Equating coefficients we obtain 1 Yk=O ekf2(l) and

bm e A2/ fk(l)
m=l k=O

1=o k =0 k =0

But

m=l m=l i=1
m#l

Also, -A(A-2)=-A(A+2)+4A, which implies i=lhpi=}i=l,ai, so that
-,n , -, 2n-1
A..,i=l P,i "2i=0 1i" Thus,

n-1 n-1

bl- E aP,i- E a2i-- E ,.2kkfk(l)
i=1 i=0 k=O

2n-1 n-1 n-1

=o =0 k =0

-1 n-1

i=1 k=0

It is easily checked that ek 20, and that ek =0 if and only if ’2k h2k-1.
The proof of the second identity is similar. U

2Let q(x) be a real smooth function of period 1. Setting al =-n bt- q(I/n)+ 2n2

and h l/n, we obtain

[-n 2f(l 1) + 2n 2f(l)-n 2f(l + 1)] + q()f(1),
a discrete approximation to Hill’s operator, -f"(x)+ q(x)f(x).

In an obvious notation the formulae of this section now become

A,, (h) y,, (n, h + n (y.,2(n + 1, h y,2(n, h )),

A. (a)- 2
,.,o-a [ y ](;,,_- a)(a,, a)
n i=1, ,...,n-1

A,,(a)+2
hn,2n-1 --, [

2n
/’/ [ i= 1,3,’..,n-2

1 n-1 2f.,(),
k=l

n-1

1 Y. en,kf,,,2k(1),
k=O

1 nl n-1

+2- k=a
(in’2k-l ln’2k) + k=0E ln,2kSn,kf2n,2k(l),

(ln,O-- in,2n--1) 1 1 n-1

+4- ,= (a.,2k h,,,2k-1) -n 2 t,=oE e,,,kf,,,2k(1)f.,2k(l + 1),

2-n

"’ In"-1 (a.,;-a )1Ij =0,/# k n,2k
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2Finally, we have 1 Fk=O en,k by summing the identity 1 Y.;o en,,2(1) over and

q --2/’/2+ An,Zken,lfn,2k(l)
k=O

n-1

+ n 2 ., 2e.,,f,2k(l)f,2,(l + 1)
k=O

n-1

A.,2ken,kfn,2(l)
k=O

n-1

+ n 2 ., 2e,,,kf,zk(l)f,zk(l + 1)
k=O

n-1
2 2 2-n ., en,k(fn,2k(1) +fn,2k(l + 1))
k=O

n-1

An,2gen,kfn,2(1)
k=O

n-1

n ..,,(’.,,(1 + 1)-f.,,,(t)).
k=O

3. The continuum limit. Let -(d2/dx2)+ q(x) be the Hill’s operator introduced
in the last section. The associated band spectrum7 is

with corresponding normalized eigenfunctions fo, fl, rE, Let yl(x, A), y2(X, A) be
the solutions of

y"+ q(x)y =Ay,

with yx(0, A)=y(0, A)=I, y(0, A)=y2(0, A)=0. The discriminant A(A)=
yl(1, A)+ y(1, A) is an entire function of order with A(A0)= 2, A(A2i_a)= A(A2i)
2(-1) i, (i=> 1) and z(A2k) 0 if and only if A2k A2k-1. It follows from Hadamard’s
factorization theorem and the asymptotics A(A)---2 cos x/ (A -m) that

Set

and

A(A)-2 (Xo-A) H .4 4
=2,4,6,... 77"

(/2i-1 A)(/.2i X

A(A)+2=4
i= 1,3,5,... 7/"

(/. 2i- --/. (/. 2 --/

(0
-A(ao)

i=>l 7/"

-kZ,rrZ/(A 2k)
k=>l;

eo > O, and ek 0 with equality if and only if A2k }k2k-1.

See McKean-Trubowitz [1976] for more information.



CONTINUUM LIMIT OF MATRIX INVERSE PROBLEMS 807

THEOREM 3.1 (pointwise convergence). For each x [0, 1] and k >-0,8

2 2lim en,kfn,2k([/7X]) ekf2k(X),

where [nx] is the smallest integer >-nx.
Proof. Step 1. By standard numerical techniques (see, e.g., Isaacson and Keller

[1966]),

lim yn,.([nx], A y.(x, A

and

lim n[y.,i([nx]+ 1, A)-y.,i([nx], h)]= y(x, h), /’=1,2,

locally uniformly in x and A. Hence

An (A) Yn.l(/7, A -t-/7 (y.,e(n + 1, A y.,2(n, h ))

-. y(1, a) + y(1, a)

uniformly on bounded A-sets, so that

(*) A,,k -+ Ak, k 0, 1, 2,

Step 2. If q 0, we have

A,,,o 0,

A,,,Zi-l A,,,2i 4n2 sin2 ( J-nn ),
An,2n-1 4n 2

and, in general, it follows from min-max that9

f 1, n 1,

-K <-_ A.,o <-- K,

f’rt" (jr) j27r24j2 K _-< 4n 2 sin2 -- K <-_ An,2j-l’An,2i 4n 2 sin2 n +K < + K,

j=l,...,n-l,

4n2 K <-_ An,En-1 <= 4n 2 + K,

where we have used the inequality (sin y/y)>=2/r for 0=< y _-< 7r/2.
Step 3. We show that

lim En,k Ek.

We do this for even k > 0; if k 0 or k is odd, the argument is similar. Evaluate

A.(A)-2 (an,O- a)(An,2k_l a
2n H

An,2k A n i=2,4,...,n-1
i#k

(hn,2i-l-A)(hn,2i-A)

8 Here and below n m through odd values.
9 We use K to denote a generic constant which depends only on q and its derivatives.
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at h An,2k to obtain

(An,o Xn,2k )(An,2k An,2k-1)
2n

1-I
i=2,4,...,n--1

irk

(An,2i-1 An,2k)(An,2i An,2k),

(An,0 An,2k )(An,2k An,2k_l)
2nn

2

H \ ni-’An2k i=2,4," n-1=2,4,...,n-1
ik irk

It follows from (*) that

n" 2

.,n-l,i-k (An,2i--An,2k)

I1
=2,4,...,n-1

ik

(A,o- A,2)(A,2 A,2g-)/ (A,2) 4l-I ( 1 +
i=2, ,...,n-1

ik

which converges to

II
=2,4,...
ik

h2i-l-h2i1[1+ ;7-]-2 _1

A2i-1-- A2k]
=2,4,...

because, by (**),

[An,2i- an,2i K

and

A,,,2i A,,,2, _-> (4i2 K) (k 2rr2 + K) 4i2 (k 2rr2 + 2K)

for all and n. The identity

A,(A) +2
hn,2n-l-h

2n H
F/ i= 1,2,...,n-2

(an,2i-l-A)(hn,2i-A)

i=1, ,...,n--2 (hn,2i

i= 1,3,...,n--2
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yields

However,

and

so that

rl (An,2n_ An,2k -1/2 1- ((*) and (**)),
2

4 41 1 tzrH )(/.2i __/ ),A(h2k) -+" 2 4 i= 1,3,’.. (/2i-1 --/.2k 2k

It follows that, if A2k-1 --h2k,
2n 2

"-> O Ek,
i= l,2,.",n-l,i#k (ln,2i ln,2k

and, if/2k-1 A2k (SO that A(A2k) 7 0),

k4rr4[g.(AEk)]2

(’.2i-1 h2k)(/2i- A2k)]H i= 2,4,...,i # k .4 "77"

.2 2

i=2, ,...,i#k lZi--"-2k i=1,3,... X2i--X2k

This completes the proof of step 3.
Step 4. We complete the proof of Theorem 3.1.

a,kYn, l(l, A.,2k)+ b.,kYn,2(l, A.,2k), where a.,k and b,k are real. Then

-1 L 21 n f,a(1)
/=1

(a..k, b.,k)

-1 L 2
n y n, (1,/n,2k) n

1=1

-1
n Y,,,a(l, An,2k)Yn,2(l, An,2k) n

/=1

Write f,zk (1)

-1 L Yn, l(l, An,2k)Yn,2(l, An,2)
l=1

Yn,2(l, hm2k)
/=1

an,k].[ bn,k j
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Now,

n ., Yn.i(l, A..2k)Yn.i(l, An.2k)-
/=1

yi(x, A2k)Yi(X, A2k) dx, 1-<i,/-<2,

and the matrix

IO Y21(x’ A2k) dx fo yl(x, A2k)Y2(X, A2k) dx

fO yl(X’A2k)y2(x’A2k)dx fO y22(X’ A2k) dx

is strictly positive definite. It follows that for large n, 1 > T(a 2 2
n.k + b n.k) for some 3’ > 0.

2In particular, a..k and bn.k are bounded and, if A2k-1 A2k, we have1 en.kfn.2k([nx])-
0 f(x).

If Azk:x < A.k and Ak is a Dirichlet eigenvalue, i.e., Y2(1, A) 0, a,.k must
converge to 0. If not, there exist a # 0, b and a subsequence {k (m)) such that a,k(,)- a
and bn,k(,)-b. In particular, f.,2k(.)([nx]) and n(f,2k(,)([nx]+l)-fn,2k(,)([nx]))
converge to ayl(x, A2k) + by2(x, A2k), ay’ (x, A2k) + by (x, A2k) respectively. As
fn,2k(m)(O) -I- fn,2k(m)(n) and fn,2k(m)(1) :::lz fn,2k(m)(Ft + 1), ayx(x, ,2k)+ by2(x, /2k) is
clearly a periodic/antiperiodic eigenfunction of Hill’s equation. But as /2k is simple
and y2(1, 2k)-"0, the only periodic/antiperiodic eigenfunction is y2(x, A2k), which
contradicts a 0. Hence, a,,,k -0 and it follows that bn,k -[o y22(x, A2) dx]-/2. Thus,

-1

en.kf.2k([nx])- e y(x, A) dx y2(x, A2k) ekfk(X).

Finally, suppose/2k-1 </2k and y2(1,/2k) # 0. Set
(k even)

g..k(l) y,.2(n, An.2k)Yn.(1, An.2k)+ (1 yn.(n, An.2k))Y.2(l, An.2k),

(k odd)

h,,,k(l) y,,,2(n, A,,,zk)Yn, l(/, An,2k)-- (1 + Yn, l(n, A,,,2k))Yn,2(/, A,,,Zk).

Using An (/n,2k)-- "+" 2 and the Wronskian identity

Yn,2(l + 1, An,2k)Yn, l(l, ln,2k)-- yn,2(l, An,Ek)Yn,(l + 1, ,n,2k) const n -t,

it is easily checked that gn,k and hn,k are periodic and antiperiodic eigenvectors,
respectively. Moreover,

n g,.k(l) [y2(1, A2k)y(x, A2k)+(1--y(1, A2k))y2(x, A2k)]2 dx>O
/=1

and

n h,.k(1)- [y2(1, A2k)Yl(X, A2k)--(l+y(1, A2k))y2(x, A2k)]2dx>O.
/=1

10 If 2k --)k2k-1 there is ambiguity in the choice of fEk(X). But this is no problem since ek -0.
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Therefore,

gn,k n i gn,k(1)
/=1

f’*’2k(l)=--{h,,,k[n-1 h 2,,,k(l)]
/=1

-1/2

-1/2

converges and the proof of Theorem 3.1 is finished.
THEOREM 3.2.11

(k even),

(k odd)

(1) Y ek 1.
k0

(2) 2 ekfk(X)= 1.
k0

Pro@ (1) We compute the contour integral

{
as N- oo. The residue of the integrand at the simple pole A A2k is ek. Also, it is not
hard to show that

sup +1 =o(1).

[ ’ 2i "-’/]lal=(N+1/2)’
i>-I i2,n’2 _i

Therefore, by the residue theorem,

Z
12

ek->l"
I,kEk I<(Nq-)

(2) For any fixed N,
N N_, ekf22k(X) lim Y 2

8n,kfn,2k ([nx ]) _--< 1,
k=0 n-Oo k=O

by Theorem 2.1. Thus, C(X)=--keO ekfk(X) <- 1 and, by Fubini,

i c(x)dx= Ek>=o EkIo fk(x) dx= Y’. ek
0

This is only possible if c(x)= 1 a.e., and the result will follow if we show that c(x) is
continuous. As -,keO ek < 013, it suffices to prove that f2k(X) is uniformly bounded in
x and in k. Write f2k (X) aky (X, 2k) "t- bk4,2kY2(X, / 2k). From the estimates

yl(x, A) cos x//x + O(/ -1/2) y2(X, A)
sin x/x -1)=+O(a

we have

1 2fk (X) dx >= -(ak + b2k)

for k large. Clearly, f2k (X) is bounded and the proof is finished.

11 For another proof of these formulae, see Deift and Trubowitz [1980].
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4. Some remarks on the continuum limit. The difficulty in taking the continuum
limit of the standard Lanczos algorithm is clearly seen by considering the formula

gk(l) gk(m) 81,, 1 <--_ l, m <--_ n,
k=l

which follows from the orthonormality of the eigenfunctions {g}. The continuum limit
is

2 g(x)g(y) 6(x y)
k=l

(convergence is in the sense of distributions or as a quadratic form in L2(0, 1)). The
difficulty with this formula, from the inverse point of view, is that it cannot be evaluated
along the diagonal x y. By contrast, in the weighted scheme we have

E f(x)= , o<-_x ,
k=O

which is basic and leads, in particular, to an interpretation of inverse spectral theory
as an integrable system of constrained harmonic oscillators (see Moser and Trubowitz;
see also Deift, Lund and Trubowitz [1980]).

2 2 n--1 2In 3 we showed that e,.f.z([nx]) efz(x). As Z=o e,.f,.2(l)= 1, we can
immediately conclude that

N

Z ef(x)= lim lim Z e,.f].z([nx]) 1, 0x 1.
k:0 N k =O

In 3, we proved equality by a contour integral; to prove equality directly, however,
turns out to be a surprisingly intricate problem in rates of convergence (see Appendix
for details). A related and somewhat puzzling question of convergence occurs in the
formula

q(x)= 2 zf(x)-Z (A(x))
k =0 k =0

and its companion

(***) q(x)=2 , eAzkf(x)+const.
k=O

d
ekAt,f,(x)+ , e,(fk(X))2 =0.

k--O

n-1 2 ([nx]) cannot converge toThe point is that the expression
---o eA2(x). Indeed, from the formula

q const. (n) + Y. A,.zke,.f2,.2 (1)
k=O

on p. 805, we would conclude that

q(x) const. + E AZkekfk(X),
k=O

which can be reconciled with only if Y-k=O ekA2kfk(X), and hence q(x) is constant.
n--1 2In other words, the convergence of Y.k--O en,kAn,2kfn,2k.([nx]) involves an infinity which



CONTINUUM LIMIT OF MATRIX INVERSE PROBLEMS 813

n-1
is precisely cancelled by an infinity in the convergence of n Y,k=O en,k(fn,2k([nx]+ 1)--
fn,Ek([nx]))2 to give

q(x)= 2 af(x)-Z (f(x)),
k =0 k =0

but we do not present any details. Beyond the technicalities (see also the remark in the
Appendix), the reason why

1 ekf2k(X)
k>=O

and

q(x) E ekA2kfk(X)--E ek(f2k(X))2
k >=O k >=O

can be interpreted as continuum limits, but

q(x)=2 E eA2fi(x)+const.
k>__0

cannot, remains unclear.

Appendix. Uniform convergence. Here we show Y,k->o ek 1 by direct estimation.
As we have seen in 3, this is enough to prove Yk>=O ekfk(X)= 1.

LEMMA A.1. Fix 0 < 3 < 1/2. Then there exists a number ko, depending only on q and
3, for which

ln,2m ,
n,2k _->3(m-k)k

whenever ko <- k < m <-_ n 1/2+.
Proof.

/
An 2m An 2k

> 4n 2[sin2 mTr

2n 2 cos cos 2K

=2n(m-k)sin-2K (k <0<m)

>2n(m-k)[(-)l-2K>4(m-k)k-2K,
1/2-8 k(1-26)/(1+26)as sin y/y _>- (2/7r) for y <_- (zr/2) and Ozr/n <- 7r/n <_- zr( _-< 7r/2 for ko

large enough. The result follows if, in addition, ko is chosen _-> 2K.
LEMMA A.2. Fix 0 < 3 < 1/2. Then there exists a number h o> 0, depending only on

q and 3, for which

K

whenever A 0 <_ A <- n 1+.
Proof. ;X.(A)=p,,,l(n,A)+n[Pn,2(n+l,A)-p.,2(n,A)]. We will only show that

IP.,(n, A)I <=g/’,/; the second term is treated similarly. As in the Hill’s case, y,l(/, A)
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satisfies an "integral" equation

sin(/-m)a)()yn,l(l, A)
cos ((I 1/2)a)+ q yn,l(m, A),
cos (a/2) ,=1 n sin a

where sin a =(4/n)(1-h/4n2)1/2. Clearly, a =4-Mn +0((4/n)3). Now, for h
large enough so that /-/n <-_ n -(/2-)<- ( 0)-(-2/2(+2 is small enough, we have

nsina_-> _--- and cos _->-
2"

Thus

max ly.,a(l, A)I 2 +- n q max y.,l(/, A)
ll<=n =1

As n-1E=I Iq(m/n)l Iq(x)l dx < o, we conclude that max1__</__<. [y.,l(1, A)[ gl for
/2>/- sutticiently large. Differentiating with respect to I, we find

.,1(/, A)=- (cos ()sin ((/-21-)c) (/-)
1 1+ cos ((/-)c)sin ())&/cos2()

+ Z q
m=l n sin a

+ &
.,=1

(1- m) sin a cos ((ln2(sin-m)a)a)2sin ((1 re)a) cos a

q()y.,l(m, A).

The estimate Il 12n 2 sin a1-1 <= 1/nx/- implies

a +1 _1 c) c/cosI-(cos ()sin ((l-)a)(l-) cos ((l ) sin ()) () <=4A-1/2

and

&
(1 m) sin a cos ((1

n (sinm)aa))2 sin ((1 m)a) cos a -1 -3/2

It follows as above that

K2
max
l<=l<=n

which proves the lemma. [3
Now write

n-1

n (A](,)-4)=(A,,,o ,)(,,,,2,,-a-A) 1--I (ln,2i-l-l)(/n,2i-l)
i=1
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and differentiate to obtain
4nn

[Hi=O,1,.",n-l,iCk (ln,2i n,2k )]2

"fi’
ia

Therefore,

+,kodd)
-, k even/"

From Lemma A.1,
An.2i-l--An,2kl kIl A.,2;-1-A.,2gl

ko ko

N 1+
=o 3(i-k)k

K 1
N exp

=o (k i)i

K r- dx
Nexp jo_ (k-x)x

exp log
ko- 1

Moreover the finite product

1+ .-2/- ;,, 2k -, 4k2-.tr2(ko-1)2- 2K

as k c.

ko-1

which is bounded for k large enough, say k > kl > ko; it follows that

An,2i-l-An,2k]

2 >4k 2
is bounded in k > kl, independent of n. Using An,2n-1/4n K1, An,Ek -K2 and
Lemma A.2, it is now easy to see that for k2 kl sufficiently large,

K3 K4
en,k 3/4 k3/--’(ln,2k

whenever n (1/2)+6 > k > k2.
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We also have the estimate

n-1., e,,,k <= Kn-Z.
k :>n (1/z)+a

To see this, sum the formula for q(I/n), derived in 2, to obtain

n-a

[ -1 ()] (4rt2_An,2n_a)+Ano,E .,e,= n E q +
k=O /=1 2

But h.,2k h,,,2k-a <- K and [4n 2 h.,2n-l[ -< K. Thus Y.k=O An,2kEn,k is O(n) and

Z e,,,k<--[4na+--K]-k-n(1/2)+a kn 1/2+a

as An,2k >-4k2-K.
If we write

n-1 k [n(1/2)+a n-1

1 Y en,k en,k + en,k 4-
k =0 k =0 k ka+l k =[n/2)+]+l

F-,n,k

and use the above estimates, the identity Y.ko ek 1 is immediate and we are done.
n--1Remark. We are able to prove convergence for Y-k=O en,k 1, essentially, by

n-1 A 2 ([nx]) through the formulacontrolling k=O e.,k n,2kfn.2k

() (hn,2n-l-An,O)
q -2n2+

2
(An,2k-l--An,2k)+ k=

n-1

k=0

n-1 2of 2. Could we obtain a similar formula for Y.k_-o A ,2ke,k and use this to control
n-1 2Y.k=o An,2ke,kf,.k([nx]) (cf., 4, where we show that this quantity must diverge)? What

goes wrong?
Indeed, by the methods of 2, we can derive the formula

A,2-
(An,2i-l-A,2i) +q +4nqq

2 2 2i_-

(x)

6n 4 + [ Y’, An,2iAn,2k
O<=i<k<=n-1

(P) (P)]
n,l Jl<--k<l<=n

2n 2 + An,2] An 0 -- (An,2j- An,2j)
’=o 2 ’=

-t- E en,kA2 2
n,2kfn,2k

k=0

(P)where An,k, k 1,..., n, are the periodic eigenvalues. Now it is clear from the
preceding estimates that we would indeed be able to prove convergence for

n--1 2Ek=O A.,2ke ([nx wen,kfn,2k ]) if could show that
n--1

Y e,kAn,2k - 0 as n - oo
knl/2+
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for some 0 < 8 < 1/2. But
const,

En,khn,2k < 1+26 F-,n,kh2n,2k
knl/2+ F/ k=0

so that we need k=Oe,,,kh,,.Eg -o(n for some 0<8< We will show that this
cannot happen in general" choose h,,,i, 0 <= <-_ n 1, such that

n--IX nllh,i O, h,iq _-> const. y 0,
i=0 n i=0 n

]hn,/]-< 1, O<-i<=n-1

(for example, if q(x) is not even, i.e., q(x)q(1-x), set hn, +[(1/(n-1))i-1/2],
0-<i _-<n 1). Multiplying (X) by (1/n)h,,i and summing, we get

[l l h,,iq(-)][4n2
i=o n

/n,2n-1 - -I--- t n,2j-1 t n,2
2 2 i=o

Now

and

i=o n

Y e,h n,Zk --hn,ifn,2k(i
k=0 i=0 n

n,ifK2k(i) <= --fn,2k(i) 1
i=0 n i=0 n

-h,,iq -<_ sup ]q(x)[2.
i=0 H 0=<x_--<l

Thus, if ".k =1 2 1+2
0 En,k hn,Ek "--0(/’/ )(0<8<1/2), then the right-hand side would be

o(nl+2a), but the left-hand side grows like 2n2y (An,2n-1/2"" 2n 2 and [Y’.-o (An,2i-1-
h,,2.)[_-<const, n). This gives a contradiction, and we see that the higher moment

n--1 2k=O e,,kh,,2g provides no information.
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THE JABOTINSKY MATRIX OF A POWER SERIES*

J. L. LAVOIE+ AND R. TREMBLAY$

Abstract. We consider the inversion of formal power series and related results, in terms of matrices

introduced by Jabotinsky.

1. Introduction. The theory of umbral operators introduced by Mullin and Rota
in [16] and developed further by Garcia in [6] (see also [4], [7], [13]) furnishes a natural
setting for the study of the inversion of formal power series in any number of variables.

The purpose of this paper is to point out that the important one-dimensional case
can be elegantly and effectively set in terms of matrices introduced by Jabotinsky in
[11] and [12].

2. The 3abotinsky matrix. Let

(2.1) F(t)= E qi ti E’(’) withqo=q#0
=0

be a given formal power series (fps). The set (o%) is the totality of fps with coefficients
qi E -, a field of characteristic zero. Also, it is well known that (o%) itself becomes a
field if we define the addition in 5’() by term-by-term sums and the multiplication by
Cauchy products (see [9] and [10] for more details).

In [11], Jabotinsky associates with F(t) an infinite dimensional matrix A whose
elements, denoted by Air, are generated by

(2.2) fi(t)= E Aiit, /=0,+1,+/-2,’..,
i=i

with f(t)= tF(t). This is a lower triangular matrix"

A-l-1 0 6 0

Ao- Aoo 0 0
AI-1 Alo All 0

A2-1 A20 A21 A22
A3-1 A30 A31 A32

0

0

A33

and the formal operational representation

1 Di_ifi(t) i>/,(2.3) Air-(i_f)!
with D d/dt, follows from Taylor’s theorem. Of course, DF is the formal derivative
of F defined by the fps

DF= E (i + 1)qi+1 ’(’).
i=0

* Received by the editors April 26, 1979, and in revised form December 16, 1980.
t D6partement de math6matiques, Universit6 Laval, Qu6bec, Canada, G1K 7P4., Mathematics Department, Royal Military College of Canada, Kingston, Ontario, Canada, K7L 2W3.
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We have

Also,

Ai+I,1 qi, Aio tiO, tij O, 1 2,
1, i=f’

Aii q
i-1Ai+l,i iqxq

Ai+2,i iq2q i-i +i(i- 1) 2 i-2

2
qxq ,...,etc.

for 0, +1, +2,....
If F(t) 1 then A =/, the unit matrix of infinite order. In table 1 we show a number

of other special cases, with =>] 1, 2,. .
TABLE

F(t) qi Aii

+ xt xi-J( )i-i
o_

(l+xt)-1 (-1)ix (-1)i-ixi-i(i 11)
In (1 + t) (-1);

--$1(i,/1
i+1 i!

X (iX) i-]
e

i! (i -j)!

Be l Ft(i
e -1 i! (i-i)! "-’-

(1 2xt + t)-/ Pi(x) C/ (x)

( -xt ) LI) (x /.!(%+l)i_l](x(1 t)-- exp

(i)The S(i, j) represents the Stirling numbers of the first kind, Bi and B are, respectively,
the Bernoulli numbers and the Bernoulli numbers of order j [15, p. 127]. The Pi(x)

,..,i/2, t.)(x) is theand tx) are the Legendre and Gegenbauer polynomials while .-.i

generalized Laguerre polynomial.

3. Pairs o[ inverse formal power series. Let G(t) be another fps. Let g(t) tG(t)
and let B be its Jabotinsky matrix. We have

i.(3.1) fi(g(t))= , , BirArjti= , (BA)ij
i=j r=j i=j

Thus the composition of two fps involves the ordinary (Cayley) product of their
Jabotinsky matrix ((3.1) can also be denoted fi g, [9], [10]).

It is convenient to call F(t) and G(t) a pair of inverse fps provided that

(3.2) f(g(t)) t= g(f(t)).

In the light of (3.1), with F(t) given by (2.1), this means that G(t) must be such that

(3.3) gi(t) Y Alt’,
i=/"
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where A is the (i, j)-element of the inverse of A. These components are obtained
from the Jabotinsky theorem which states that they are generated by

t-i-(3.4) f-e-(t)Df(t) Y. aei

Proof. Using (2.2) and (3.4), it is found that (A-aA)ei is the coefficient of -a in
fJ-e-(t)Df(t). But, when i>j,

fj_e_(t)D(t D_(i_(t -1
2 rAr-(i-

l j r=-(i-j)

and the coefficient of - is zero, whereas for j it is readily seen to be equal to one.
The above argument is similar to Jabotinsky’s proof [11].

Returning to (3.4), we obtain the remarkable explicit expression ([9], [10], [11]),

-a JA_i_i, 0(3.5) ai

and, from (2.3), the formal operational representation

--1 J i-JF-i(3.6) Aii D (t)
i(i -j)!

Thus,

--1 DiF_i_a(t)G(t) Y, pet with Pi (i + 1)i=0 t=O

forms a pair of inverse fps with F(t). Some explicit values of pi are shown in Table 2.

TABLE 2

Pi

-10 q
--q-3ql

2 q-5(2q -q)
3 -q-7(5q -5qqxq2+q2q3)

Formal power series forming inverse pairs with, respectively, the first three entries of
Table 1 are shown in Table 3, where S2(i, ) represents the Stirling numbers of the
second kind.

TABLE 3

G(t) Pi A
2 (-1)ixi(2i) i-j i-ij{2i-j 1)+(1 +4xt) 1/2 -i-i (-1) x

i-

(1-xt)-1 x xi-i(i’-11)
e’- J!s2(i,(i+1)!
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Let F(t), G(t) and P(t), O(t) be two pairs of inverse fps. Then, clearly,

P(t)F(tP(t)), G(t)Q(tG(t))

is also a pair of inverses. The special case

P(t)=(l+kt)-1,
yields

Q(t)=(1-kt)-1

1 ( ) G(t)
1 + kt

F 1 k 1 ktG(t)

This pair of inverse series has been considered in [3], where a number of interesting
special cases are given. The first is the kth Euler transformation of a series while the
second is the kth star transformation. Any number of pairs of inverses can be obtained
in this way. For instance, using the first entries in Tables 1 and 3, for P(t) and Q(t), we
have the pair

2G(t)
(1 + kt)F(t(1 + kt)),

1 + [1 + 4ktG(t)]1/2"

4. The Biirmann-Lagrange expansion. An easy formal derivation of the Biir-
mann-Lagrange expansion can be found in [9], [10]. The relation

-lfi(tY A i]
i=i

obtained by replacing by f(t) in (3.3), is used in the fps H(t) /--o hiti to obtain

-lhifi(tH(t)=ho+ E E Aii
i=1 i=1

But, from (3.6) and Taylor’s theorem,

A6 hi=
i=l

(i- Di[DH(t)]D
i=O ]

1Di-l[F-i (t)DH(t)]t-_o,
i!

t=O

using Leibniz’s formula for the nth derivative of a product. Therefore, the desired
expansion is

H(t) g(o) +,21D i-1 fi(t)
DH(t)

t=0 i!

5. The kth iterate of a formal power series. Let C be an n + 1-square segment of
A, the Jabotinsky matrix associated with F(t). The columns f 1, 2,..., n + 1 are

n+l
chosen so that C is a lower triangular matrix whose eigenvalues q, q2, q appear
in the main diagonal.

For any n + 1-square matrix having these eigenvalues, the Lagrange-Sylvester
interpolation polynomial [5, pp. 101-103] can be used to obtain the interesting relation

(m-k,(n-k+l,[7][n7] k(5.1) c= E q c,
k=O n

where m 0, 1, 2,.. and [] is a q-binomial coecient. There is an extensive



THE JABOTINSKY MATRIX OF A POWER SERIES 823

literature related to these coefficients, which satisfy relations somewhat similar to the
relations satisfied by the ordinary binomial coefficients and reduce to them when q - 1.
For more details see [8].

A direct proof of (5.1) involves the q-analog of Saalchiitz’s theorem [17, p. 48].
However, with the result in hand, it is much simpler to use induction. Note first that
both members of (5.1) are identical for m 0, 1,. , n. For m n + 1, we have

(5.2) cn+l=
k=o

(--1)"-kql/2"-k+l)"-k+2)[n+llk c,k
which can be obtained directly from the characteristic polynomial of C. Indeed, from
the q-binomial theorem,

(1_q+)= (_l)q/(+ n+l n__

k =o k =0 k

(5.2) follows from an application of the Cayley-Hamilton theorem. Assuming the
validity of (5.1), we multiply both side by C and use (5.2) on the right side. This member
then reduces to an expression identical with the right-hand side of (5.1), but with m
replaced by m + 1. Since q 0, C is nonsingular and (5.1) is still valid when m is a
negative integer.

We are dealing with lower triangular matrices so that the (i, j) component of C
is identical with the element in the same position in A, not only for r 1 but for r
equal to any positive or negative integer. Hence, equating the elements at the bottom
of the j-column on each side of (5.1) yields, after a simple change of variable,

i-1

(5.3) Aii- q
k=0

Here, i>=/= 1,2,. and m =0, +1,+2,. ., and we have written Air for (Ar)ij. In
virtue of the relation

[--kX] (_l)kq_kx_l/2k(k_l)[X + k --1]k

(5.3) can be written

(5.4) mi7 2 (--1)i-k-lq m-k+l/2(i-k)(i-k-1) ]A..
k=o i-k-1 3

This is Tambs Lyche’s formula [18], obtained more than fifty years ago from different
considerations. For m =-1, (5.3) reduces to

f_ i--1

(--1)kq -ll2(k+l)(2i-k)[ilk(5.5) Aij iA_,_i Ai.
k=0 k+l

q ir,In particular, by noticing that Aii we have from (5.3) and (5.5)

., q-k(,,-k) 1
k=0 i-k-1

and

(-1)kq 1/2k(k+11 1
k=0 k+l
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Also for F(t) (1 + t) -1, we have q 1, fk(t) t(1 + kt)-1 and hence

A" (-k)
1

This is replaced in (5.3) to obtain

m m-k-1
E (-1)i--1 i-i

k=o k i-k-l,Ik m

Finally, we should perhaps remark that in view of (5.5) it is tempting to look for
a new relation between the pair of inverse fps f(t) and g(t). We begin with the expansion

fi , A iit

where fo(t) t, fl(t) f(t), f.(t) =f(f(t)) and fk(t) is the k-fold composition of f(t); and
note that i!Ail =Difg(t)lt=o--f (0). Hence, with q 1,

g(t)= E AT,1lti
i=1

Y" Yo (- 1)
1 ,e(i)

i=1 k + 1 k (0)t

E
(-1)tk+l 1--D {f (t)}t=ot(k+l)

,=o (k+l). =oi!

which we may write as

g(t)= E (--1)k+lf(kk) t
-1 (0)kl.k=l

This result, given by Brun [1 ], should be handled with great care because of the absence
of a complementary term which, in general, is not zero. The papers [14] and [2] should
be consulted.

Acknowledgments. The authors would like to thank Professor Henrici for many
valuable suggestions and helpful criticisms.
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A GENERALIZATION OF THE KREISS MATRIX THEOREM*

SHMUEL FRIEDLANDt

Abstract. Let 4 be a set of n xn complex matrices A which satisfy the condition II(I-zA)-ll[
g/(1-1zl)+ for some a ->0 and all Izl< 1, Then it is shown here that there exists a constant p(a, n) such
that IIAII_-< gp(, n), - 0, 1,. . This forms a generalization of the Kreiss resolvent condition (where
c =0).

1. Introduction. In various instances one deals with iterative systems of equations

(1.1) X
(i+1) Ax (i), O, 1, 2,

Here x (i) C", A M,, where C is the set of n column complex vectors and M, is the
set of n n complex matrices. Clearly

(1.2) x (i)= Aix (),
and thus in order to investigate the behavior of X

(i) for large one needs to study the
powers A i, 0, 1, Let be a set of n n matrices. is called an a-stable set if

Here a is a nonnegative number and I1" is a norm on M,. The concept of stability of
the numerical schemes for solutions of partial differential equations is intimately
connected with the notion of stable sets. Consult for example Kreiss [1962] or
Richtmyer and Morton [1967]. It seems that a-stable sets are related to the concept
of weakly stable numerical schemes for partial differential equations. See Kreiss [1962]
and Forsyth and Wasow [1960]. The stable sets were characterized completely by
Kreiss [1962]. In this paper we generalize the Kreiss result to a-stable sets.

THEOREM 1. Let a be a nonnegative number and4 be a set ofn x n complex valued
matrices. Then the following two conditions are equivalent.

(A) There exists a constant K(_->I) such that for all A 4 (1.3) holds.
(R) There exists a constant K(>-1) such that for all A 5g

(1.4) II(I-zA)-ll<=K(1-lz[)-(/, Izl< l.

The implication (A) (R) is obvious. The implication (R)=), (A) is a consequence
of Theorem 2 which estimates the Maclaurin coefficients of a certain family of rational
functions in terms of the growth of their moduli. We were not able to give conditions
analogous to the conditions (S) and (H) of Kreiss [1962].

2. Coefficient estimates for certain analyic functions. Let D be a unit disk [zl< 1.
Suppose that f(z) is an analytic function in D. Consider the Maclaurin expansion of f,

(2.1) f(z) Y az , ]zl < 1.
=0

Suppose that

(2.2) [al -<K,, a 0, 1, 2,.

for a >-1. It is a standard result in theory of special functions (e.g., Olver [1974,

* Received by the editors, September 15, 1980. This research was sponsored by the U.S. Army under
contract DAAG29-80-C-0041 and appeared as Technical Summary Report 2108, Mathematics Research
Center, University of Wisconsin, Madison, Wisconsin.

t Institute of Mathematics, Hebrew University, Jerusalem, Israel.
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p. 119]) that

(_l)/-(c-l)= F(a+v+l)
(2.3)

v F(v + 1)F(a + 1)"

Here two positive sequences {u.,} and {v.,} are called equivalent u., Vm if

Thus (2.3) implies

(2.4)

lim u--- =/3, 0</3 <m.

f(z)l Kp()(1 -Izl)
for some positive constant p(a) with a >-1. Conversely, we have a weaker result.

LEMMA 1. Let f(z) be analytic in D. Assume that

(2.5) If(z )l--< K (1 -Iz l)-,
for some a > 0 and all [z[ < 1. Then

(2.6) lalg 1 / ,v c
<ge(v / 1),

and this inequality is sharp.
Pro@ As

(2.7) a (2rri)-1 Izl =r<l f(Z)Z -(+1) dz,

we get

(2.8) [al-<_[max [f(z )l]r =<K(1 r)-=r-.
Note that

min (1 r) -r- (1 r) -r- lr v/{v+, 1 +
O=<r--<--I O

This establishes the first inequality in (2.6). To obtain the second inequality in (2.6)
choose, in (2.8), r= v/(v+ 1) and use the well-known fact that (1 + l/v) <e. To see
that (2.6) is sharp for each v, consider the polynomial

(2.9) p(z) K 1+ z

Let B be a Banach space with a norm II. II, Assume that A:B -+ B is a bounded linear
operator. Suppose that the spectrum of A lies in the unit disk. Then expanding
(I zA -1 in power series

(2.10) (I-zA)-= Y’, z"A",
0

we get

(2.11) A" (27ri)-1 I Z
z[=r<l

-(+) (I-zA)-1 dz.
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Thus if

(2.12) tl(I-zA)-ll<g(1-1zl)-, [zl< 1,

then, applying the results of Lemma 1, we obtain

(2.13) IIAI! < Ke(, + 1).
It is an open problem whether the estimate (2.13) is sharp in some infinite

dimensional Banach space. The following result enables one to improve the inequality
(2.13) for matrices (i.e., B is finite dimensional).

THEOREM 2. Consider all polynomials p(z) and q(z) of degrees m and n respec-
tively such that the function f(z)=p(z)/q(z) satisfies (2.5). Suppose that a >-1. Then
there exists a positive constant p(a, m, n) such that

( -1)(2.14) [al<=gp(a, m, n)u

To prove this theorem we need the following lemma.
LEMMA 2. Letp(z) be a polynomial of degree m. Then there exists a constantK(m)

such that

max Ip(rei)l).(2.15) max Ip(z)l <=g(m)(Iol<=/4
Proof. It is enough to consider the case r 1 with p(z) of the form

p(Z) H (Z i), I rll-<-IC21
i=1

For m 1, it suffices to chose K(1)= 5. Let m > 1. Define

maxg’(m)
o11...=1,1 maxlol,/4 Ip(e)

In the case where I ml > 3 let q(z)= 1-Ii= (z- (i). Then

max [p(z)[ <= (1’,, + 1)max Iq(z)l
Izl=l Izl=l

max [p(ei) I.-<2(Isr,,I-1)g(m-1) max Iq(ei)l<=2K(m-1)lol<=/4101_-<r/4

Put

K(m) max (K’(m), 2K(m 1))

and the lemma follows.
Proofo[ Theorem 2. Without loss of generality, we may assume that p(z) and q(z)

do not have common zeros. Also, it is enough to consider the case K 1. The inequality
(2.5) implies that we can choose q and p of the form

m--l

(2.16) p(z) zIA l-I (1 Z(.Oi) q(z) fi (1 zi).
i=1 i=1

The inequality (2.5) yields Isril =< 1, i= 1,..., n. Put

(2.17) g(z)
m-lA Hi= (Z (.Oi)

Hi=I (2’ i)
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(2.18)

Also,

(2.19)

Note that

([zl_ 1),

-(+"- Izl>lg(z)= Y az

a (27ri)-1 Izl=n>l g(z)z ’+’-’-) dz.

Let D1, ’, Dp be p-mutually disjoint, open and bounded domains with the boundary
p

1-’1, 1-’p respectively. Assume that i ( [,--J i=l Di, 1,. , n. Then we obtain

(2.20) a (27ri)-1 IF g(z)Z+n-m-1) dz.
j=l

To obtain the estimate (2.14) we are going to choose the domains D1, Dp according
to the configuration of ’1,’", srn and the value of t,. First we group the points
S,..., Ss, following Morton [1964]. Let sril be one of the points with the largest
modulus, I’ill 1- 61 _-> Isril, i= 1,..., n. Then we form $1 from all those points which
can be joined to srq by a chain of points, each link of which has length _-<61.

In the same way $2 is formed from the remaining points, and so on until all the
points have been included in some So. For each S0 we denote by 1- 6o and 1- eo the
modulus of the largest and the smallest Iril, sri So. We rename ’1,""", ’n so that

(2.21) 061"" "6s.

Consider any particular S0 and denote its members by Ai, 1, 2,..., k, where
1-eo-<_lAil-_<1-60, i--1,...,k. Also denote the points not in So by /xi, /’=
1, 2,. , n -k. We claim

(2.22) 60 a -I ,1 Ail--< (k 1)6o, IAi-/xil > 60.

(2.23)

Indeed, the first two inequalities follow immediately from the assumption that there
exists a chain of at most k points between Ai and Ai such that the distance of any link

<--60. The last inequality is a consequence of/x not being in S0. Let
m--l

h(z)=A 1--[ (z-toi).
i=1

m-l

(2.25) h (z) hi(z rt)i.
/=0

We now estimate hi. Let F be a circle [z- r/I 60. Then

[Z ’i[ =< Z Atl / [At- i[ [z l @ [ Atl @ [At- i[

60 + 1 + 26. -[At[ @ [At- i[ (k + 3)60 + [A- i],

where the last inequality follows from (2.22). In particular

Iz-Ail2(k+l)6o,

Then

,t
(2.24) rt (1 + 260) ,2-,.

For At c SO put
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in view of (2.22). Apply the Cauchy formula for hj and use (2.18) to get

]hi[ (2r)-llfr h(z)dz(z-rl)-(i+l)[
-< 8(i+) 4"+ fi [(k + 3)800 + IX,- ril]

i=1

(2.26)
< [2(k + 1)]k 4 "+6

i=1

-< [2(k + 2)]"4
i=1

We now consider the following three cases"

(i) 600 -> 1/(2"/2nv),
(ii) 600 =< 1/(4nv),
(iii) neither (i) nor (ii) holds.
Here v is a positive integer and v => m -n + a.
Case (i). Let Ci be a disk [z- (i[ < 600/2 for ri $00. Then

p

(2.27) D= [ C= Oj,
i=1 i=l

where each D. contains a subset of some $00 and Di (qD for/" # k. Let F be the
boundary of Di. Then/(F.)-the length of Fi-satisfies the inequality

(2.28) /(Fi) _-< 2zrn

where n (Di) is the number of points sq,’"", st, in Dj. Let z e Fi. Clearly, z At +p,
IO[ 800/2, $00 {h 1," ", h}. By the definition of Di, Iz hi[ _-> 600/2 for 1 _-< ] <_- k. Also

Thus

(2.29)

Also for rt of the form (2.24) we have

n-k
_-< 2"6 l-I I/t- al’j1-1.

/=1

Combine (2.25)-(2.26) with the above equality to deduce

(2.30) [h(z)l<[2(k= +2)]"+"m4"+"6t’-00 1-I [At-/x/I.
i=1

Finally we deduce

(2.31) Ig(z) <[16(n + 2)]"+"+6 b ZF].

Using the equality (2.20) and the inequalities (2.28), (2.31) for v > m -n, we get

la.I <-- (2rr)-1 f [g(z)Jlzl(’+"-"-"’ldzl <- n[16(n + 2)]"+"+( min 600) -a+l
1=1 ./Fi 1<=00----<s

<__ n [16(n + 2)]"+’+2 ("+2)(-a)
Vx-1,

where a _-> 1. Thus we have shown (2.14) (K 1).
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Case (ii). Let Ci be an open disk with center at il[il and radius l/2u. Form D by
(2.27). Assume that z Fj. So

(2.32) z Io1= .
We now estimate

K(F) max ]h (z)[
zF

According to (2.18)

F= z,z=-i l+ve

K(F) <= e(4u) [max lI
zF t=l

for v _-> m n + a. Let ’t/i (1 -- 1/2u)’Jl’l. Clearly, T/i I 1-/.. We claim that for z F or z
of the form (2.32) which is in F., we have

]Tli ell<= Iz tl <= 3lrli tl.5

Indeed it is easy to see that for such z the following inequalities hold

Therefore

K(F)<-e3"(4v) I-I Ini-C,I,
t=l

Let z tol= 1/2v. Then by Lemma 2 and the above inequalities

g(F)g(m l)[g(z)l<-- [Z’t[ <-K(m-l)(15)’*(4v)e’

and

Ig(z)z+"-"-l<-g(m-/)(15)’*(4v)e 1 + <-K(m-/)(15)’*(4v)e 2

for v _-> m-n + a. As the length of the boundary of D does not exceed rrn/v, from
(2.20), we get

la=l <- K(m -l)n (15)"4e2p-l.

Case (iii). In this case we claim that there exists 1 < y < s such that

(2.33)
1

t/3+1 ( 2,,+2 + max e, 8 0, , 3’ 1 eo 0
vn o_-<jB
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and

1
(2.34) 6,/+1>+ max2n+2p o_<_j__< 3,

otherwise either (i) or (ii) hold. (Note the inequality (2.21).) Put

1
(2.35) r (max ei)+

It is not difficult to show that r _<-1/2,n. Let ri Sty. For/3 _-< 3", denote by Ci a disk
with center at (i/lffi[ and radius r. For /3 > 3", let Ci be a disk with center at r and
radius 6/2. As before, define D by (2.27). Now estimate av from (2.20), using the
arguments of the Cases (i) and (ii), in accordance with /3 > 3’ or /3 <-% to deduce
(2.14). This concludes the proof of Theorem 2.

Remark 1. A special case of Theorem 2, namely, c=l and re=n-l, was
established in Morton [1964].

Proo] o" Theorem 1.
(A) ::), (R). This follows immediately from (2.3).
(R)=> (A). Let (I- zA)-1 (]’i(z))’.

Then ]ii(z) pi(z)/qii(z), where the degrees of P0 and qii are n 1 and n, respectively.
Now (1.3) follows from Theorem 2.

Acknowledgment. I would like to thank S. Parter for stimulating discussions we
had together.

Note added in proof. E. Tadmov in a recent paper The equivalence ofL2-stability,
the resolvent condition and H-stability, preprint, California Institute of Technology,
1981 used Laptev’s arguments [Conditionsfor the uniform well-posedness ofthe Cauchy
problem for systems of equations, Soviet Math. Dokl., 16 (1975), pp. 65-69] to prove
that the inequality (1.4) implies
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ON THE SOLVABILITY OF CERTAIN SYSTEMS OF
LINEAR DIFFERENCE EQUATIONS*

A. S. CAVARETTA, JR., W. DAHMEN,$ C. A. MICCHELLI AND P W. SMITHI[

Abstract. For a certain class of block Toeplitz matrices, we identify the smallest sector containing the
zeros of the determinant for the corresponding symbol.

0. We have been concerned with the inversion of infinite linear systems when
the coefficient matrix enjoys certain positivity assumptions, for instance, multiple
positivity in the sense of Fekete. Such systems arise in many contexts, one notable
case being cardinal spline interpolation. When the cofficient matrix has the Toeplitz
structure ai/l,j/l aij, the inversion is well understood. Our purpose here is to analyze
the inversion of banded totally positive systems when the Toeplitz structure is replaced
by the weaker hypothesis that for some fixed natural number N, ai/u,i/N aii. This
leads us to a question concerning the location of the zeros of a certain determinant.
When N and the multiple positivity is prescribed, we obtain the smallest sector
containing these zeros; our theorem extends a result of Schoenberg [2] for the Toeplitz
case.

1. Block Toeplitz systems. Fix any summable bi-infinite sequence {ai}. Associated
with such a sequence is the discrete convolution given by

(1.1) , ai_ixi=yi, -c< <c.

The bounded inversion of such systems is a fundamental and well understood problem.
For example, we encounter (1.1) in cardinal spline interpolation; in this case all but
finitely many of the ag vanish so that the associated Toeplitz matrix is banded. If we
investigate the cardinal spline interpolation problem further and allow for general
periodically distributed nodes, (1.1) is replaced with

(n)
ai_ixi--yi, i=--n modN, -<i<,

(n)E [a, I<, n 1,’’" ,N.

Clearly (1.2) reduces to (1.1) when N 1. System (1.2) is easily characterized in terms
of the coefficient matrix A (aii) for the general system

_
aii xi Yi" we obtain (1.2)

(i)if aq ai-i, 1 --< --<_N, -<j< and ai+N,i+N aid. Such matrices will be called block
Toeplitz (of order N).

It is convenient to rewrite the system (1.2) in matrix notation. In the obvious
way we group the sequences {x.} and {y/} into sequences {.}, {37/} of N-tuples by
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setting for each integer j

For each integer k define

’i (XiN’ X/N+N-1),

i (Y/N, YiN+N-1)"

(i)(Ak)ii=ai+k,N-h l <-i,j<-N.

With this notation, (1.2) takes the suggestive form

(1.3) Y, Ai-i i i.

The inversion of such block Toeplitz systems has been previously investigated by
several authors; see, for example, I. I. Hirschman, Jr. [1]. From general principles,
we knows that (1.3) is invertible provided its symbol

(1.4) A(z)= Y’, A,z"

is invertible for Izl 1. This in turn requires an investigation of the zeros of det A(z).
Set

(1.5) A
Ao A1 A2
A_ Ao A "!A-2 A-1 Ao

so that A is the coefficient matrix for the block Toeplitz system (1.3). We say that
the matrix sequence {An} is totally positive provided the matrix A is totally positive,
i.e., has no minor which is negative. More generally, given a natural integer k, {An}
is said to be k-positive provided the matrix A of (1.5) has no negative minor of order
=< k. In 2, we locate the zeros of det A(z) when the matrix A is k-positive and
strictly banded. Our methods are refinements and extensions of Schoenberg’s elegant
analysis for the Toeplitz case [2]. In 3 we extend our results to the case A totally
positive and derive consequences for the inversion of A. Section 4 finishes the paper
with applications to cardinal spline interpolation.

2. Multiply positive matrix sequences. Let the sequences of N N matrices

(2.1) O, O, Ao, A,"" ,A, O, O,"’, detAo 0

be k-positive, as defined in 1. We will assume that the matrix A is p-banded, i.e.,
aij 0 if/" < or if >i+p. So in (2.1) Ao is assumed to be nonsingular and upper
triangular, and q is the smallest integer greater than or equal to piN. Then the symbol
(1.4) becomes

(2.2) A(z)=Ao+AlZ +’" "+Aqz ’

and we put

(2.3) P(z)=detA(z).
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THEOREM 1. Assume the sequence (2.1) is k-positive and the matrix (1.5) is
p-banded, IfN is even, then all zeros of P(z lie in the sector

]argzl__<TrN( p-1 )p+k-l
IfN is odd, than all zeros of P(z) lie in the sector

[argz_r[__<rN( p-1 )p+k-1

Note that when N 1, our result reduced to that of Schoenberg. The result only
has content when the right-hand side of the inequalities is less than r, as is certainly
the case when k is sufficiently large. Using the central Gaussian coefficients [2], we
will show that these two inequalities are sharp.

Our proof of Theorem 1 depends on the known result that a linear transformation

Yi Y’. mii xi, 1, ", m
/=1

is variation diminishing whenever M (mii) is totally positive (see Schoenberg [2]).
More precisely, if we denote by v() the number of variations of signs in
(Xl, , x,) and by v(37) the corresponding number for the sequence yl, , Ym, then
the inequality

v()<-_v()

always holds provided M is totally positive.
Proof of Theorem 1. Suppose z a is a zero for the polynomial in (2.3). Clearly,

since Ao is nonsingular, a 0 and we may assume a p e i p > 0 and 0 <_- 0 _-< zr. Since
A(a) is singular, there exists some nonzero vector (Xl, , XN) in the null space of

-2 -1 2A(a). It follows that (...a x, a x, x, ax, a x,.. ") is in the null space of the
l,matrixA of (1.5). Indeed, up to certain common factors of a each equation in the infinite

system of (1.5) is equivalent to one of the equations

(2.4) A(a). 0.

From the matrixA of (1.5), whichwe have assumed to be k-positive, wenow identify
N different totally positive submatrices. Each of these is formed from k consecutive rows
and p + k consecutive columns of A. The N diagonal elements of Ao supply the N
different first row, first column positions for each of these k + (p + k) matrices. Label
these matrices B1, , BN. Each of these matrices is k-positive, hence totally positive.
Note also that since A0 is invertible each Bi is of full rank k; indeed, the minor of Bi
which consists of the first k columns of Bi is upper triangular with nonzero diagonal
entries.

Using the Bi as building blocks, we will now construct an auxiliary totally positive,
full rank matrixM. Let h be a fixed positive integer still to be disposed of later; set n hN.
We set up a linear transformation whose matrix M has the form

(2.5) M

B1 0 0

The schematic form representing M in (2.5) fails to reveal one essential feature of this
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matrix: the last element of each Bij_l is immediately above and in the same column as the
leading element of the next Bij. Thus M has nk rows and n(p+k)-(n-1)=
n (p + k 1) + 1 columns. This overlapping of the columns in the structure of M means
that the last equation of Bij_ and the first equation of Bi share a common variable. So in
order to make the equations determined by M consistent with those of (2.4), we
determine the ij recursively by

(2.6) ij =-- ii_1 + p + k 1 (mod N).

Now for h (p + k 1) set
l--1=(,c,...,c x, axl).

Then it is easily seen from (2.4), (2.5) and (2.6) that M =0. Setting 37a-Im 37,
372 Re 37, we have M)71 M372 0. In the following argument, we assume the real
vector )Ta # 0 (otherwise we would use 372).

The matrix M has two important properties for us.
1. M is totally positive. This follows as each Bi is totally positive and the

compounding used to construct M preserves total positivity (see Schoenberg [2]).
2. M has full rank. Indeed the minor obtained from M by selecting all columns

corresponding to the first k columns of each Bi is upper triangular with all nonzero
diagonal elements.

As M has full rank, we can select such that Mr3 ?, where ei--(--1) i. Then,
for any e > 0, M(]I+ e7)= e& and so by that variation diminishing property of the
linear transformation induced by M, we can conclude that

(2.7) V(l+e)>=nk-1.

An upper bound on v(a + e) is obviously n(p + k 1).
To improve on this upper bound, pick such that sin Oi O.

The vector 1 we write as

[pa sin Oa," , PN sin ON, PPa sin (Oa + 0)," , DPN sin (ON + 0),
(2.8)

l-12
/9 /91 sin (01 + 20),. , p PN sin (ON + 10 0), p Pl sin (01%" I0)].

In the case N even and 0 # 0, a sign change between sin (Oi +(]- 1)0) and sin (Oi +]0)
would allow us to reduce by one our upper bound for v(/91 + e). It follows that

V(yx+e)<-n(p+k-1)-v(sin 0i, sin (Oi+O), ,sin (Oi+lO-O))
(2.9)

n(p+k-1)-([(l-1)0] + cr=-I or0.

Combining (2.9) with (2.7), dividing by and simplifying yields

? 7 ,+
Letting (hence n) tend to infinity, we obtain

O<=rcN ( p-1 )p+k-l
This settles the case N even.

For N odd we argue similarly on the basis that no sign change between sin (Oi +
(/’-1)0) and sin (Oi+fO) will reduce by one our upper bound on v(a+eF). The
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resulting inequality is

Dividing through by which we then let tend to infinity yields, after simplification,

rr_O<=rN( p-1 )p+k-1

This completes the proof of Theorem 1.
A few remarks will suffice to show that the factor N(p 1)/(p + k 1) of 7r which

appears on the right-hand side of the inequalities in Theorem 1 cannot be replaced
by any smaller quantity. For the case N 1, Schoenberg showed that his inequality
is best possible by introducing the central Gaussian coefficients, defined by

sin pO sin_ (p 1)0 sin (p- u + 1)0
sin 0 sin 20. sin vO

if 0< u =<p,

P}=I.0

As Schoenberg shows, the sequence

0’ 1’ p

is k times positive if 0 is in the range O<-O<-r/(p+k-1), and if O=rr/(p+k-1)
then the symbol

v=O P

has zeros at

and

k’rci }Zl exp
p+k-1

Z2 exp +
p+k-1

This sequence provides a Toeplitz matrix which we view as N-blocked. We wish to
compute its symbol.

The symbol A(z) of (1.4) can be calculated in terms of generating functions of
the rows of A:

fi(7") E ai,, "r’, i=0,...,N-1.

Put z .N and let w be a primitive Nth root of unity. Then

) do(o) do(o-)

(2.12) a(z) lfl(’) fl(w’) f(wl-ar)
V-1

N N-1-I(T) fiN- (T) fN-l(



838 A. CAVARETTA, W. DAHMEN, C. MICCHELLI AND P. SMITH

where

1 1 1
N-1

tOT o) T

-, ()-1 (-1)-,
If we specialize to the Toeplitz matrix determined by the sequence (2.10), (2.12)
becomes

q(r) 0 0

A(z)=V"
0 q(to’) 0 V-’

0 0 q(oN-1 "r)

It follows that if q(r) =0, then detA(-N)=o. From this we easily conclude that if
0 rr/(p + k 1) the sequence (2.10) provides a Toeplitz matrix which, when viewed
as block Toeplitz, has a singular symbol A(z) when

z exp +/- (N even)
p+k-

or

z exp rr + (N odd).
p+k-

So we see that the zero sector given in Theorem 1 for the zeros of P(z)= det A(z)
cannot be made smaller.

3. Totally positive matrix sequences. Suppose the sequence

is totally positive. Then the matrix A of (1.5) has only nonnegative minors and the
result of Theorem 1 applies for every k provided (3.1) corresponds to a p-banded
system and det Ao 0. We conclude that P(z)=det A(z) has only real zeros with
signs (- 1)N. Actually more can be said:

THEOREM 2. Suppose A(z) is the symbol of the totally positive sequence (3.1). Let
2 (Xx,’’’ ,xr) satisfy A(a). 2 -0, 2 0. Then, provided det A(z)O,

(i)(1)N .a=>O
(ii) xj Xj+l <= O,/" 1," , N 1.

We remark that in Theorem 2 there is no need to assume any special band
structure on the matrix A generated by (3.1).

Proof. We use the same arguments of Theorem 1, with the simplification that
the matrix M can be constructed from a single nN x (n +p)N block of A. Set

2 n+p--1(3.2) y (2, a2, a x,. , a 2).

Then M . As we assume det A(z) O, we may choose/3 such that (-1)N/3 > 0
and det A(fl)O. Fix (e)U=l, e =(-1) and then define r by A(/3) =g,. Let

(if, , ,/3"+q- k). Then, for any e > 0, M(7 + cO) has a full complement
of sign changes. If we now use the variation diminishing arguments as before we obtain
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(3.3) nN- l <- v().

From (3.3) we obtain (i) arguing exactly as in Theorem 1. Once the sign of a is
determined, (ii) follows, since (3.3) holds for n arbitrarily large.

COROLLARY 1. For ce as in Theorem 2, the null space ofA(a) is one-dimensional.
Proof. Indeed, any solution A(a). $ =0 must satisfy (ii) and from this the

assertion easily follows.

COROLLARY 2. A polynomial P(z) equals detA(z) for some totally positive
sequence (3.1) with det A0 0 if and only if

P(z) p(r)p(tor) p(totv-’r),

where p(r) has only negative zeros, z riv, and to is a primitive Nth root of unity

Proof. The fact that P is det A (z) for some totally positive block Toeplitz matrix
follows from (2.13). The converse follows from (i) of Theorem 2. Indeed,

P(z) a(-I (1+(1)N+I /iz),
j=l

where a, Yi > 0. Then the polynomial

p(’r) a 1/N h (1 + ]/jl/NT)
/=1

gives the desired factorization of P(z).
A simple but instructive example of Theorem 2 is the symmetric Jacobi matrix

generated by Ao [g b] and A [] o].

0 a b c 0

0 c d a 0

0 a b c

As for the symbol

A(z)= [a +cz b ]dz c +az

its determinant is a quadratic whose discriminant is positive precisely when a, b, c,
and d satisfy the above inequality. Thus det A(z) has only real zeros if A is totally
positive. That these zeros are in fact positive is a consequence of Descartes’ rule of signs.

One application of Theorem 2 is the following"
THEOREM 3. Let A of (1.5) be determined by the totally positive sequence (3.1).

Then the following are equivalent:

(1) A2 is invertible on .
(2) det A((- 1)r) # 0.

,,.+oo 1o.(3) For g’ {(- 1) ,,=-oo, the system A$ has a solution o

Using recurrence relations for the principal minors of A, one finds that A is totally
postive if and only if

bd-a2-b2>_2ac.
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Remark. Recently, C. de Boor has proved that for arbitrary strictly banded totally
positive matrices A 1) and 3) are equivalent if 2o in 3) is assumed to be unique.

Proof. From general principles the block Toeplitz system, A2 37, is invertible
if its symbol A(z) is invertible for Izl 1. Since by Theorem 2, the only possible zero
of modulus one for det A(z) is (- 1)N, 2) guarantees that A(z) is invertible for Iz[ 1.
Thus 2) implies 1).

Clearly, 1) implies 3); we need only show 3) implies 2). This implication depends
on Theorem 2 applied to AT which is itself totally positive. As is easily observed,
AT(z)=(A(z-1)) T. Assume 2) fails so that A((- 1)N) is singular. Then AT(( 1)N) is
also singular and, according to Theorem 2, there exists 37- (y,..., YN) such that
AT ((__ 1)N)7 , and yy+l =< 0,/" 1, ., N 1. By 3), there is an 2 satisfying
A2 & Let S be the forward shift operator on (i.e., (S2)i- xi-1) and define

1 )NIsNJ=lim (-1 2;
L-,o 2L + 1 ’=-L

here the limit may have to be taken over some suitable subsequence as L tends to
infinity. It is easy to see that SwN-=(--1)NI and that A&=. Setting 2=
(w, , WN) we see that A((- 1)N) (-- 1, 1," ,(-- 1)N), and this yields the contra-
diction

0 (A T((_ 1)N), 5)= (, A((- 1)N)2) # 0.

Hence, A((-1)N) must be nonsingular.

4. Cardinal spline interpolation. Following Schoenberg [3], we denote by M(x)
the forward B-spline of order m based on the integer knots 0, 1,. , m. The cardinal
spline functions consist of all linear combinations f(x) ,=_ cM(x u). For a fixed
positive integer N, we choose N nodes

(4.1) 0<-al< <aN<N
and extend this collection periodically by

(4.2) a+ =c, vZ.

Putting aii M(a-f) we obtain a banded, block Toeplitz totally positive matrix A
to which we apply Theorem 3. If we assume that the symbol is not identically zero
(which amounts to certain interlacing conditions between the integer knots and the
c) we obtain

T.EORZM 4. The cardinal interpolation problem f(a)= y, v Z, is solvable for
any sequence {y} at the nodes (4.1), (4.2) if and only if either of the following
conditions is satisfied:

(i) There exists no nontrivial null spline f(x), f(a) O, v Z, satisfyingf(x + N)
(- 1)f(x).

(ii) There exists a bounded spline function f such that f(a)=(-1) for all
integers ,,

det (, (aj, (.D l)) 0,

where w is a primitive Nth root of unity and ,,(x; t) is the exponential Euler
spline of [3].

Proof. (i) is a direct translation of (2) in Theorem 3. Moreover, (ii) is equivalent to
(i) since the N Euler splines ,,,(x; wt), /=0,... ,N-1, provide a basis for the
N-periodic (or anti-periodic) cardinal splines.
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THE PERRON CONDITION FOR DIFFERENTIAL-DIFFERENCE
EQUATIONS IN A HILBERT SPACE*

RICHARD DATKO"

Abstract. The Perron condition, or bounded input-bounded output criterion for linear systems, is
extended to a class of linear differential-difference equations in a Hilbert space.

1. Introduction. In thils paper, a version of the Perron condition is developed for
differential-difference equations in a Hilbert space. In engineering parlance this
condition is frequently referred to as the bounded input-bounded output criterion for
linear systems (see, e.g., [2]). The condition was originally given by O. Perron [9] for
linear systems in R and has since been extended to a variety of problems (see, e.g.,
[13, [3], [4] and [6]). For linear systems of the form

(1.1) (t) A(t)x(t)+f(t),

where suitable restrictions are placed on A(t), and x(t) is in X, a Banach space, one
statement of the Perron condition is as follows (see, e.g., [4]). Consider the system

(1.2) }(t)=A(t)y(t),

Then (1.2) is uniformly exponentially stable if and only if all solutions of (1.1), with
initial values Ix(to)l--0 and forcing term f such that If(’)l Lq, 1 <-q <_oo, satisfy an
inequality of the form

(1.3) It Ix(t’ t’ O’ f)lP dt <=M(t) <’
where M(f) does not depend on to and 1 < p <

The main purpose of this paper is to obtain a similar condition for systems defined
on a real Hilbert space H which may, with a certain license, be written in the form

(1.4) - y(t)- 2 B(t)y(t-h) =A(t)y(t)+ . A(t)y(t-h)+f(t).
i=l /’=1

In (1.4), 0<hi <.." <h, h, {A(t)} and {B.(t)} are uniformly bounded linear map-
pings from H into itself defined for all _>- 0, and A (t) is a (possibly unbounded) linear
mapping from a dense set D inH intoH and satisfies certain Other conditions. Actually,
we consider an integrated or weak version of (1.4) and show in Theorem 3.2 that the
homogeneous equation related to the weakened form of (1.4) is uniformly exponen-
tially stable if and only if the weak solutions of (1.4), with zero initial data, satisfy an
inequality of the form

(1.5) ]y(t, to, O, f)l<=M(f)
for all essentially bounded strongly measurable f: [0, ) H. To obtain this condition
it was found expedient to make an assumption on the difference equation

(1.6) Z(t)- , Bj(t)Z(t- hj) 0
j=l

which is similar to the D-stable condition of Cruz and Hale (see, .e.g., [7, Chap. 12]).

* Received by the editors December 20, 1978, and in final revised form February 11, 1981.
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Using this assumption, we transform the original problem into one of the form

(1.7) -(x(t))=A(t)x(t)+ E Hl(t)x(t- wi)+f(t),
i=1

where hl=wl<w2"" and limn_ wn=c, and establish the Perron condition
(Theorem 3.1) for the system (1.7). Then, using results from [5], we apply Theorem
3.1 to obtain the main result, Theorem 3.2, for (1.4). Section 2 consists of preliminaries
and the statement of results from [5] which are necessary to the development of 3.

A few general comments will be made on the methodology used in this paper. First
of all, the term measurable is always used in the sense of strongly measurable (see, e.g.,
[8]). Moreover, whenever the order of integration and summation or the order of
integration in multiple integrals is changed it will not be explicitly justified since the
nature of the systems under consideration permits these operations and their
verification can be done in a straightforward manner. More importantly, the results in
this paper can be easily extended to Banach spaces, since the major proofs do not
intrinsically depend on the Hilbert space structure. The reason this is not done is that
heavy reliance is placed on [5, 3], which is developed for a Hilbert space, and it is felt
that extension of the results of that section to Banach spaces would obfuscate a basically
simple treatment of the Perron condition for delay differential equations.

The core of this paper is Theorem 3.1. In 2, it is shown that there exists a
piecewise strongly continuous family of mappings, S(t, tr), from [0, c) [0, c) into the
space of continuous linear mappings on H such that solutions of (1.7), with initial data
zero, can be written in the form

x(t, to, O,

Then it is shown, in the proof of Theorem 3.1, that for any x0 in H and all t_-> to_-> 0
there exists an essentially bounded measurable mapping/: It0,)H such that

(1.9) (t-to)S(t, to)Xo It S(t, o’)f(tr) dcr.

Using results from [5] and (1.9), the Perron. condition is proved for (1.7) and then
extended in Theorem 3.2 to (1.4).

2. Preliminaries.
DEFINITION 2.1. Let H stand for a. real Hilbert space. The bounded linear

mappings from H into itself will be denoted by [H]. The identity mapping in [H] will
be denoted by I.

DEFINITION 2.2. The norm in any Hilbert space will be denoted by[. ].
DEFINITION 2.3. The direct sum of two Hilbert spaces H and HE will be denoted

by H +H2 {(Xl, x2): x H and X2 H2}; IX[2 [(X1, X2)[2 IX1[2 "-IX2[2.
DEFINITION 2.4. Let [a, b)c R, -c__< a, b-<_ c. Let H be a Hilbert space and

f:[a, b l--> H Bochner square integrable. The equivalence classes of such mappings f
will be denoted by L2[[a, b), HI. The space C[[- h, 0], H] Ch will denote the space
of continuous mappings from [-h, 0] in H. The norm on Ch is

b sup {14’()1: [- h, 0]}.
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The equivalence classes of measurable mappings from [0, ) into H such that

ess sup [f(t)l < c,
0t<x3

will be denoted by L[R +, H].
Notational convention. The symbol A will denote the set in R+R+ defined by

A {(t, to)’ 0 _--< to <---- _--< c}.

DEFINITION 2.5. A family of mappings U(t, to) in [H] with (t, to) A will be called
a strongly continuous evolutionary process with exponential growth if, for all (s, to) and
(t, s) in A with to _-< s-<_ and x H:

(i) U(t, s)U(s, to) U(t, to)X;
(ii) there exists constants M1 _-> 1 and to > 0 such that

[U(t, to)]--< M1 e ’(t-t)

for all (t, to) A;
(iii) U(., to) is strongly continuous for -> to and IU(t, to)l 0 for < to;
(iv) limt_,, U(t, to)X x.

A family satisfying (i)-(iv) will be called an evolutionary process of class C(0, e).
Observe that if U(t, to) satisfies, in addition to Definition 2.5, the condition

U(t, to)= U(t-to, 0), then the evolutionary process is a semigroup of class Co (see,
e.g., [83).

Let 0< hi < hz < h,, h. Let T(t, to)C [H] be an evolutionary process of class
C(0, e), i.e., a family of mappings which satisfies Definition 2.5. Let {B/.(t)} and {A/.(t)},
1 _-< f _-< m, be two families of strongly continuous mappings from [0, ) [H] satisfying,
for all/’, the conditions IA;(t)[ _-< M, [B/.(t)l-<_ M1 and [B/.(t)] 0 if < O. We consider the
system of delay equations defined as follows:

y(t, to, qb)- Y B/.(t)y(t-hi, to, qb)
/’=1

(2.1a) T(t, to) qb(O)-
/’=1

if _-> to => 0, and

(2.1b)

if [to- h, to].

T(t, o’) E A/.(o.)y(o.-h/., to, b) do"

y(t, to, qb)=(t-to), C

The primary goal of this paper is to develop a Perron condition for systems of type
(2.1). To do this we shall find it convenient to first develop the Perron condition for
systems of the type (1.7). To do this it is necessary to make the following transformation.

Let to >= 0 and b Ch. Define

(2.2a) 4,(0) b(0)- E
/.--1

(2.2b) (o") b (o.)- E B/.(to + o")qb(o"-
/’=1

if o" 6 [-h, 0),
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(2.2C) II(r)ll 0 if r > -h.

Clearly, (2.2) defines a linear mapping on Ch.
Applying (2.2) to (2.1), we obtain

x(t, to, )= y(t, to, c)- E B/(t)y(t-h/, yo, b)

(2.3)
/--1

r(t, tol(ol + r(t, 2 a(ly(-h, yo, .
j=l

The y terms under the integral in (2.3) may be replaced by x terms if we formally invert

(2.4) x(t) y(t)- E B(t)y(t- h)
/=1

to obtain

(2.5) y(t) x(t)+
/=1

where h to1 < toz is the ordered sequence of real numbers consisting of all possible
linear combinations of the {hi} over the semigroup of positive integers and zero, i.e.,
{tot} are of the form w n h + +nh where {ni} are positive integers or zero. If,
for some 8 > 0, the formal series in (2.5) {i(t)} satisfies the conditions

(2.6) [i(t)[ .,
(2.7)

i=1

then (2.4) and (2.5) are the inverses of one another in the sense that any mapping
y: (-,)H which satisfies

ly(t)l 0 if <-h, [y(t)[ Me’ if -h

defines x(t), and conversely x(t), satisfying (2.4), can be converted to y(t) by (2.5). In
[5], it is shown that a system of the form (2.1) satisfying (2.6) can be converted via (2.4)
into a system of the following type:

(2.8a) x(t, to, )= T(t, to)(0) + T(t, ) .()x(-wi, to, ) d

if -> to,

(2.8b)

if (-, to) and

(2.8c)

Here

(2.9)

and for the same 6 as in (2.7),

(2.a0)

x(t, to, c) c(t- to)

X(to, to, c)=c(O).

[/-/,.(t)[ r,

ri e2&’ < cx3
/=1
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(see [5, pp. 118-119]). However, not every solution of (2.8) can be reduced to a solution
of (2.1). In any case, there is a strong connection between the two systems if we make
the following assumption which will hold from now on.

Assumption 2.1. We shall assume that (2.6) and (2.7) hold and hence systems
(2.1) and (2.8) are related by (2.4).

Let 2[(-00,0), H] denote the set of equivalence classes of all measurable mappings
4 from (-, 0)--> Hsuch that

I(2.11) 14 12 1E1 r e2% ]b (O")12 do- < oo.

Let

(2.12) Yg H +2[(-oo, 0), H].

DEFINITION 2.6. System (2.1), ((2.8)) is uniformly L2 stable if, for all & e Ch
), there exists a finite constant M(&) (M()), independent of to, such that

to, 4)12 dt <-M(ck)

THEOREM 2.1. If systems (2.1) and (2.8) are connected by (2.4) and (2.5), then
(2.1) is uniformly L2 stable if and only if (2.8) is uniformly L2 stable.

Proof. See [5, Theorem 3.1].
COROLLARY. If systems (2.1) and (2.8) are connected by (2.4) and (2.5) they are

uniformly L2 stable if and only if there exist constants M1 and a > O, independent of to,
such that, for all >-_ to,

and

lY(t, to,

Ix(t, to,

Hence, systems (2.1) and (2.8) are uniformly L2 stable if and only if there exists M2,
independent of to, such that

and

I, ly (c, to, 4,)1 da -< MI4,

I Ix(, )1=dM=ll=.to,

Proof. See [5, Thm. 3.4 and its corollary].
In conjunction with systems (2.1) and (2.8), we shall consider their non-

homogeneous versions. They are defined, in the case of (2.1), by the equation

y(t, to, 4, f)- Y Bi(t)y(t- hi, to, 4, f)
/=1

(2.13) T(t, to) ok(O)- E Bj(to)ck(-hj)
j=l

T(t, o-) E A(o’)y(o--h, to, ok, f) do"+ T(t, o")f(o") do"
/=1
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if t_->to, fL[R+,H] and b Ch. In the case of (2.8), the corresponding non-
homogeneous equation has, by [5, Thms. 2.9, 2.10], the unique form

(2.14) x(t, to, c, f)= x(t, to, c) + S(t, tr)f(o’) dtr

where $: A [H] satisfies

(2.15a) S(t, to)Xo r(t, to)Xo + T(t, tr) Y. H(tr)S(tr- toi, to)Xo dtr
j=l

and

(2.15b) IS(t, to)l O,

if < to.
Thus, the existence of solutions of (2.14) is obvious. To prove the existence of

solutions of (2.13), we let e Ch and f e L[R /, HI be given and define in by
means of (2.2). Then, [5, Thm. 2.9], (2.2) and the definition of the {Hi(t)} given in [5,
pp. 118, 119], we know there exists y(t) such that

x(t, to, , ) x(t, to, g)+ ft s(t, )() d

r(t, tol( + 2 r(t, l.(x( , to, ,
j=l

+ , T(t, 1[() d

[ ]T(t, to) c(o’)- Bi(to)C(-hi)

+ T(t, or) , Ai(a" x(cr- hi, to, , f)
1=1

+ It T(t, a’)f(a’) do"

+ E /rk (o’)x (or h o)k, to, , f) do"
k=l

[ ]T(t, to) c(O)- , Bi(to)4(-hi)
i=1

+ T(t, tr) E Ai(cr)y(cr- hi) dtr + T(t, tr)f(tr) dtr
1=1

y(t)- E Bi(t)y(t- hi).

Clearly y(t) above satisfies (2.13). Thus, we have:
THEOREM 2.2. For given c Ch and f Loo[R /, HI, (2.13) has a unique solution.

Proof. The above discussion establishes existence. Uniqueness follows from the
uniqueness of solutions of (2.14) which is obvious.

We now define the piecewise strongly continuous mapping y:A [HI for system
(2.13), which is given by the equation

(2.16) Y(t, tr)= S(t, tr)+ E I2Ii(t)S(t-wi, tr).
i=1
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THEOREM 2.3. If [Ol =0 on I-h, 0] and f Loo[R+,H], then the solution of (2.13)
can be written in the orm
(2.17) y(t, to, 0, f)= g(t, r)f(r) dr.

Proof. The solution of the system (2.14), related to system (2.13), is

x(t, to, O, f)= It S(t, o’)f(r) do’.

However, using (2.4) and the properties of 8(t, ) given by (2.15), we have

y(t, to, 0, f) x(t, to, O, f) + E i(t)x( wi, to, O, f)
]=1

s(t, )/() d+ (t) S(t-, )/() d

3. The Perron condition.
LEMMA 3.1. If Jto Is(t, to)Xol2 dt<-M3lxo[, for all to -->0 and xoH, where M3 does

not depend on to and Xo, tken system (2.8) and, consequently system (2.1), is uniformly
L: stable.

Proof. The proof is given in [5, proof of Thm. 3.1, eq. (3.18)ff].
THEOREM 3.1. Suppose that for every f Loo[R +, H] there exists a finite constant

M(f) independent of to such that the solution of (2.14) x(t, to, O, f) satisfies

(3.1) Ix(t, to, O,f)i-- ItS(t, r)f(o’) do" _-<M(/);

then system (2.8) is uniformly L2 stable.
Proof. It can easily be shown, using the principle of uniform boundedness, that

(3.1) implies the existence of M4 < and independent of to such that

(3.2) Ix(t, to, o, f)l <=M4[fl

(see, e.g., [4, Thm. 6]).
Let T > 0 be fixed and define

(3.3) Sr(o’, to) $(o’, to), cr <= T + to, and IST(O’, to)[ 0 if o" > T + to.

Let (Xo, 0). By [5, eq. (2.52)],

to, q) do"-- Tx(t, to, c)= TS(t, to)Xo.
0

If _-> to + T, we use (2.3), letting ($r(o’, to)Xo, St(’, to)Xo) and the representation
[5, eq. (2.52)], which states that

fit
t

x(t, to, )= S(t, to)4,(01 +,E S(t, o" + w.)H.(o" + oilO (o’1 dcr.
0--o9
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We obtain

to+r
x(t, to, ) dtr

Tx(t, to, 49)
to+T

S (t, to)xo dt

S(t, tr)ST(tr, to)Xo + Y. S(t, a + w)Iti(a + oo)ST(a, to)Xo da da
to

to+r

(3.4) S(t, tr)Sr(tr, to)Xo

+ S(t, a + wi)Hi(a + wi)Sr(a, to)Xo da dtr
"to

| S(t, tr)Sr(tr, to)Xo dtr

+ S(t, a + wi)/-/i(a + w)Sr(a, to)Xo dtr da
]=1 .to+ T-to

+ Y. S(t, a + wi)Iti(a + ooi)Sr(a, to)Xo dtr da
]=1

+ , S(t, a + toi)Hl(a + toi)Sr(a to)Xo dtr da.
o-oi

Since IST(a, to)Xol 0 if to- toi ----< a < to, (3.4) can be simplified to

Tx(t, to, ) f S(t, tr)ST(tr, to)Xo do"
at

f to+T

+ (to+T-a)S(t,a+wi)Hi(a+wi)ST(a, to)xoda
]= .’to+t--to

l" to+ r--ti
(3.5) +,1 | toS(t, a + w)Iti(a + w)ST(a, to)Xo da

| S(t, )Sr(, to)Xo dr
at

+ E Oi(a)S(t, a + o)i)Hi(a + wi)ST(a, to)xo da,
j=l

where the scalar function 4’, on the right side of (3.5) is defined

to+ T-a, to+ T-wi<-a <-to+ T,
(3.6)

o otherwise.

Notice that for each ],

(3.7) O <- Oi(a <= wi
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Furthermore, there exist constants M5 and k such that, for all a,

(3.8) IST-(a, to)Xol <_-M5 elxol.
(See, e.g., [5, eq. (2.31), p. 124].) Thus for each f the inequality

(3.9) (a + tot)ST(a, to)Xo[ -< ritoM5 elxol
holds.

By [5, Lemma 1.2] and (2.9),

(3.10)
=1

Moreover, for each/" on the right side of (3.5) we can write

(3.11)

f, Oi(a)S(t, a + toi)tl.(a + tot)ST(a, to)Xo da

t+

( -wi)S(t, ).()S( -wi, to)Xo d
to+i

s(t,(.
In (3.11),

)ST(fl-to., to)Xo if to + i T + to +,(fl)
0 if to fl to + i.

Thus, from (3.9) and the definition of .,
(3.12) I(fl)[ .iM elxo[
for all in [0, ). From the above, we can write (3.4) as

rs(t, to)Xo S(t, ) St(g, to)Xo + E ’() d.
=1

Thus from (3.2) we obtain for to + T

(3.13) TS(t, to)Xol NM4Ms elxo + r

By (3.1), inequality (3.13) can be rewritten, if to + T,

(3.14) rS(t, to)xol Mlxo e.
Hence, since T > 0 was arbitrary, we choose T 1. Then for to

(3.15) Is(t, to)xol Mxol,
where M7 max [M e, Ms e does not depend on to.

We now repeat the above argument replacing Sr(, to) by S(, to) and to + T by
to and observe that inequality (3.8) becomes (3.15). Inequality (3.13) becomes

(3.16) I(t- to)S(t, to)Xol NM4MTIxo 1 + 2 r
]=1
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which if > to yields

(3.17) IS(t, to)Xo[ <-
t- to

for all x0 in X. Since (3.17) implies that

(3.18) f IS(t, to)Xo[ dt-<M9lxol2,
at

where M9 does not depend on to, it follows from Lemma 3.1 that system (2.8) is
uniformly L2 stable.

THEOREM 3.2. System (2.1) is uniformly L2 stable if and only if the solutions of its
nonhomogeneous version (2.13) satisfy, for all >-to and for all f s L[R +, H], an
inequality of the type

(3.19)

where M() does not depend on to.
Pro@ (i) If (2.1) is uniformly L stable, then by Theorem 2.1 so is (2.8). Hence,

by (2.16), (2.6), and Theorem 2.1 and its corollary,

+ f 1 =M(.
j=

(ii) If (3.19) holds, then the inversion of (2.16) and the bounds on the ]Bi(t) yield,
for all [ in L[R +, H], the inequality

It s(t,
]=

MM(f)m.

Hence, Theorem 3.1 is satisfied, and, by Theorem 2.1, system (2.1) is uniformly L
stable.

Acknowledgment, I would like to thank the referee for suggesting the elimination
of much chaff in 2 of this paper.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF y"= b(t)f(y)*

STEVEN D. TALIAFERRO"

Abstract. Explicit formulas are obtained for the asymptotic behavior of solutions of the three problems

y"= 6(t)f(y), lim y(t) lim y’(t) 0,

y"+b(t)f(y)=0, lim y(t)=0, lim y’(t)=,
t.,0 t._0

y"+ b(t)f(y) 0, lim y(t) , lim y’(t) 0,

as tends to c, 0, and respectively. In all three problems d(t) and f(y) are assumed to be positive and
continuous. Necessary conditions for existence of solutions to these problems are also given.

1. We will consider the following "initial value" problems, where a and b are
positive constants"

(A) y"=qb(t)f(y), (t, y)(a,)(O,b)=IJ,

lim y(t)= lim y’(t) 0;

(B) y"+&(t)f(y)=O, (t, y)(O,a)(O,b)=IJ,

lim y(t) 0, lim y’(t) ;
t0 t-0

(C) y"+ b(t)f(y) 0, (t, y) (a, c) (b, )=IJ,

lira y(t) c, lim y’(t) 0.

In all three problems, f" J (0, ) and b" I [0, c) are continuous. We will mainly
be concerned with the asymptotic behavior of solutions of problems (A), (B) and (C)
as tends to m, 0 and c respectively; however we will also discuss existence of solutions
to these problems. We group these problems together because they can all be handled
using the same techniques.

The Thomas-Fermi problem,

(1) y"= t-1/2y 3/2, y(oo) 0,. y’(oo) O,

which arises in nuclear physics [2], [9], is a special case of problem (A), and so is the
Emden-Fowler equation y" tCy , A > 1, which is dealt with in [1]. The problem

t
(2) y"+= 0, y(0) 0, y’(0) , > 0,

Y

which arises in fluid mechanics [5], is a special case of problem (B).
Problem (A) with/(y) yx, A > 1, is discussed in [6], and Problems (B) and (C)

with f(y)= y-h, A > 0, are dealt with in [7] and [8], respectively. The results in these
papers rely heavily on the monotonicity of f(y). In this paper we make no monotonicity
assumptions. Also results on existence of solutions of the more general problem
y"=f(t, y, y’), y() y’(c) 0, can be found in [3], [10].

* Received by the editors May 14, 1980, and in final form January 29, 1981.
Department of Mathematics, Texas A. & M University, College Station, Texas 77843.
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The recent paper [4] contains results for problem (A) when b(t) and f(y) belong
to the class of o-regularly varying functions. The definition of o-regularly varying
functions partially motivates the following definition which will be used in stating the
theorems.

DEFINITION. For c, d > 0, let

f(cy)
A(d) yli_,mo+ sup

o<<d cf(y)’

f(ay)
B(d)= lim inf

y-,o 0<,<d af(y)’

/(cy)
C(d) lim sup

-.oo > cff(y)

A-l(c) sup [{d > 0: A(d) < c} LJ {0}],

B-l(c) sup [{d > 0: B(d) > c} t_J {0}],

C-l(c)=inf{d>0: C(d)<c};

f(cy)
/3(d)= lim inf

y-O 0<c <d f(y)

f(cy)
y(d) lim sup

y-,oo >a f(y)

The three sets of functions {A (d), A-l (c )}, {B (d), B-l (c ), 8 (d)} and {C(d), C-l(c),
y(d)} will be used in the analysis of problems (A), (B) and (C), respectively. Since f(y)
is positive, we have that A(d) and A-l(c) are nonnegative and increasing and the other
6 functions are nonnegative and decreasing. It follows directly from the definition that
A(d2)<-A(d)2, dB (d) >- CJ (d) and dC(d)<-y(d). Thus, A(d)<l for some 0<d<l
implies A(d)O as d-0 and A-l(c) is positive for c >0; lima-,o+/3(d)>0 implies
B(d)00 as d-0+ and B-l(c) is positive for c>0; and limd-,oo y(d)<00 implies
C(d)O as d-00 and C-1(c)<00 for c>0. It is only under these conditions the
following asymptotic results are useful, but this includes a large class of nonlinear
differential equations; in particular, problems (1) and (2) and the Emden-Fowler
equation are in this class.

For the following four theorems we use the conventions 1/0 +00 and (1/+00) 0.
THEOREM 1A. Let I and J be as in problem (A), toL yoJ, f:J- (0, 00) be

continuously differentiable, and qb :I - (0, 00) be continuous. Suppose for some d > 0 we
have A (d) < 1. Iffor some continuously differentiable function I - (0, 00) we have

(3) 0<c lim
O(t) <1 O(t)

and

< lim 1 c4 < 00,
t-,oo -4,(t)H’(I(t)) --t--->oo /4,(t)H’(I(t)))

then any solution, y(t), of problem (A) satisfies

A_(ClC3_)<_lim _(t) <lim
y(t)

<_
-)’t-,-----F- (I(t))=t-ooF-l(I(t))-A-l(1/c2c4
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where
-,/7o 2 dx

F() J,/ H(sr) log I(t) I, ,/g,(z) dz.

THEOREM lB.1. Let I and J be as in problem (B), toeL yoJ, /:J+(0, oo) be
continuously differentiable, O" I + (0, o) be continuous, and to x/O (r) dr < oo. Suppose
limd_,O+/3 (d) > 0. Iffor some continuously differentiable function I - (0, o) we have

(5) 0 < c1 lim+
O(t) < lm O(t)

and

(6)

0<c3
t-,o+lim 1 +2H(I(t))

x/.O(t)H,(I(t

<-liml+2H(I(t))( 1 i)’t-’o+ x[O(t)H’(I(t)
then any solution, y(t), of problem (B) satisfies

B-1(c2c4 +) lim
y(t)

-< lim
y(t)

t_o-+ F-l(I(t)) ,_,o F-l(I(t))-

where

f’/g 2 dx
H(r) IF-l(()]2,

C4 < 00,

ClC3

I(t) Io 40(r) dr.

The condition in Theorem lB.1 that " x/(r) dr < oo is not very strong, because,
by Theorem 2B, if problem (B) has a solution then t&(t) dt < oo; but if we have the
slightly stronger condition 5o tl- t(t) dt < oo for some e > 0 then

to
/(t) dt x/tl-&(t)t-[(1-)/2] dt <=

aO aO

1/2

f ttl-et(t) dt) ( t-(l-e) d
ao

1/2

In the following theorem we dispense with this condition on & at the expense of giving
the asymptotic behavior of y(t) as t-> 0 as the solution of a first order differential
equation rather than giving it by an explicit formula as in Theorem 1B.1. However
in many problems, including (2), this first order differential equation can be easily
solved. Also, since limd-,o+/3(d)>0 implies f(y) is bounded away from zero for y
near zero, the integral which defines F(sc) in Theorem lB.1 converges

THEOREM lB.2. Let I and J be as in problem (B), f:J(0, ) be continuously
differentiable, and & I (0, o) be continuous. Suppose limd_,O+/3 (d) > 0. If for some
continuously differentiable function 0 I- (0, ) we have

(7)

and

(8)

0<C1-" lim
0(t) <1 0(t)

0 < c3 lim 1 +---<_ lim 1 + c4 (
t-,o 2,’ t-,o
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then any solution, y(t), of problem (B) satisfies

B-1(c2c4 +) lim
y(t)

,-,o t, (t) B-l(1-+ClC3

where , I (0, ) is a solution of
(9) g’ -1/2O(t)f(tg).

THEOREM 1C. Let I and J be as in problem (C), to e L yo e J, f" J (0, c) be
continuously differentiable, and &" I (0, ) be continuous. Suppose limd-, y(d)<
o. 1ffor some continuously differentiable function ! (0, ) we have

(10)

and

(11)

O < c3 lim l +
H’(I()).,/-)

-< lim 1 + 2H(I(t c4 <
,-,o H’(I(

then any solution, y(t), of problem (C) satisfies

y(t) y(t)c-a(clc3 > lim > lim
too F-a(I(t)) ; F-l(I(t))=

where

F(s) @(x 2),
H(sr) [F-a(sr)]2 t(t) I 4() dr.

to

2. The following three theorems are concerned with existence of solutions of
problems (A), (B) and (C).

THEOREM 2A. LetlandJbe as in problem (A), andf :J (0, c) and & :I [0, )
be continuous. Suppose A(d) < 1 for some d > O. Then for each yo J and to I there is
a positive decreasing solution of

(12) y"= &(t)f(y), y(to) yo, y’(c) 0.

This solution decreases to zero, and hence is a solution of problem (A), if and only if

t(t) dt c.

Proof. Let do > 0 be such that A(do)< 1. Then, for some Y (0, Yo) and c (0, 1),
we have for 0 < a < do and 0 < y -< y that f(ay)< car(y). We claim

(13) lim t’(,,y__._, 0.
t0 y
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Otherwise we would have e > 0 and a positive sequence {Yn}n= decreasing to zero with
f(y,) > ey,, y,+l ce,yn, and 0 < a, < do for n 1, 2, 3, . Then, for n 1, 2, 3, ,

,f(Y)
ffY, + I) f(a,y,) < co,f(y,) < c "o,,... o If(Y I) c y,+I,

Y
a contradiction. Hence (13) is true.

A result of Hartman and Wintner [3, Thm. 1] gives the existence of a positive
decreasing solution of (12).

Let y(t) be a positive decreasing solution of (12). Integrating the differential
equation twice from to o0 we get

(14) y(t)- y(m) J, (r- t)6(r)f(y(r)) dr.

Suppose y(o0) 0. Then, by (13), limt_.oo f(y(t))/y(t) 0, and for sufficiently large
values of we have from (14) that

y(t) <= J, (r- t)(r)y(r) dr <- y(t) J, (r- t)4)(r) dr.

So for large we have ? (r- t)c (r) dr _-> 1 and hence It rb (r) dr o0.

Conversely, suppose y(o0)> 0. Then, for large t, we have from (14) that

y(t)- y(o0) > f(y (o0)) (r- t)c/)(r) dz,

and hence It rck(r) dr < o0.

THEOREM 2B. Let I and J be as in problem (B), to I fq J, and f" J (0, o0) and
b" I [0, o0) be continuous. Suppose lmd_,O fl (d) > 0. Ifproblem (B) has a solution then

Io Io’tf(t)cD(t) dt o0,(15) t(t) dt < o0

Remark. It can be shown that if o t(t) dt<o0 then for each yoJ there is tl I
such that for each to(O,h) there is a solution of y"+4(t)f(y)= 0, limt_.o/ y(t)=0,
y(to) yo. However (15) does not guarantee that limt-o/ y’(t)= o0.

Proof. Since limd-.O+ fl (d) > 0 there exists do > 0 such that/ (do) > 0. Hence, for
some yl J we have for 0 < a < do and 0 < y =< yl that

(16) f(ay > fl (d)
2

:tY).

Suppose y(t) is a solution of problem (B). Then there exists tl (0, to) such that
for O<t<-h we have that y(t) is defined, y(t)_-<yl, and doy(t)>t. Thus, for each
te (0, hi, there is an a e (0, d0) such that ay(t)=t. Hence, for O<t<-_h, we have by
(16) that f(t) > ((do)/2)f(y(t)). Integrating problem (B) from 0 to tl, we obtain

tl 2 tl
o0 y"(t) dt 4)(t)f(y(t)) dt<

(do)

and hence jo k(t)f(t) dt- o0.

Next, integrating problem (B) twice, we get

(17) It 1 (r- t)c/)(r)f(y(r)) dr y(tl)- y(t)- (tl- t)y’(h),
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and letting t--)0+ we obtain by the monotone convergence theorem that

(18)
tl

’rb (’r)f(y (’r)) d’r y(tl)- tly’(tl) < 00.

Putting y )’1 in (16) shows f(y) is bounded away from zero on 0 < y =< yl. Thus from
(18) we get o zb (-)dr < 00.

THEOREM 2C. Let I and J be as in problem (C), to e I f’) J, and f :J (0, 00) and
b :I --) [0, 00) be continuous. Suppose limd_, y(d) < 00. Ifproblem (C) has a solution then

tc d 00, It f(t)q)(t) dt < 00.

Proof. Since lima_, y(d)< 00 there exists do > 0 such that y(do)< 00. Hence, for
some y e J, we have for c > do and y => y that

(19) f(ay) < (y(do) + 1)f(y).

Suppose y(t) is a solution of problem (C). Then there exists tl > to such that for
> tl we have y(t) is defined, y(t) _-> y, and doy(t) < t. Thus, for each => t there is an
a > do such that ay(t) t. Hence, for => ta, we have by (19) that f(t) < (y(do) + 1)f(y(t)).
Integrating problem (C) from ta to 00 we obtain

y(do)+ 1
4)(t)f(t) dt,

and hence , ch(t)f(t) dt < 00.

Next, integrating y’(t) 4) (r)f(y (r)) dr from tl to 00 and interchanging the order
of integration we get

(20) 00 It (’-tl)d(r)/(y(’)) dr.

Putting y yl in (19) shows f(y) is bounded on y->y1. Thus from (20) we have
,o () d

3. The following three theorems are needed for the proof of Theorems 1A, 1B
and 1C, but, as we will see in 5, they also can be used to determine the asymptotic
behavior of solutions of problems (A), (B) and (C) when Theorems 1A, 1B and 1C fail.

THEOREM 3A. Let c > O. Let I and J be as in problem (A). Suppose f :J --) (0, 00)
and qb, di) I --) [0, 00) are continuous, and ccb(t) <-_ qb(t) for eL Let y, Y :I --) Jbe solutions
of y"= b(t)/(y) and Y"= di)(t)f(Y) respectively, which also satisfy the initial conditions
of problem (A). Then

Y(t)A-(c)-< lim-,-- y(t)

THEOREM 3B. Let c >0. Let I and J be as in problem (B). Suppose f:J (0, 00)
and qb, I [0, 00) are continuous, and c(t) >-_ qb(t) for e I. Let y, Y :I - Jbe solutions
of

y"+ 6 (t)f(y) 0, lim y(t) 0
t0
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and

Y"+ P(t)f(Y) O, lim Y(t) O,
t0

respectively. Suppose limd-.o+/3(d) > 0. If limt-o+ y’(t) 00 then limt_o+ Y’(t) 00 and

Y(t)
(21) B-I(c) <-- lim

y(t)"

THEOREM 3C. Let c > O. Let I and J be as in problem (C). Suppose f J - (0, 00)
and, :I [0, 00) are continuous, and c(t) <- (t) for I. Let y, Y :I Jbe solutions

o
y"+ (t)f(y) O, lim y’(t) O,

r"+cP(t)f(Y)=O, lim Y’(t) O,

respectively. Suppose lim,_o y(d)< 00. If lim,_oo Y(t) 00, then limt_oo y(t)=00 and

Y(t)
(22) C-(c)-> lira

t-oo y(t)"

LEMMA 1. Let L J c (0, 00) be open intervals and &, (P" I -> [0, 00), y, Y" I --> J,
f" J --> R -{0} be continuous functions with y and Y twice continuously differentiable. Let
toeI, s=ttodz/y2(’), and v(s)=Y(t)/y(t). If Y"(t)=Op(t)f(Y(t)) and y"(t)=
&(t)f(y(t)) then

[ s(s)y (t)) ](23t v"(s) y3(tlv(slf(y(tl) c(t) )f(y(tl)-6(t)
Proof. Use the chain rule.
Proof of Theorem 3A. Let d > 0 be such that A(d)< c. Let s and v(s) be as in

Lemma 1. Since y (t) - 0 as 00 we have s --> 00 as -> 00 and there is a subinterval I’
of L with endpoint 00, such that for e I’ and v (s) < d we have

(t))
< cp(t)

c +A(d) < cP(t)c < (t),(24) cP(t)
)f(y (t)) ---and thus, by Lemma 1, v"(s) <= O.

To prove the theorem, it suffices to show L-> d, where L lims_,o v(s). Suppose,
to the contrary, L < d. We claim lims_oo v(s)< d. For otherwise v(s) would cross the
horizontal line v (d + I)/2 with nonpositive slope for arbitrarily large values of s; and
since v"(s) <= 0 for v(s) < d and e I’, we would have lims_,oo v(s) <= (d +1)/2. Thus
lim_,oo v (s) < d, and hence 0 < v (s) < d for sufficiently large t. Therefore, for
sufficiently large t, v"(s) <- 0 and v’(s) >= O. So lims_,oo v(s) L and 0 <L < d.

Next we claim, for sufficiently large t, that Y"(t) <- [(3, + 1)/2]Ly"(t), where 3’
(c +A(d))/2c < 1. This is clearly true if Y"(t) =0. We assume Y"(t) O, and thus

(t) 0, (t) 0 and y"(t) 0. For sufficiently large we have by (24) that

Y"(t) &(t) Y"(t) f(Y(t)) f(v(s)y(t)) c+A(d)
c <_ =< v(s).

y"(t) (t) y"(t) f(y(t)) f(y(t)) 2
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Since lims_,o v(s) L the above claim is established and for sufficiently large we have

Y(t) f ("- t) Y"(r) dr <= Ly(t).

Thus,

2
L ("- t)y"(’) dr 3’ + 1

2

L lim v(s)= lim
Y(t)

< 3/+ 1L < L,
s-oo t--, y(t) 2

a contradiction which establishes the theorem.
Proof of Theorem 3B. To prove (21), suppose d >0 and B(d)> c. Let s and v(s)

be as in Lemma 1. Since y(t)0 as t-0+, there is a subinterval I’ of/, with one
endpoint zero, such that for I’ and v (s) < d we have

(25) (t)f(v(s)y(t))>(t)B(d)+c>-c(t)>ck(t),
v(s)f(y(t)) 2

and thus, by Lemma 1, v"(s)<= O.
To prove (21) it suffices to show L_->d, where L limt_,o+ v(s). Suppose to the

contrary L <d. Then, as in the proof of Theorem 3A, we have limt_,o+ v(s)<d and
hence 0 < v(s) < d for sufficiently small t. Therefore for sufficiently small t, v"(s) <= O.
So limt_,o+ v(s)=L and 0_-<L <d. (In contrast to the proof of Theorem 1A, we can’t
conclude for small that v’(s) < 0 and L # 0, because s may not tend to - as t- 0+.)

Also, for y"(t) # 0, we have b(t) # 0, (t) # 0, Y(t) O, and, by (25),

Y"(t) qb(t) Y"(t) f(Y(t)) f(v(s)y(t))>B(d)+cY(t)(26) c >
y"(t) (t) y"(t) /(y(t)) f(y(t)) 2 y(t)

for sufficiently small t.
We claim L > 0. To see this, let M limd-,O+/3 (d) > 0 and suppose L 0. Then by

(26), for sufficiently small t, we have

1 f(v(s)y(t)) 1 M
(27) Y"(t) <=- y"(t) =<- "(t) <

c f(y(t)) c --Y =0,

which is clearly valid even if y"(t)= 0. Since limt_,o+ y’(t)= oo we have from (27) that
limt_,o+ Y’(t)= oo and for sufficiently small values of that Y’(t)>= (1/c)(M/4)y’(t)> O.
Since lim/_o+ Y(t)=limt_o+ y(t)=0 we have, for sufficiently small t, that Y(t)>-_
(1/c)(M/8)y(t), which contradicts L 0. Hence L >0.

From (26) we have, for sufficiently small t,

Y(t)
,,(

3,+1
(28) Y"(t) -< y y t) < Ly"(t) < 0,

y(t) 2

where 3’ (B(d)+ c)/2c > 1. Since limt_,o+ y’(t)= oo, we conclude from (28), as in the
preceding paragraph, that limt_,o+ Y(t)/y(t) > L, a contradiction. Hence L => d, and (21)
is established. Since lima_.o+/3(d)>0 implies B-l(c)>0 we have by (21) that
limt_,o+ Y’(t)

Proof of Theorem 3C. Suppose limt_. Y(t) oo. Let to L Then by Theorem 2C
we have to t(t)dt=oo, and since c(t)<=d(t) we have to tck(t)dt=oo. Suppose
limt_,oo y(t) y < oo. Then, for large t, f(y(t)) > 1/2f(yoo) > 0 and

(29) y’(t) 6(r)f(y(r)) dr-> f(y) 6(r) dr.
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Integrating (29) we obtain, for large t, that

y- y(t) _-> f(yoo) (r t)6(r) dr,

a contradiction. Thus lim,_,oo y(t)= oe.
The rest of the proof of Theorem 3C now proceeds like the proof of Theorem 3B

and will be omitted.

4. In this section we prove Theorems 1A, lB.2 and 1C. The proof of Theorem
lB. 1, which is similar to the proof of Theorem 1C, will be omitted.

Proof of Theorem 1A. As in the proof of Theorem 2A, A (d) < 1 for some d > 0
implies f(y)< y for sufficiently small positive y. Hence F(:)- c as ’0+, and F-I(")
is defined, positive, decreasing and twice continuously differentiable for " => 0. For " => 0
we have

and

F-’() /f(F-(())4F-(()

(30) f(F-(()) H’(()2 e u(c).

(31)

For _-> to, let

and

(32) _(t) F-(I(t)) e "’<t)).

For => to we have

(33)
,2

H’((t))(t) e
Z

H(I(t))

and, by (30), (31), (32) and (33),

(t)f(2(t)) (t)f(F-l(I(t)))

(34)
f(t)H’(I(t))2

([1-\1
e"(t).

Let y(t) be a solution of problem (A). Let y, y2, y3 and 4 be constants with
0 < y < c, c2 < y <, 0 < y3 < c3 and c4 < 4 <. By (3) and (4) there is t > to such
that for ta we have y(t) and 2(t) are defined and

(35) TIT3q (t) -< t(t) <-- T2T4q (t).

By Theorem 2A we have ,o teD(t) dt oo, and hence by (35) we have , t(t) dt
oo. Thus, since zT(t) is decreasing, we have by Theorem 2A and (34) that 2(t) is a
solution of problem (A) with b(t) replaced with 4,(t).
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By Theorem 3A and (35) we have

A-a(3/13/3) < lim
y(t) y(t) 1

<
t- e(t) A-1(1/3/23/4)

Letting 3/i - ci, 1, 2, 3, 4, establishes Theorem 1A.
Proof of Theorem 1B.2. Let

( tg"](t) l +g,lO(t) and e(t)= tg(t).

Then using (9), we have

tg"(t) th(t)
(36) 2"(t) 2’(t) 1 +2g,’(ti] -(t)f(tg(t))(t)- p(t)f(e(t)).

By (9), ’(t) is negative; hence, by (8), for some c e (0, 1/2), we have for sufficiently small
that

(37) tg"+ 2(1 c)’ < 0.

Solving (37) for gives, for some to e L
ta-)’(to) _t2c_(t) < (t0) + (tc-1
1-2c

for 0<t_<--to. Hence 2(t)0 as t0+.
Let y(t) be a solution of problem (B). Let 3/1, 3/2, 3/3, and 3/4 be constants with

0< 3/1 <Cl, 2 < 3/2 <, 0< 3/3 C3, and c4 < 3/4 < az. By (7) and (8) there is ta >0 such
that for O<t<-ta we have y(t) and 2(t) are defined and

(38)

From (38) and Theorem 3B we obtain

B-a(3/2%,)_-< lim
y(t) <1 y(t)

_<
1

,_,o t(t) =,_,0 t(t)-B-a(1/3/a3/3)"

Letting 3/i ci, 1, 2, 3, 4 completes the proof of Theorem lB.2.
Proof of Theorem 1C. Since lima_, 3/(d) < c we have f(y) is bounded on y0 <- y <

az; and hence F(:)- o as - o. So F-a(() is defined, positive, increasing, and twice
continuously differentiable for " _-> 0. For ( _-> 0 we have

F-a’(r) x/)(F-(r))x/F--(-)

and

(39) f(F-a()) 1/4[H’()]2[H()]-3/2.

For _-> to, let

(40)

and

(41) 2(t) F-l(I(t)) x/H(I(t)).
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(42)

For _-> to we have
-t2z___ 1/4H,(i(t))H(i(t))_/2q,(t)

and by (39), (40), (41) and (42),

(43)

l,(t)f(Y. (t)) O(t)f(F- (I(t))

(t)1/4H’(I(t))2H(I(t))-3/2

1+2e2(t) 2e(t)e’(ti
."(t).

Let h(t)=H(I(t)). By (11), for some c >0 and for sufficiently large t, we have

(44) >
2h(t---"

Multiplying (44) by h’(t) and integrating twice we obtain for sufficiently large that
h(t)<kZt2/(+a) for some k >0; and hence (t)<kt1/(c+1) for large t. Since c >0 and
"(t) < 0 we have ’(t) --> 0 as -> co.

Let y(t) be a solution of Problem (C). Let 3/1, Y2, 3/3, and 3/4 be constants with
0 < 3/1 < C1, C2 < 3/2 < C, 0 < 3/3 < 3 and c4 < 3/4 < co. Then by (10) and (11) there is tl > to
such that for t>-tl we have y(t) and z(t) are defined and 3/13/3cb(t)<O(t)< 3/23/4tib(t).
Hence, by Theorem 3C, we have

y(t) y(t) 1C-1(3/13/3) lim _---2, > lim

Letting 3/i -’> Ci, 1, 2, 3, 4, we obtain Theorem 1C.

5. In this section we give some indication, by way of examples, that when the
conditions

(i) A (d) < 1 for some d > 0,
(ii) limd-,o+ /3 (d) > 0,

(iii) limd-, 3/(d) < co

are satisfied the results of this paper are strong enough to give the asymptotic behavior
of solutions of problems (A), (B) and (C) respectively, when such solutions exist.

Example 1. Consider the case f(y)= ya and b(t)= , which includes problems
(1), (2) and the Emden-Fowler equation. Then (i) holds if and only if A > 1, and (ii),
((iii)), hold if and only if A -_< 0. And in this case, by 2, problem (A) has a solution if
and only if tr 2->-2; problem (B) has a solution only if -2 <tr _-<-A- 1; and problem
(C) has a solution only if -2-<_ tr <-A- 1. When these conditions on o- and A hold,
the theorems of sections 1 and 3 give explicit asymptotic formulas for the solutions. A
listing of these formulas can be found in [6]-[8].

Example 2. Consider the problem

(45) y" k3 e kit" e -kEy-’ y(co) y’(co) 0,

which is a special case of problem (A) with f(y) e -kEy-x and 4,(t) k3 e k’t=. We assume
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A and k2 are such that (i) holds. Hence k2 > 0, A > 0 and

oo if d> 1,

A(d)= 1 if d-l,

0 if 0<d < 1,

and so A-l(c)= 1 for all c > 0.
We also assume k3>0. Since A-l(c) =- 1, we have by Theorem 3A that the

asymptotic behavior of solutions of (45) is not affected by k3. Hence we can assume
k3=l.

Now, as --, 0+,

and hence

k2F-I(’) (2 log sr)
Let y(t) be a solution of (45). Then, by Theorem 2A, 1 t&(t) dt oo and therefore

we have only the following 2 cases to consider"
Case I. Suppose o" > 0 and k > 0. Then

I1 1 (2)1/f Ut(t) x/4(r) dg j -1 J(1/2)kl

(1-/) e du

1 2 1/’*/lkl e(1/2)klt e
ty tr kl

log I(t).--1/2klt, and F-l(I(t))---(k2/kl)i/xt-/ as t-+ oo. Also

Hence, by Theorem 1A,

,-lim 1- ck(t)H’(I(t))J tr

y(t) (k)
l/a

t-’lx as t-.

Case II. Suppose k 0 or tr-<0. Then $(t) approaches a positive constant as
+ c, and, since A-a(c) 1, we have by Theorem 3A that the asymptotic behavior of

y(t) is not affected by the value of this positive constant and we can assume 4(t) 1.
Using the notation of Theorem 1A we have F-a(I(t)).--(k2/2 log t)/, but unfortu-
nately limt_ 1-(1/x/ck(t)H’(I(t)))=oo. However we still have y(t)---F-(I(t)) as

oo. To see this, let

h+l
z(t)

2
log t+

hk2
log log t) 1/.
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Then

l (k2
1/x

and hence, by Theorem 3A, we have

( k2 )
1/x

y (t) z (t)
2 log

as -> c,

as
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EXISTENCE, OSCILLATION AND EIGENVALUE COMPARISON
THEOREMS FOR TWO- AND THREE-POINT

FOURTH ORDER PROBLEMS*

JOSEPH DIGIALLONARDO-

Abstract. Oscillation theory has produced results for boundary value problems. We generalize some of
the well-known oscillation theory of Leighton and Nehari in order to obtain existence, oscillation and
eigenvalue comparison theorems in two- and three-point problems. Our method produces results in
nonself-adjoint cases.

In our development a certain relation emerges which is essential for oscillation results in the case of
eigenfunctions and hence for existence and eigenvalue comparison.

We also point out generalizations to the present development.

1. Introduction and preliminary considerations. In this paper we will consider the
eigenvalue problems

(1.1) (r(x)y")"- lp(x)y 0, > 0;

let

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(.8)

(1.9)

L(y (x)) ’y (x)+ T2y’(x) + T3(ry")(x)+ T4(ry")’(x),

M(y (x)) =/ly (x) +/2y’(x) + 83(ry")(x)+ 4(ry")’(x),

N(y (x)) r/y(x)- r/ay’(x) + rl3(ry’)(x)-rl4(ry’)’(x),

P(y (x)) cely (x)+ (Crl + ce2)y’(x)+ (or2 + 3)(ry")(x)+ 32(ry’)’(x);

y(a) y’(a) cry(b) + ce2y’(b) L(y (c))= 0;

y(a) y’(a) ce(ry’)(b)+ ce2(ry")’(b) L(y (c)) 0;

(ry")(a) (ry")’ (a 0 (ry’)(b + ce 2(ry’)’ (b) L(y (c)) 0;

y(a) y’(a) y(b) y’(b) 0;

y(a) y’(a) (ry’)(b) (ry")’(b) 0;

(ry")(a) (ry’)’(a) (ry")(b) (ry")’(b) 0;

N(y (a)) M(y (a)) cey (b)+ ce2y’(b) cey’(b)+ c2y"(b) 0;

N(y(a))=M(y(a))=oly(b)+o2y’(b)=P(y(c))=O; O<a<b<c<oo.

Three-point problems of this kind have been considered in a third order case [7]. In
1 ], the method employed by the authors does not include (1.1)-(1.7). Also the problem
(1.1)-(1.8) generalizes, in some respects, that in [1].

Our methods enable us to extend a result of Barrett’s [2]. Generally speaking, our
methods use the two-point problem to obtain information about the three point
problem.

In 5 we point out generalizations and extensions of the present development.
In all that follows we let r(x) > 0, p(x) > 0, r(x) C(2), and p(x) C, all on (0, oo);

also > 0.

* Received by the editors March 15, 1978, and in final revised form January 12, 1981.

" Mission Street, Gardner, Massachusetts 01440.
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Consider the equation

(1.10) [(r2+e(rl-r2))y"]"-l[Pl+h(P2-P1)]y=O.

We let rl(x) and r2(x) belong to class C(2) on (0, oo) and Pa (x), P2(x) belong to class
C on (0, 00). Also r(x)>-r2(x)>0 and P2(x)>-P(x)> 0 on (0, 00) and e _>-.0, h >-0,
/>0.

Let y l(X, e, h, l), y2(x, e, h, l), y3(X, e, h, l) and ya(X, e, h, l) be the fundamental
solutions of (1.10) which satisfy the initial conditions:

yl(a) 1, y (a) y’ (a) y" (a) 0,

y2(a) y (a)= y’ (a)=0, ’(a)=lY2

y3(a) y3(a) Y3 (a) 0, y(a)= 1,

y4(a) y (a) y (a) 0, y4" (a) 1

for all (e, h, 1), e _-> 0, h _-> 0, > 0. We know that y 1, y2, y3 and y4 are analytic functions of
e,h,l.

We form the function (r(x) r2 + e(rl r2))

(1.11) F(x,e,h,l)=y3(x,e,h,l)y’4(x,e,h,l)-y4(x,e,h,l)y(x,e,h,l),

")’(x,e,h,l),(1 12) G(x, e, h, 1) (ry3)(x, e, h,/)(ry4)’(x, e, h,/)-(ry4)(x, e, h,/)(ry3

(1.13) H(x, e, h, I)= (ry’)(x, e, h, l)(ry)’(x, e, h, l)-(ry)(x, e, h, l)(ry’)’(x, e, h, l).

Let y(x,e,h,l) be the general solution of (1.10) which satisfies M(y(a))=
N(y(a)) 0. Consider

(1.14)
aly(x, e, h, l)+a2y’(x, e, h, 1)=0,

a ly’(x, e, h, I)+ a2y"(x, e, h, l)= 0.

Let Cik(e, h,/), 1, 2, 3, , k 1, 2, 3, 4 be the ith zeros of F, G, H and (1.14)
(these points are denumerable by (1.15) and (1.16) below), respectively. C1 and C12
are considered in [2]. A part of the relationship between Cll and C12 in [2] will be shown
to hold for Cil and Ci2. However, our main purpose in introducing these points is to
obtain information about our eigenvalue problems. Cil is recognized to be the ith
conjugate point of (1.10) (see [5]). When these points exist we have

(1.15) F’(Cil, e, h, l), G’(C/2, e, h, l), H’(C/3, e, h, l) # 0,

(1.16) O ly"(C’/4)q-a2y"(C/4) O.

(1.15) is obvious from theorems in [5]. We establish (1.16) since it generalizes
material in [1], [2] and [5].

LEMMA 1.17. Let r(x) 1 in (1.1). Let a > O, a2 > O. If y (x) is a nontrivial solution
of (1.1) whichsatisfiesaly(a)+a2y’(a)=aly’(a)+a2y"(a)=O, and y"(a)-> 0, y"’(a)-_>
0 (but not both zero), then ay(x)+a2y’(x), aly’(x)+a2y"(x), y"(x) and y’"(x) are
greater than zero for x > a.

Proof. We have

y"(a)(x a)2 y"’(a)(x a)3
y(x) y(a)+ y’(a)(x-a)+ +

2 6

+ dt (u t)(x u)p(t)y(t) du.
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If y"(a) 0, then [5, Lemma 2.1] proves the theorem. If y"(a) > 0, then y(a)> 0. Let c
be the first zero of y(x) to the right of a (assuming it exists). Clearly a ly (x)+ a2y’(x) and
aly’(x)+azy"(x) are greater than zero on (a, c]. It follows that y’(c)> 0, a contradic-
tion. Hence, we have the lemma.

LEMMA 1.18. Let r(x)= 1 in (1.1). Let al>0, a2>0. Let y(x) be a nontrivial
solution of (1.1) which satisfies aly(a)+a2y’(a)=ay’(a)+a2y"(a)=O, y"(a)>=O and
y’"(a) -<_ 0, then y(x) and y"(x) are positive, and y’(x) and y’"(x) are negative for 0 < x < a.

Proof. Clearly, the condition y"(a)=>0, implies y’(a)<=O and y(a)>=O. Then the
lemma is proved by [5, Lemma 2.2].

LEMMA 1.19. Ifal >0, a2>0, Ti 0, -’/4=1T/2 0, rl r2 1, then (1.16)istruefor
(1.10).

Proof. Assume ay"(x)+azy’"(x)=O. We may suppose y’"(x)<0. Then we have
y(a)>0, y"(a)>0 and y’(a) <0, y’"(a)<0. This contradicts N(y(a))=0, and proves
the lemma. (x c)

Lemmas 1.17-1.19 can also be proved in the case ay’ +ay", cy"+ay’". We
leave the formulation and proof to the reader.

The implicit function theorem and (1.15) and (1.16) show that C, k 1, 2, 3, 4 are
in C’ with respect to (e, h, l). Let l(x, e, h), i= 1, 2, 3, ..., k 1, 2, 3 be the ith
eigenvalue of (1.10)-(1.5), (1.6), (1.7), respectively. Then from the calculus of varia-
tions we have (see [1]) the following theorem.

THEOREM 1.20. Let (x’, e’, h’) and (x", e", h") be two points such that x"> x’> a,
0 <- e" < e’ and h"> h’ >- O. Then

lik (X", e", h") < lit: (x’, e’, h’).

From (1.10) and the implicit function theorem, lit: (X, e, h) is in C’ with respect to
(x,e,h).

By methods in [5] we can obtain the following relations, (note also [1]):

(1.21) Cit:(e, h, lit:(b, e, h))= b, and lit:(Cit:(e, h, l), e, h)= 1,
i=1,2,3,..., k=1,2,3.

These relations will be clarified considerably in 2. The case k 1 is proved in [5].
We can also state the following theorem as fact, by [1] and [5].

THEOREM 1.22. If the point Cik (1, O, l’), l’ > O, of (1.1 O) exists, then Cik (0, 1, l"),
l" > l’, exists and Cik (0, 1, l") < Cit: (1, O, l’). The case Cik (e, h, l") < Cik (e, h, l’) also holds
fori=1,2,3, ..., k 1, 2, 3.

2. Oscillation theorems. The following theorem generalizes [5, Thm. 3.6].
THEOREM2.1. Let r(x 1 in (1.1). Let a2x + a O, a >= O, a2 >= O. Let [34 3 7

0, r/4=r/3#0 and rli>-O, i=1, 2, 3, 4. If al>0, a2>0, we assume (Cel/Ce2)(r/2+
r/3/31/3) + (r/l-r/3/3/31)# 0. If y(x) is a solution of (1.1) which satisfies M(y(a))
N(y(a)) 0; andaly(x)+azy’(x) hasatleastn + 1 zerosin (a, ),n 1, 2, 3,... ,then
there exist n points C14, ’, Cn4, a < C14 < C24 <’ < Cn4, and n essentially unique
solutions, y (x), ., yn (x) of (1.1) with the following properties:

(a) yi(x) satisfies M(yi(a))=N(yi(a))=alyi(Ci4)+aay(Ci4)=aly(Ci4)
+ a2y" (Ci4) 0,

(b) ceyi(x)+a2y(x) has precisely i+ 1 zeros in (a, Ci4] (where the double zero is
counted according to its multiplicity);

(c) for any other solution, y(x), which satisfies M(y(a))=N(y(a))=O, Cly(X)+
a2y’(x) has fewer than + 1 zeros in (a, Ci4].



TWO-AND THREE-POINT FOURTH ORDER PROBLEMS 869

Proof. Let A i, A2," An+l be the n + 1 zeros of a ly(x) + a2y’(x) in (a, oo). Then,
by a compactness argument [5], we will determine a minimal An+l and a minimizing
solution V,n. The condition (al/az)(rtz+ n3aO2)+(n-n3B1) o is essential in
this argument when a > 0, a2 > 0.

Consider a solution w of (1.1) which satisfies w(a) w’(a) O, w"(a) w’"(a) 1.
Then by [5, Lemma 1.2], al(V,,,-Kw)+a2(V-Kw) has a double zero a, in
(An, An+l) (we are now considering minimal values). Without loss of generality, we
assume ax Vm -Jr- og 2 Vim > 0 in (An, An+x). Then f K(Cel w + aW’) has at least two points
of intersection with every positive arc located in (A1, An). Indeed, since [Cel(V,-
Kw) + az( V’,,, Kw’)](a) and both (a V, + a V’,n )(a) and (a W "[- 0( 2 W’)(O) are positive,
the constant K must be positive. If there existed a positive arc of f a 1V,, + ce2 V’,n in
(AI, An), which is not intersected by g K(al w +azw’), there would then, by virtue of
[5, Lemma 1.2], exist a constant KI such that h Kl(oxw +ce2w’) had a common
tangent with f at some point of this arc. Since g > f, in the interval in question, we would
necessarily have K1 <K and h and f would intersect in the interval (An, An+l). The
function f-h would thus have a double zero somewhere in (A1, An). This situation
clearly contradicts Lemmas 1.17 and 1.18. Hence f- g has at least n + 1 zeros in (a, a],
provided n is odd. Now if n is even we see by the unique nature of An+l that f- g must
vanish in (a, A1). Hencef-g has at least n + 1 zeros in (a, a]. Since An+a is minimal, we
must have a An+l and K 0. Hence

The essential uniqueness of yg(x) is proved as follows: Assume there are two
solutions u(x) and d(x) which satisfy (a). Then (au"(b)+a2u’"(b))d=zx and
(axd"(b)+a2d’"(b))u=z2, are nontrivial by Lemma 1.19. But (ax(Zx-Z2)"+
a2(Zx-Z2)’")(b) =0. This contradicts Lemma 1.19. Note that b represents any of the
points, C4. It follows that Z z2, hence, the essential uniqueness.

As in the above theorem our zeros will be counted according to their multiplicities.
We leave to the reader the formulation and proof for the cases (1.1)-(1.6), (1.7).
Whenever we refer to such theorems we do so through the previous theorem as
"Theorem 2.1". In these cases we do not have to assume r(x)- 1.

Theorem 2.1 illustrates the type of result we can obtain. Other situations can also
be covered by using different/3’s and r/g’s.

We designate the ith eigenfunctions of (1.1)-(1.5), (1.6) and (1.7) as Vii (x), Vi2(x
and Fi3(x), respectively. In the case, (1.1)-(1.8), we assume the existence of a sequence
of nonnegative eigenvalues/g4(b). In the following self-adjoint case of (1.1)-(1.8), the
existence is assured"

(2.2)

4

2--" --t1 0, 3-’4--0, E r/i #0, ’r/i:>O,
i=l

’04 ’03 # O, T2- /1 -> O, a2 O.

We note that "Theorem 2.1" applies in this case.
We let Fi4(x) be an ith eigenfunction of (1.1)-(1.8). We then have the following

theorem.
THEOREM 2.3. Let fl4 -/33#0, 7"/4--1"/3#0. Let Y/4=1/3/2 #0, "l-li O and

a#0, aa_->0, a2->0. If aa>0, a2>0, we assume (a1/a2)(’02+T/3-12)-[
(r/i- rt3/3-l/Ja) 0. If Ci4(li4(b))= b and lg4(Ci4(l))= l, then the zeros of alFi4+a2F4
separate the zeros of Fi4 on (a, b ). Fi4 has at most zeros on (a, b), 1, 2, 3, ...

Proof. If the hypotheses hold, then Theorem 2.1 applies, and then alF4 +a2F14
has i- 1 zeros on (a, b). Assume F4 has + 1 zeros on (a, b). These zeros are simple, by
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[5] and the conditions here. It is clear that a 1F/4 -- a2F14 vanishes between consecutive
zeros of Fi4, hence has zeros on (a, b), a contradiction. The theorem follows.

In the case (2.2), the conditions Ci4(li4(b)) b and li4(Ci4(l)) l, are satisfied, by[5]
and the calculus of variations. In this case, since a2 0, F/4 has exactly 1 simple zeros
on (a, b). Also r(x) need not be equal to one. We will consider some nonselfadjoint
cases in a subsequent paper.

We also note that these theorems can be extended to the before-mentioned
situation where (cely’+oEy")(b)=(Ol y" +o2y’")(b)=0.

The following nonselfadjoint case does not present much irregularity and satisfies
the conditions Ci4(li4(b))= b and li4(Ci4(l))= l. Consider (1.1)-(1.8)"

K34 3’04 + ’K/43 Y 0, 1 2 7 0, ’01 7"2 7 0,

(2.4)
(4n2- 2’/’/4) 0,

(B3171- Bl173)N 0, a2-" 0.
K34 K34

We leave the proof of (2.4) for a subsequent paper.
THEOREM 2.5. Fi3(x) has + 1 simple zeros in (a, b). 1, 2, 3,. .
Proof. By "Theorem 2.1" and (1.21), (rF’3)(x) has + 3 zeros on Ia, b]. By Rolle’s

theorem (rFi"3)’(x) vanishes at least i+ 2 times on [a, b] and hence F/3(x) vanishes at
least + 1 times on (a, b).

Assume F3(x) vanishes more than + 1 times on (a, b). Then by Rolle’s theorem
(rF’3)(x) vanishes more than + 3 times on [a, b], a contradiction.

The zeros are simple by [5].
Note that [1, Thm. 5.7] does not cover this particular case.

3. Existence and oscillation theorems.
THEOREM 3.1. Letr(x)= 1 in (1.1). Let ai +az 7 0, O10, O2"0, ’/’/i 0, 10,

I2 0, (6[ 1/O2)(’/’/2 -- 7"/311 - 1112) q" (’01 --/’/3-1111) # 0 ira > O, Ol 2 > O, 4 3 Y O, n4
T/3 Y 0, ’r/lll3 111T/3, tIT/2-t- ’01112 Y(: 0, i1 -0, /-/33 >--1. Ifb-a > 1, let b-a 1 and
(bl-a)2/2--B3 <0. If Ci4(l,4(b))= b, 1,4(C4(l))= l, i= 1, 2, 3,..., then (1.1)-(1.9)
has a denumerably infinite number of nonnegative eigenvalues, ,4, 1, 2, 3,...
h4 < i+1.4; 4 oo, oe. The eigenfunctions of (1.1)-(1.9) are essentially unique.

Proof. Let K(x, l) be a solution of (1.1) which satisfies M(K(a))=N(K(a))=
aK(b)+a2K’(b)=O. Clearly K(x, I4)=CF4(x), Then Theorem 2.1 can be applied
provided we know the sign of ceK(x)+ce2K’(x) in (a, a), where a is the first zero of
axK(x, li4)+o2K’(x, li4) in (a, oo). We note that C can be taken as C 1. The sign of
OxK(x) -+- o2K’(x) can be obtained if we know whether Ko < 1, Ko 1 or Ko > 1, where
Ko=(alU2(b)+ce2u(b))/(alUl(b)+a2u(b)), Ul(b)=y3(b)-fl-l[33Yl(b), u2(b)
y4(b)+/-3y(b). Now, by [4, p. 273], we have y3(x)=E=oa3(x)l and y(x)
Y=o a. x(x)l ", where

a,3 dt (u t)(x u)p(t)am-,(t) du,

am dt (u t)(x u)p(t)a._,(t) du,

(x -a)2

ao3(X) aol(x) 1.
2

Clearly, for (x-a)<-_1 we have K0<0. Then from Lemmas 1.17 and 1.18 and
Theorem 2.1, we have that (P(K(c, li+l.4)))(P(K(c, li4)))<O. By continuity, eigen-
values exist. The transformation of Theorem 3.3 obtains existence for bl-a > 1.
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Our conditions easily imply the essential uniqueness of the eigenfunctions.
In Theorems 3.3, 3.4, 3.5 and 3.6, if bl-a > 1, we let b-a- 1 and

at/:l<l.
LEMMA 3.2. Fik(X),Fk (X), rF’k (X) and (rF’k )’(x), k 1, 2, 3, are less than zero]or

x > b and odd, and greater than zero for x > b and even.

Proof. We prove the case k 3. Let be even. Then Fia(X) has + 1 simple zeros in
(a, b), by Theorem 2.5. Hence Fia(b)>O (we assume F/a(a) <0), by [5]. The lemma
follows by [5]. For odd consider -Fia(X).

"Xtb l) + aE(ry)’Let Ha(b,x,l)=(al(ryT)(b,l)+aE(ry’{)’(b,l))y2(x,l)-(al(ry2)
(b,/))yl(x, l).

THEOREM 3.3. If /4=1T/2 0, Yi ->0, i=1,2,3,4 and (i) a+t0; a,0,
a2 =>0; or (ii)lal/a21 < 1; then the problems (1.1)-(1.2), (1.3), (1.4) have a denumerably
infinite number of positive eigenvalues Ak, k 1, 2, 3, 1, 2, 3," ", respectively and
corresponding essentially unique eigenfunctions Hik(b, x, Aik), Aik < Ai+a,k, k ,

Proof. We prove the case k 3. Let n be odd. Then by an obvious extension of [5,
Thm. 2.6], we have H3(b, x,/,3) KF3(x), n 1, 2, 3,. . If (i) holds and we assume
F3(a) < 0, then clearly we have K > 0, n 1, 2, 3,. .

If (ii) holds we proceed as follows" We have (ry")(x, 1)= ".i=oCX3 railtt (x)l and
(ry)’(x, l)= E=o (raga" )’(x)l , where al(X) dt ((u t)(x u)/r(u))p(t)ai_a,x(t)
du, ao(X)= 1. These relations essentially follow from elementary existence theory;
note [4, p. 273].

)’=p(t)ai_ (t) dt. If (b a) < 1, weClearly, ra girt (X- t)p(t)ai-l,l(t) dt, (rail 1,a

have (ral’)’(x) > ra’ (x), 1, 2, 3,. It follows, then, that (ry"l)’(b, l)/(ry)(b, l) >- 1,
l>0. Then (ry’)’(b, l)/(ry’l’)(b, l)>]al/aZ[ or Ic21(ryT)’(b, l)-Ial(ry’;)(b, l)>0, I>0.
(If al >0, a2<0, use -Ha(x, l).)

In any case we have K>0 for n 1, 2, 3,..., Now, by Lemma 3.2, we have
(L(H3(c, 1,3)))(L(H(c,/n+l.3))) < 0. Hence Ai3, 1, 2, 3,. , exists and Ha(b, x, Ai3)
Hia(b, x, Ai3), is essentially unique by a simple extension of [5, Thm. 2.6].

The case bl-a > 1 can be obtained from the transformation x At + B, where
A (b a)/(bl- a), B all -(b a)/(bl- a)]. The equation (r(t)y"(t))"- Ip(t)y(t)
0, transforms into (P(x)"(x))"-/((bl- a)4/(b a)4)(x)(x) 0, where a _-< <-_
P(x) r((x -B)/A), (x) p((x -B)/A), )3(x)= y((x -B)/A).

If bl a > 1 and (b a) 1, then the above proves the theorem for variable x and
hence the transformation obtains the theorem for variable t. The theorem is proved.

THEOREM 3.4. If 2/4=1 y 7KO, yiO and (i)a+a#O, al0, O20; or (ii)
]al/a2[<1; then (rH)(b,x,l) has m zeros on [a, b], re=i+2 ori+3, i=0, 1,2,.
for li3(b)<-l<li+x,a(b), /o3(b)=0. Ha(b,x,l) has n zeros on (a,b), i<-n<-_i+3,
i=0, 1,2,....

Proof. Assume there exists an lo, li3(b) <- lo < li+x,a(b) for which (rH’ )(b, x, lo) has
more than i+ 3 zeros on [a, b]. Then Ci+l,3(lo)( b by "Theorem 2.1". But, by (1.21)
and Theorem 1.22, we have Ci+l,3(li+l,3(b)) b < Ci+l.3(lo), a contradiction. Hence
(rH)(b, x, lo) has <- / 3 zeros on [a, b ].

Next we show that (rH)(b, x, l) has at least + 2 zeros on [a, b] for li3(b)<-_
/+1.3(b). Let A x, AE,’’’, Ai be the zeros of (rH)(b, x, li+x.a(b)) on (a, b), by
"Theorem 2.1" and (1.21). Since (rH)’(b, Ak,li+x.a(b)) # O, by [5], the implicit function
theorem gives us functions Ak(1), k- 1, ..., in C’ with respect to and (rH)
(b, Ak (l), /) 0, all in some neighborhood N(li+l,a(b)). Let Lx be the left boundary
point of N.

We consider limi-,L1 sup Ak(1) Yk and liml-L1 inf Ak(l) Wk, k 1, 2, , i. We
assert that a < Wk <----yk < b. Suppose this were not so. Then a would be a zero of
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H3(b, x, l) for some l, L1 =< < li+l,3(b). The zero at a contradicts [5, Lemma 2.1]. The
zero of (rH’)(b, x, l) at b contradicts the fact that li3(b) and li+l,3(b) are consecutive
eigenvalues.

By "Theorem 2.1" we have a<Ax(1)<C13(l), C3(l)<A2(I)<C23(I),’",
Ci-1.3(/) < Ai(l) < Ci3(/) < b in N(li+l,3(b)).

It is clear that Ck-l,3(L)< Wk Yk < Ct3(tl), k 1,. , i- 1, where we define
Co3(L1) a. Also we have Ck_l,3(L1)< wi <= Yi <= Ci3(L1). Now if Wk S Yk, we would
have a point C3 between Ck-a,3(L1) and Ck3(L1), which contradicts the definition of
Ck-,3(Zl) and Ct3(L1). If Yi Ci3(L1) and wi S Yi we contradict Theorem 1.22.

By the argument above we have shown that AI(L1), A2(L), "’, Ai-I(Lx) exist
and (rH)’(b, A(L1), L) S 0. Hence A,(l) exists as a C’ function (k 1,. , i- 1) for
li3(b)<l<li+.3(b). Also, a<Ak(1)<b, k=l,2,...,i. If yi=fi3(L1), m=i+3. If
Yi S Ci3(Z), m >-- + 2.

Now if m + 2, then it is easy to see that n _-> by Rolle’s theorem. If m + 3,
then n_->i+ 1. If m i+2, then n-<_i+2. If m i+3, n_<-i+3. Hence i_-<n_-<i+3. Let
Ha(b, x, l)=(aly3(b, 1)+a2y’3(b, l))y4(x, l)-(ay4(b, 1)+azy’4(b, /))y3(x, l) and
H2(b, x, l)= (a(ry’3)(b, l)+ a2(ry’)’(b, /))y3(x, /)-(c(ry (b, l)+ cez(ry)’(b,/))y3(x, l).

We obtain the following corresponding theorems for (1.1)-(1.2), (1.3).
THEOREM 3.5. If .4L= ,y/2 S0, "yi-->0 and (i) a2+aO, aa>-_O, a20; or (ii)

]al/a21 < 1, then H(b, x, l) has m zeros on [a, b], m + 2 or m + 3 for li(b) <= <
li+l.l(b),/01(b)--0, i= 0, 1, 2," .

THEOREM 3.6. If y.i4=1 yZi SO, yi>--_O and (i) a+aSO, al>_-0, ce2=>0 or (ii)
lax/a21<l, then (rH)(b,x,t) has m zeros on [a,b], m=i orm=i+l for li2(b)<=l<
li+,2(b), lo2(b) O. Hz(b, x, 1) hash zeros on [a, b], i-2 <- n <-_i + l, i=0, 1,2,. .

COROLLARY 3.7. Ifa >0, a2=0 in Theorem 3.4, then m + 3. Ifonly (i) holds,
the zeros of (rH) (b,x,l) and H3(b,x,l) in (a,b) are simple. If al>0, Ce2=0, in
Theorem 3.5, then m + 3. If only (i) holds, then the zeros of Hi(b, x, l) in (a, b) are
simple. If a >0, c2 0 in Theorem 3.6, then m i+ 1. If only (i) holds, the zeros of
(rH )(b, x, l) and Hz(b, x, l) in (a, b) are simple.

Proof. The proof follows from theorems in [5].

4. Eigenvalue comparison theorems.
THEOREM 4.1. If yX >0, 2-" 3-- 4--0 and a >0, O2----0 in (1.1)-(1.2) and

A(b, c) is any eigenvalue which lies in the interval (l(b), li+,a(b)), i-0, 1, 2,...,
lo(b) O, then A (b, c) > li+,(c).

Proof. Assume A(b,c)<li+l,a(c). Ha(b, x, A (b, c)) has i+3 zeros in [a,b] by
Corollary 3.7 and one at c. Therefore Ci+l,l(A(b, c))-<_c, by "Theorem 2.1". But
Ci+,a(A (b, c)) > Ci+l,(li+a,l(C)) c, by Theorem 1.22. Hence A (b, c) >- li+l.(c).

If A (b, c) li+a,a(c), then Hi(b, x, A (b, c)) has + 5 zeros in [a, c], + 3 in [a, b] and
two at c. But Hx(b, x, li+.(c)) has +4 zeros in [a, c] by relation (1.21) and "Theorem
2.1". Hence A (b, c)S l+,(c) and the theorem follows.

Corresponding theorems can be proved for (1.1)-(1.3), (1.4), (1.9).
The following theorem extends a result stated in [2, p. 207].
THEOREM 4.2. liE(b) < li(b), b > a, 1, 2, 3,. .
Proof. Assume li(b)<-liE(b). By Rolle’s theorem, "Theorem 2.1", (1.21) and

Theorem 1.22, we have Ci(li2(b)) b <-C2(l(b))<b, a contradiction. The theorem
follows.

5. Generalizations and discussion. Let

M(y (x)) A xly (x) +A lzy’(x) +A 13(ry")(x) +A a4(ry")’(x),
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N(y (x)) Bll y (x) B 12y’(x + B13 (ry")(x) B14(ry")’ (x),

P(y (x)) (Ky(x) + K12y’(x)) + (KllY’(X) + K12y"(x)),

O(y (x)) (KIy’(x) + K2y"(x)) + (Ky"(x) + K2y’"(x)),

S(y (x)) Mll(y (x) + y’(x)) + M,2(y’(x) + y"(x)),

T(y(x))=Ml(y’(x)+ y"(x))+M12(y"(x)+ y’"(x)),

R (y (x)) P(y (x))+ Q(y (x))+ y(x) + KIy(x)+ K12y’(x)+Ky"(x)+ Kl_y’"(x),

w(y (x))= y(x)+ y(x)+ y’(x) + y’(x) + y"(x) + y"(x) + y’"(x).

Then we may consider the problems:

M(y(a)) N(y(a)) P(y (b)) O(y (b)) 0,

M(y (a)) N(y (a)) P(y (b)) R (y (c)) 0,

(5.3) M(y(a)) N(y(a)) $(y(b)) T(y(b)) 0,

(5.4) M(y(a))=N(y(a))=$(y(b))= W(y(c)) 0, O<a<b<c<c.

The methods presented in this paper can be applied to the above problems.
We note that Theorem 2.5 shows that the above approach covers many cases not

covered by the theory in [1].
Theorem 4.1, although apparently simple, is actually somewhat involved because

we are comparing two problems whose eigenfunctions belong to two different sets of
functions. See for example [3, Chapt. VII.

The proof of the relation in Theorem 2.3, which corresponds to (1.21), is of interest
in nonselfadjoint, as well as in selfadjoint cases. See for example [6], which contains
related material.

Lemma 1.17 can be proved for cases where r(x) is not constant.

6. Acknowledgments. I wish to thank the people of SIAM who handled this
paper, for their help and understanding. I also wish to thank Antoinette Clement for
typing the manuscript.
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POSITIVE SOLUTIONS OF NEGATIVE EXPONENT
GENERALIZED EMDEN-FOWLER BOUNDARY VALUE PROBLEMS*

C. D. LUNING" AND W. L. PERRY’:

Abstract. A constructive proof of existence of positive solution for negative exponent and sublinear
generalized Emden-Fowler boundary value problems is given. The proof utilizes a monotone iterative
scheme of Picard type.

1. Introduction. The class of boundary value problems

(1.1) y"(x)+a(x)y"(x)=O, a <x <b, t.

(1.2) ay(a)-/y’(a) 0, yy(b) + y’(b) 0

has proved to be very important in applied mathematics. Among the equations in this
class are"

(A) The Thomas-Fermi equation where /z = and a(x)=-x 1/2. This equation
was developed in studies of atomic structures initiated in 1927 by L. H. Thomas [1]
and E. Fermi [6]. The equation still has significant use in atomic calculations [5]. The
boundary conditions (1.2) are obtained from the usual Thomas-Fermi boundary
conditions by a change of variable and a normalization [8].

(B) The generalized Emden-Fowler equation where >0 and a(x)>0. This
equation arises in the fields of gas dynamics, Newtonian fluid mechanics, nuclear
physics, and chemically reacting systems [16]. Recently the equation has arisen in the
study of multipole toroidal plasmas 1 ]. The original Lane-Emden equation, developed
in 1869 and subsequently studied by Fowler, can be put in the form (1.1) whence the
name generalized Emden-Fowler. The cases 0 </.t < 1 and/x > 1 are called sublinear
and superlinear respectively.

(C) The negative exponent sublinear equation. Recently (1.1) has been used in
modeling non-Newtonian fluids such as coal slurries [2]. In this case a(x) > 0 and/x < 0.

In most of these applications, the physical interest lies in existence and uniqueness
of positive solutions. In previous papers we studied problem (A) [8], [9] and the
superlinear case of (B) [10] from the point of view of developing constructive proofs
for existence of positive solutions. By means of the change of variable y h 1/"u and
a change of independent variable, problem (1.1), (1.2) is transformed to the nonlinear
eigenvalue problem,

(1.3) u"(x)+ha(x)u"(x)=O, O<x<l, R,

(1.4) au(O)-u’(O)=O, yu(1)+,u’(1)=O.

We showed that, under certain restrictions on a (x), a,/3, 3’ and 8, the iteration defined
by

’-(x)u(x)=O, 0<x <1(1.5) u’(x) + h,a (x)u n-1

(1.6) aUn (O) flu (O) O, yUn(1) + 8U’(1) 0,

with Un(X) appropriately normalized and Uo(X) appropriately chosen, generates a
sequence {un, An} that converges uniformly to a positive solution (u, h) of (1.3), (1.4).

* Received by the editors December 4, 1979, and in revised form January 11, 1981.

" Department of Mathematics, Sam Houston State University, Huntsville, Texas 77340.
Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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Detailed results of computational implementation of the scheme just described may
be found in 11 ], 12].

In this paper we are primarily interested in the negative exponent sublinear
eigenvalue problem, 1 <_- < 0, and the sublinear eigenvalue problem, 0 </z < 1,

u"(x)+Xa(x)u"(x)=O, 0<x<l,

(1.8) u(O)=u(i)=o.

Other authors have also developed constructive techniques for problems similar
to (1.7), (1.8). In [2], [13] Callegari and Nachman develop explicit power series
solutions for problem (1.7) with/ -<_-1 and boundary conditions u’(0)= 0, u(1)= 0.
Callegari and Reiss in [3] and Callegari, Reiss and Keller in [4] apply shooting methods
to the problem (xau’) + a(x)u- 0, 0 < x < 1 for certain functions a(x) and boundary
conditions u’(0) 0, and either u(1) A or u’(1) + au(1) U. They consider the various
cases A >0, A-0, A <0, U=0, U<0 and prove comprehensive existence and
uniqueness results for each case. Earlier constructive results of H. Keller and D. Cohen
[7] apply to the problem

Lu hf(x, u), x e D ",

with appropriate boundary conditions, if f(x, O)> O, f(x, u) is sufficiently smooth, and
f(x, u) satisfies a monotonicity condition. In our cases f(x, O) equals 0 or is undefined,
so the results do not apply. Our approach differs from those in [2], [3], [4], [10] and
[13] in that in this paper we choose a function Uo(X) and use the Picard type iteration.

(1.9) u(x)+hna(X)Un-ltX (X) 0, 0<X <1

(1.10) Un(O)=Un(1)=O,

where An is determined by a normalization to obtain a sequence {un,/n}7---1 which is
shown to converge uniformly to a solution of (1.7), (1.8). We remark that the proof for
the sublinear case 0</z < 1 is actually valid for all /z >0 and thus includes the
superlinear case/z > 1. Since the iteration scheme (1.9), (1.10) is significantly easier to
implement than the scheme in [10] this iteration should supplant that of [10] in the
superlinear case.

We remark that Taliaferro [14] has given necessary and sufficient conditions for
the existence and uniqueness of a positive solution of (1.7), (1.8). He also gives
necessary and sufficient conditions for y’(0) or y’(1) to be finite. Our results complement
those of Taliaferro in that our proof is constructive and thus gives a method for
obtaining an approximate solution.

We assume a (x) C(0, 1), a (x) > 0, 0 < x < 1 and o :’a (s) ds < oo. Let

(1-x), 0<:<x,
(1.11) K(x’ so)

(1- :)x, x <:< 1.

The Picard iterates {un}n=o and the sequence {n}n_-I are defined: Uo(X)= x, and for
n__>l

(1.12) un(x) An Io K (x, sC)a (se)u n-1 (:) d:,

where un (x) is normalized by choosing An so that

(1 13) h | (1-:)a()u"n-1 (:) d: 1.
o
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For n >-1 it follows from (1.12) that un(x) satisfies (1.9), (1.10) and from (1.13) that
u (0) 1. Of course un (x) > 0, 0 < x < 1 and An > 0.

In 2 we consider the case/., > 0 and prove
THEOREM 1. Iflx > 0 and ira(x), {un}=oand {An}n= are as in (1.12), (1.13), then

O<Un+I(X)<Un(X), 0<X <1 and 0<An <hn+l. Moreover, there is a positive solution
{u,h} of (1.7), (1, 8) such that lim,_,h, =h and limn_ooun(x)=u(x) uniformly on
[0, ].

In 3 we consider the case 1 _-</. < 0 and prove
THEOREM 2 If 1 < t- < O, and if a(x) {un} =o and {A,}n are as in (1.12)

(1.13), then for n>-i O<bl2n-X(X)<U2n+X(X)<U2n(X)<U2n-2(X), 0<x<X, 2n <
h2n+2 <A2,+1 <A2n-. Moreover, there is a positive solution {u, A} of (1.7), (1.8) such
that limn-. An h and lim n-.o un (x) u (x) uniformly on [0, 1].

2. Convergence of the Pieard iterates for Ix > 0. In this section we consider the
iterations (1.12), (1.13) with Uo(X) x and/x > 0. We first prove a lemma proving that
in this case the iterations (1.12), (1.13) generate monotone sequences.

LEMMA 1. For n >--l, O<un(x)<un-x(x), 0<x<l, and 0<An <h,+x. Also, for
any 0<M<I there is at most one value of x (0, 1) such thatMU_l(X)-U(x)=O.

Proof (by induction). For k _-> 0 let fg(x) Ma/"u(x)- Uk+(X). Then Mu_x (x)
un (x) 0 for at most one value of x (0, 1).

We have (Uo- u)"(x) h a(x)u (x) > 0, 0 < x < 1, (u0- ua) (0) (Uo- Ul)’(0) 0.
Thus (Uo-Ul)(x)>O, 0<x <1. Also f(x)=hla(x)u(x)>O, 0<x <1, "f0(0)=0,
f’o(O) M1/" 1 < 0. Thus fo(x) can cross the x-axis at most once interior to the interval
(0, 1). From the normalization (1.13) and the result Uo(X) > u (x) we conclude h 2 > h 1.

Assume (Uk-1--Uk)(X)>0, 0<X < 1 and that fk-l(X) crosses the x-axis at most
once interior to the interval (0, 1). From (1.13) these assumptions imply hk+l > hk. We
have

(hik Uk+l)’(X a (X)[/k+l Ut (X)- ,kUt-I (X)].

Thus (Uk- Uk+I)"(X)>0 for x near zero, and, by the induction hypothesis on fk-x(X),
we have that there is at most one x (0, 1) such that (Uk- Uk+I)"(X)- 0. Thus (Uk-
Uk+I)(X) is convex for x near zero and has at most one inflection point interior to the
interval (0,1). In order to satisfy the boundary conditions (Uk--Uk+x)(O)=
(Uk--Uk+l)’(O)--(Uk--Uk+l)(1)--O for k_->l, we conclude that (Uk--Uk+l)(X)>O, O<
x < 1. Similarly, since fi,’(x)= a(x)[hk+lU(x)-M1/"hgu_l (x)], we have fi(x) > 0 for
x near zero, and by the induction hypothesis on fk-l(X) we conclude f’(x) can be zero
at most once interior to (0, 1). In order to satisfy the boundary values fk (0) fk (1) O,
f’k(O) M1/" 1 < 0 we conclude that fk(X) can cross the x-axis at most once interior
to the interval (0, 1). From the normalization (1.13) and (Uk--Uk+I)(X))O, O(x (1,
we conclude that ,k+l Ak+2.

We now show that there is a continuous function w(x) which is positive in some
neighborhood of zero and such that un(x)> w(x) from whence we will be able to
conclude the sequence {un} does not converge to the zero function.

LEMMA 2. There exists w (x) C[0, 1], w (x) _-> 0, w (x) > 0 for x near zero, such that
Un(X)W(X), 0xl.

Proof. Let

0_<x
(2 1) T(x)= / x’

t l-x, 1/2_-<x-<_l.

Since for n -> 1 un(0) u(1) 0, u(x)>-O, u(x) < 0, 0<x < 1, it follows that un(x)>=
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[lullor(x), where I[u,,[Io-supo<=<_xlu,,(x)[. From (1.12),

(2.2) fo K(x, )a()T"() d,

and since 0 < u (x) < Uo(X) < 1, 0 < x < 1, it follows that

(2.3) 1 > h,llu,-all o K(x, )a()r() d,

and thus

(2.4)

Hence

-1

--1

(2.5) -U"n(X)= Ana(X)U I’n-1 (x)<a(x) [ K(x, )a()Tg() d[[
d011

That is, there isa C > 0 such that u(x)>-Ca(x), 0<x < 1. Using un(0)= 0, un(1) 0,
u,(0) 1 we conclude the existence of w(x).

To complete the proof of Theorem 1 we have, from (1.13),
-1 -1

n-1 () d (1 )a()w"() d

Thus the increasing sequence {A,}l is bounded above and there is a A > 0 such that
lim,A, A. Now, using (1.12), we can conclude there exists K > 0 such that

(2.6) lu,(xz)-u,(xl)[= uZ() d Klx2-xl,

Of course 0 u, (x) 1, 0 x 1. Thus the sequence of functions {u, (x)}=o is equicon-
tinuous and uniformly bounded on [0, 1]. By Ascoli’s lemma there exists u C[0, 1]
such that lim u, u uniformly on [0, 1]. From Lemma 2 we have u(x) is not
identically zero, and from (1.12) and the dominated convergence theorem u(x)=

K(x,)a()ug()d. Thus u(x)>0, 0<x <1 and {u,h} is a positive solution of
(1.7), (1.8) with > 0.

3. Convergence ot lhe Pierfl ilerles tot 1 < 0. In this section we consider
the iterations (1.12), (1.13) with Uo(X) x and < 0. We first prove a lemma showing
the iterations generate alternating monotone sequences.

LEMMA 3. For nl, uz,_l(X)<Uz,+x(X)<Uz(x)<uz,_z(x), 0<x<l,
hz,+z < hZ,+l < h,-1. Moreover, for any 0 <M< 1 there is atmostone value ofx (0, 1)
such that Mu(x)-u;g(x)=O, where pair (i, ]) can be (2n -2, 2n 1), (2n, 2n 1),
(2n -2, 2n) or (2n + 1, 2n 1).

Proof. The proof of Lemma 3 is very similar to the proof of Lemma 1. Again we
use that Mu (x) u;g (x) 0 for at most one x (0, 1) is equivalent to M-1/gui(x)
ui(x)=O for at most one x (0, 1). The argument that (Uo-Ul)(X)>O 0<x <1 and
(M-/gUo u)(x) 0 for at most one x 6 (0, 1) are the same as in Lemma 1. Similarly,
it can be shown that (Uo- uz)(x) > 0, 0 < x < 1 and (M-1/gUo u2)(x) 0 for at most
one x (0, 1). From the normalization (1.13) we conclude h< h, h < h x. For the
induction hypothesis we assume (uz, uz,+l)(X) > 0, 0 < x < 1, (uz uz,+z)(x) > 0,
0<x < 1, there is at most one x 6 (0, 1) such that (M-/guz,-u2,+l)(X)=O, and there
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is at most one x (0, 1) such that (m-1/"u2n-u2n+l)(x)=O. By the normalization
(1.13) we have A2.+2<A2.+l and 2n+Z<2n+1 To show that (u2,,+z-U2,,+)(x)>O,
0 < x < 1, we proceed as follows

(u2.+2- Uz.+)"(x)= ,2.+a(x)u.(x)-,2.+za(X)U.+ (x)

-Az,,+a(x)u,,(x)u,,+x (x)

[’"+-"(x)-u-" (x)]X U2n 2n+l
2n+l

The argument now parallels that of Lemma 1, and we conclude (u2,/2- u2,/l)(X) > 0,
0<x<l. Similarly it is shown that there is at most one x(0, 1) such that
(M-/’u2,,+2-u2,,+)(x)=O. From the normalization (1.13) we conclude
h2,/2. One then proceeds in the same manner to consider (u2,.,+3-u2,,+)(x),
(M-1/U2n+3 U2n+l)(X), (U2n+2-- U2n+3)(X), (M-1/U2n+2 U2n+3)(X), and (u2,+2-
u2,+4)(x), (M-/"u2,,+2 u2,+4)(x) along with the normalization (1.13) to order the
A ’s. This then completes the induction proof of the lemma.

Since 0 < A2n < A2,+2 < A2,+ < A2,-, there exists 0 < -< such that lim,_. A2,,, limn-A2n+l=. Since O<U2n+I(X)<U2n(X)<U2n-2(X)Uo(X) 0<X<l, the
sequences {u/.-1} and {u2.} are uniformly bounded monotone sequences. Repeating the
argument of (2.6), we also conclude that the sequences are equlcontinuous. Thus by
Ascoli’s lemma there exist functions t, t C[0, 1] such that 0 < tJ (x) -<_ t (x), 0 < x < 1
and lim._. u2.-1 fi and lim._. u2. t uniformly on [0, 1]. Using the dominated
convergence theorem and (1.12), we have

or, equivalently,

K(x, sC)a()t"(s) d’,

K (x, :)a ()t (:) d:

t"(x)+a(x)’(x)=O, 0<x <1,

(3.2) "(x)+a(x)a’(x)=O, 0<x <1,

a(0) t(0)= t(1)= t(1)= 0.

Since u’(0)= 1 and the convergence is uniform, we also have t’(0)= tJ’(0)= 1.
To show = and t=tl, we consider [(x)=a(x)a’(x)-a(x)a’(x). Then f(0)=
f(1)=0 and f’(x)=a(x)a+"(x)-Xa(x)aX+"(x). Using 0< <, o<a(x)<-a(x),
0 < x < 1 and 1 +/z -> 0, we have f’(x) => 0, 0 < x < 1. In order to satisfy the boundary
conditions f(0)= f(1)= 0, we must have f’(x)= 0, 0 < x < 1, from which we conclude, t (x)= fi (x), 0-< x <= 1 which completes the proof of theorem 2.
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TRAVELING WAVE SOLUTIONS FOR SOME NONLINEAR DIFFUSION
EQUATIONS*

C. ATKINSON,+ G. E. H. REUTER AND C. J. RIDLER-ROWE

Abstract. Traveling wave solutions are discussed for nonlinear diffusion equations where the
nonlinearity occurs in the diffusion flux as well as in a source term. For a variety of nonlinear diffusion fluxes it
is shown that wave solutions exist if and only if the wave speed is greater than some critical value. This critical
value is determined explicitly in some special cases, and inequalities are derived for the general case.

1. Introduction. Since the classical paper by Kolmogorov, Petrovsky and
Piscounov [11], there has been much work on wave solutions to nonlinear reaction-
diffusion equations of the type

+F(u).
Ot Ox

In most of this workmfor recent surveys, see Aronson and Weinberger [3], Fife
[5]mthe diffusion term in (1) is linear in the sense that D is a constant, and the
nonlinearity occurs only in F(u). The reader may recall that in the special case D 1,
F(u)= u(1-u) considered by Kolmogorov et al., they look for a wave solution
u u(X) u(x + at) with 0_< u _-< 1, u(-c) =0, u (+c) 1, u(X) increasing in X and
find that such solutions existif and only if a -> 2. Thus there is a critical velocity, 2, below
which waves do not exist. The major part of their work is then concerned with whether
solutions of (1) with given initial conditions approach travelling waves as c.

We shall concern ourselves with the existence of travelling waves when there is
nonlinearity in the diffusion term of (1) because D is a function of u or of [Ou/Oxl, and
shall find in the cases we consider that there is again a critical velocity a* such that wave
solutions of (1) exist above but not below a*. We note that when D is a constant and
F(u) Mu(1- u), we can always rescale and x to obtain D 1 and M 1, and will
always assume that analogous normalizations have been performed, in particular that
F(u) u(1 u). We shall not tie ourselves down to particular applications, but note that
(1) with D D(u)= u occurs in models of population growth considered by Gurney
and Nisbet [7] and with D(u)= u n, n > 0, in Gurtin and MacCamy [8].

We shall consider wave solutions of (1), that is solutions of the form u u (X)=
u (x + at) with 0 <= u (X) <_- 1. We shall only consider the case a > 0, (for it is easy to see
that if u u(x + at) is a wave solution, then since D is isotropic, v(x, t) u(-x + at)
gives another wave solution travelling in the opposite direction). Furthermore du/dX >
0 when 0 < u < 1 in all the cases which we consider; this is proved for one case in 3, but
the very similar proofs for the other cases are omitted. We shall concentrate mainly on
solutions which are strictly increasing (that is throughout -o<X < c, so that 0<
u(X) < 1) with u (-c) 0, u(+) 1. Then u u(X) satisfies the differential equation

(2) adX dX
+u(1-u) -oo<X<oo.

* Received by the editors May 7, 1980, and in revised form October 31, 1980.
t Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
qt Department of Mathematics, Imperial College of Science and Technology, London SW7 2BZ,

England.
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In 2 and 3 we shall look at the case D u (n > 0) and show that there exists a
critical velocity a* such that strictly increasing wave solutions, with u(-)=0,
u(+c) 1, exist if and only if a > a*, we obtain the explicit evaluation a* x/ when
n 1, and estimates for a* when n 1. In 3 we also show that in the form

du
n + 1 dX - u + (1- u)u,

(2) admits a weak solution in the sense introduced by Oleinik, Kalashnikov and Chzhou
Yui-Lin [12], and employed, for example, by Aronson [1]; for this, one requires
absolute continuity of u and (d/dX)u/1 for-<X< o. This weak solution is strictly
increasing from 0 to 1 on a semi-infinite interval [Xo, ).

We shall also look at one case in which D is a function of [Ou/Ox[, namely
D Iou/oxl N > 1. Weak solutions of diffusion equations with nonlinear fluxes of
this kind have been considered by Atkinson and Bouillet [4]. Note that properties of the
equation considered by Atkinson and Bouillet have similar characteristics to those
considered in [7] and [8] and hence may have the same potential for use in population
growth models. Since it will be shown that du/dx >= O, we can ignore the modulus sign
and look at the ordinary differential equation

(3) a -- dX
+ u(1 u), -az <X < m.

We again prove the existence of the critical velocity a* such that if a > a* there exist
strictly increasing wave solutions u(X) with u(-)=0 and u(+c)= 1, but not if
0 < a _-< a*. In this case when a a* (3) has a solution which is strictly increasing from 0
to 1 on a semi-infinite interval [Xo, ). Finally we shall look at D (1 u)- and more
generally at D (1 u)-V, 0 <- 3’ <= 1, finding in all these cases that wave solutions exist if
and only if a -> 2. The motives for looking at D (1 u)-I are that even when the source
term F(u) in (1) is absent, there are then wave solutions for all a >0. This is easily
shown by integrating (2), with u(1 u) absent, explicitly; a solution, with X x + at, is

u --(1 +e-aX)-
if we standardize the X-origin to make u(0)= 1/2.

We shall treat the ordinary differential equations (2) or (3) by converting them into
a system of first order equations involving u and a second unknown related to du/dX.

2. D(u)= u" with n = 1. We now consider the special case D(u)= u, F(u)=
u(1-u) and look for a solution of

u +F(u)(4) Ot Ox

of the form u u(x +at)= u(X), X x + at. The function u(X) is to be strictly
increasing in X, with u(-c) 0, u (+c) 1. Inserting u u(X) into (4), and defining v
by

du
(5) -d-= av,
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where we assume du/dX > 0 (proved in 3), we then get

cl uv va -a -F(u),
dX

d(uv) v -Au(1- u)
du v

where A a -2.

Hence

(6) uV-u v(1-v)-Au(1- u).

We now look at (6) over the range 0 < u < 1, and require v > 0. Since u is the running
variable, we shall have to check that X runs over the full range (-m, m). From
dX du/av, this amounts to requiring that

l/2 du I11- du(7) +oo,
a0+

We now convert (6) into the plane system

du dv
(8) _--= uv, _--= v(1-v)-Au(1- u)

sa sa

and look for a solution that stays in 0 <- u -< 1, v -> 0, starts from (0, 0) (as s --> -) and
runs into (1, 0) (as s --> +). Note that the system has three critical points at (0, 0), (0, 1),
(1, 0). Of these, (1, 0) is a saddle point, and there is a unique solution path S running into
it from the region 0 < u < 1, v > 0, with slope tending to a negative lirOit as S approaches
(1, 0). On the other hand, (0, 0) is a degenerate critical point in the sense that its linear
approximation has one zero eigenvalue. We therefore investigate what happens to S
when it is followed backwards (for decreasing u) from (1, 0), and try to discover for what
range of A it approaches (0, 0) as u -> 0+, equivalently as s ->-o.

First, a simple calculation shows that the slope of S at (1, 0) is -a, where

(9) a ,/(A + 1/4)- 1/2,

so that a < 1, 1, > 1 according as A < 2, =2, >2. Next, note that when A 2 so that
a 1, v 1- u is an exact solution to (6) and is then the equation of $; thus v - 1 as
u --> 0 on $ and the first of the conditions in (7) is broken. Now suppose that A < 2, so
that a < 1 choose/3 with a </3 < 1 and compare S with the line L: v =/3 (1 u). Since S
has slope -a at (1, 0), $ lies below L for u near 1. We assert that $ stays below L for
0< u < 1, because otherwise let the last crossing before u 1 occur at u0 < 1. Then
(d/du)[v-(1-u)] should be -<0 at u Uo. But from (6) this is

v- 1-Uo 1-/3(I-u0) AI-A +/3 +/3
Uo /2 Uo

1-/ A A
+2/3- >(1-/3)+2/3---

A
=1+/3 A>l+a
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So on S, v </3 (1 u) in the whole range 0 < u < 1. The last inequality is true for all/3
satisfying a </3 < 1. Hence when A < 2,

(10) v<=a(1-u)

Similarly one can show that when A > 2,

(11)

for 0 < u < 1.

v<=a(1-u) for 0<u<l.

In the case A > 2 (that is a > 1), (11) shows that

dv 1-v 1-u a-1
A-<_-+O(1) asu-0+

du u v u

and hence v --> +c as u --> 0+. Thus the first of conditions (7) is broken when A > 2, as
happened also when A 2.

Next we asume that A < 2 (that is, a < 1) and show that there is now a suitable
solution leading from (1, 0) to (0, 0). It is easy to see that the region (0 < u < 1, v > 0) is
divided into parts, in each of which the slope dv/du (1 v)/u A (1 u)/v has
constant sign, by two curves on which the slope is zero (see Fig. 1); let C denote the zero
slope curve which enters (0, 0). If one follows S backwards (for decreasing u) from
(1, 0), $ starts in a region of negative slope and must cross C at some point with
u-coordinate between 0 and 1/2, on appealing to (10) in the case 1 < A < 2; S then enters a
region of positive slope and stays there for all smaller u > 0. Hence the solution has a
nonnegative limit, v0 say, as u - 0+. But if Vo > 0 then S satisfies

dv 1 -Vo
as u -> 0+,

du u

giving a contradiction, namely v->- as u-->0+. Hence v 0 as u 0+, which
establishes the existence of a unique solution $ leading from (1, 0) to (0, 0).

o o o

c

v v

A <1 A =1 A >1

dv 1-v 1-u
FIG. 1. Signs of A

du u v

ForA < 2 it remains to check the first of conditions (7), (the second being dealt with
by the approximate linearity of S near the saddle point (1, 0)). Since S lies above the
zero slope curve C near (0, 0) and C has slope A at (0, 0), lim inf,_0+ v/u >= A. We will
now show that lim sup,-.0/ v/u <=A, so that v/u-,A as u-->0+ and the first of
conditions (7) is satisfied. Choose any k >A and consider the line T: V ku. If at any
point, S lies on or above T, then $ has slope

(12)

1-v 1-u 1-v A A
u v u ku k

k-A
as u-O+.

ku
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Hence there exists some 6 > 0 such that if S and T cross, then

slopeS>slope T when0<u<6.

Consequently there are three possibilities: either (i) S lies below T whenever 0 < u < 6,
or (ii) S crosses T for some U between 0 and 8, and then S stays below T for 0 < u < u 1,

or else (iii) S lies above T whenever 0 < u < 8. However if (iii) is true, we obtain a
contradiction from (12), namely v -oo as u 0+. Hence (i) or (ii) is true so that
lim SUp u-,O+ v/u <= k. The choice of k implies that lim sup_,o+ v/u <-_A, as required.

By extending the "crossing argument" just given we will show that the solution
curve S has an asymptotic expansion ]o b,,u" as u --> 0+. The existence of the second
term of this expansion is enough to ensure that the wave solution u(X) of (4) is
exponentially small as X-->-oo, and in fact u(X) exp (-X/a) has a positive limit.
Likewise we should mention that the saddle point behavior near (1, 0) in the u-v plane
ensures that 1 u (X)] exp (aaX) has a positive limit as X --> +oo. Temporarily assum-
ing that the expansion does exist, the differential equation (6) implies that the
coefficients are

bl =A, b2=2A2-A,
(13)

b,, 2bib,,-1 + 362b-2 +" + nb,,-lbl, n >= 3.

If A >1/2 the expansion in fact diverges since all its coefficients are positive and
b,, >- (n + 2)bib,,_1 for n _>- 3.

Our first step in proving that the asymptotic expansion exists is to show that, given
any sufficiently large A > 0, S is bounded above by Au(1 + Au) for sufficiently small
u > 0. To do this one may replace T in the previous crossing argument by Au(1 + ,u)
and use the fact that, given any k > A, S is bounded above by ku for sufficiently small
u > 0. The argument then is like that in the next step in the proof, and we go directly to
this next step since it indicates better the general induction argument which completes
the proof.

We now show that a closer upper bound for S near u 0 is obtained by taking T to
be the curve Au (1 + pu +ua) in the crossing argument. Here we intend to show that p
may be chosen to make the slopes of S and T agree in powers of u up to the constant
term at any crossing, and choose/x > 0 suitably large. From the previous step we may
assume that for some A > 0, S satisfies

(14) v <Au(1 +,u) for sufficiently small u >0.

If at any point S lies on or above T, then S has slope

1-v 1-u 1
(151 .-A-->----

b/ V U
A (1 +,u)

1
1 1 (--OU [d,U2)

n=l

(16) =-A+l+p+txu+O(u)+O(u 2) asu-0+

in the sense that the term O(u) does not depend on/x while 0(//2) does. Hence on
defining p by p 2A- 1, and making any suitably large choice of , we have slope
S > slope T at any crossing of S and T for small u > 0. If possibility (iii) of the crossing
argument were true, then integrating the lower bound (16) for slope S from 0 to u would
(since p 2A 1) contradict the upper bound (14) provided that/x were initially chosen
large enough. Then only possibilities (i) and (ii) of the crossing argument remain. Hence
given any sufficiently large /x >0, S is bounded above by Au(l+pu+p,u 2) for
sufficiently small u > 0.
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Similarly, further upper bounds are obtained inductively in the form Au(1 + pl u +
1)+ piu + tzju

1+ for u near 0, (pl p, 1 ) The coefficients z. are merely chosen
sufficiently large, but the crucial step is that the coefficients p. are successively
determined by the condition that the slopes of S and T agree at any intersection up to
terms of order u i-a, each new coefficient p. appearing via the first term of a geometric
expansion in the same way as in (15). Lower bounds of the form Au(1 +plu +’" +
pju + uiu i+a) may be obtained similarly, and hence the asymptotic expansion follows
(with, in the notation of (13), bn Apn-1 for n => 2).

It is interesting to note that when A 1/2, the coefficients b for n => 2 are all zero, so
that the expansion reduces to the single term Au. It is easily checked that this is an exact
solution to (6), but we also know that there is another solution v which -0 as u - 0+ and
as u- 1- In fact from the previous arguments one can see that for each A > 0, all
solutions starting near (0, 0) in the positive quadrant of the u-v plane must enter (0, 0)
with slope A and the same asymptotic expansion; furthermore any two such solutions
differ by an exponentially small amount as u- 0+. For if /’)1 and /-)2 are two such
solutions and w =/.)1 v2 then

Hence

dw w

du u U

1 dw 1
w du Au

as u-*O+,

A(1-u)}/’)1/’)2

so that on integrating from u to u0 (both small with Uo fixed) one obtains

w(u)= W(Uo) e -fu) wheref(u)---1/Au as u0+.

We can now summarize the main results of this section as follows.
THEOREM. If a > /, equation (4) has a unique wave solution u(x + at)= u(X),

X x + at, such that u (X) is strictly increasing in Xfor -c <X < oo, andX - -oo, +c
respectively as u -. 0+, 1-; if 0 < a <-/ no such solution exists. When a >/ the wave
solution has asympotically exponential tails as X - +/-. du/dX av has an asymptotic
expansion a yo bu as u 0+, whose coefficients b are given in (13) (with A a-2).

3. D(u)= u", n >0. We now consider the general case D(u)= u , n >0, with
F(u) u(1 u). In looking for solutions u u(x + at) it will again turn out that there isa
critical value a* such that strictly increasing wave solutions exist if and only if a > a*;
when a a* it will be seen that a weak solution exists in the sense mentioned in 1.
Though we can no longer give an explicit formula for a*, (recall that a*= / when
n 1), we will give estimates for a*.

We will first show that du/dX > 0 when 0 < u < 1 by an argument like that of Fife
and McLeod [6], and then prove the existence of a*. The equation to be considered is

(17) a
dX dX

u +u(1 u), -oo<X<

This may conveniently be transformed into a first order equation on defining the
variable Y by

du
(18) aY=u

dX’
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which leads to the equation
n+l

(19) -dY- 1
Au (1 u)

du Y

where A a -2. Now if du/dX < 0 for any value of X we have Y < 0 in (19) so that
dY/du > 1; if we then follow the solution backwards (i.e., for u decreasing) we still have
Y < O, dY/du > 1 and hence Y- c < 0 as u -0+. This leads to u .-[alcl(Xo-X)]/+
as X - some Xo-, and does not give an admissible solution (even as a weak solution). It
follows that we should require Y > 0 (and so du/dX > 0) over the range 0 < u < 1, and
we shall seek solutions such that X x + at runs over the full range (-oe, oo), with
u (-oo) 0, u (+oo) 1. Thus we shall look for a solution Y running from (0, 0) to (1, 0),
both of which are critical points of equation (19).

At (1, 0), (19) has a saddle point and there is a unique solution, S say,
running into (1, 0) from the region 0<u <1, Y>0. S has slope -ce at (1,0)
where a /(A +1/4)-1/2. From (19), dY/du is positive, zero or negative in the region
0 < u < 1, Y > 0 according as Y lies above, on or below the curve C defined by

(20) Y=Au+(1-u), 0<u<l.

Hence, on following S backwards from (1, 0) (with u decreasing), S initially has
negative slope and lies below C, but must eventually cross C and then remain above C
in a region of positive slope for all smaller u >0. Thus Y(u) >0 on S for 0< u < 1, and
Y(0) _-> 0 is well-defined by continuity.

We shall show that at each u in [0, 1), S descends as A decreases and there is some
positive critical value A* of A such that for A > A*, Y(0) > 0 on S, while for A A*, S
enters (0, 0) with behavior Y---u as u-0+. Using (18) it is then easily seen that no
admissible wave solution can exist for A >A*, that is for 0< a < a* where a*=
(A*)-1/2. For 0 <A < A* we shall show that S enters (0, 0), but now with the behavior
Y.--Au+ as u 0+. From this, the approximate linearity of S near the saddle point
(1, 0) and (18), it follows that a unique strictly increasing solution of (17) exists for
0 < A < A*, that is for a > a*. However, for a a* it can be seen that the curve S
actually gives a weak solution in the sense mentioned in 1. For n 1, so that a* /-,
this can be shown by explicit calculation. If we let Y uv, then as remarked after (9) in
2 we can take v 1 u, i.e., du/dX a (1 u). It then follows easily that for a /we

have a wave solution u 0 for X _-< Xo, 1- e-a(x-x for X > Xo, with the property
that u and d(ua)/dX are absolutely continuous. Its only defect is that du/dX fails to
exist at X Xo.

The fact that S descends as A decreases follows from the behavior of its slope at
(1, 0) and a simple comparison argument using equation (19). It can also be shown by
arguments similar to those of Johnson [9, pp. 48-49] that, given any Uo with 0 < Uo < i,
Y(uo) on S depends continuously on A _-> 0. (Here we define S by Y--0 when A 0.)
Furthermore, Y(0)> 0 on S for all sufficiently large A. For suppose Y(0)= 0, so that
Y(u) < u for u in (0, 1] from (19). Then write (19) as

n+lYY’= Y-Au (1 u),

and integrate from 0 to 1 to obtain

io io ioA u+(1 u) du Y(u) du < u du -,
which is impossible for A sufficiently large.
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We next consider the differential equation (19) near (0, 0). A contraction mapping
argument shows that for each A => 0, there is a solution T emerging from (0, 0) with the
behavior Y-- u as u 0+, and given any c satisfying 0 < c < 1, T is the unique solution
lying in the wedge cu <= Y <= u for all small enough u > 0. To construct T one may
rewrite (19), with the requirement Y(0)= 0, as Y OY where

I0u/OY(u)= l_As,+ 1-s
ds.

Now let any c be given with 0 < c < 1. One can show that there is some 8 > 0 such that if
Y(u) lies between cu and u (inclusively) for 0<u <6, then so does OY(u). Next put
Y0 --- u and Y,,/ 0 Y,, m -> 0. Then one can deduce that for some positive 61(<6) and
K<I, Am+ <-- KAm, m>-l, where A,n=sup{lY,,(u)- Ym-I(U)I: 0< U tl}. By stan-
dard arguments Y, converges for 0< u_-<61 to a solution path T whose above-
mentioned properties are easily checked. As with S it is easy to see that T rises as A
decreases.

We now compare S and T near u 0 as A varies. We know that Y(0) > 0 on S for
A large enough, and S rises as A increases. Thus the values of A for which Y(0) > 0 on S
form an infinite interval whose infimum we denote by A* _-> 0. For A > A*, T lies below
S (otherwise one would have Y(0) 0 on S). Hence, since S descends and T rises as A
decreases, it can be seen that T1, the solution T corresponding to any fixed A1 > A*,
provides a lower bound on some interval 0 < u < 61 for all solutions S with A > A*; by
the continuity of S with respect to A_-> 0, T1 does likewise for S*, the solution S
corresponding to A*. Hence

Y(u)
(21) lim inf ,_.o+ ->- 1 on S*,

U

which implies that A* > 0 (because Y 0 when A 0). It now follows that Y(0) 0 on
S*, for otherwise Y(0) > 0 on S* and then, by continuity, also on S for some A < A*.
From (21) and the fact that dY/du < 1 we obtain Y--- u as u 0+ on S*. Hence we may
conclude, using the uniqueness of T already mentioned, that S and T must merge when
A =A*.

Now suppose that 0 <A < A*. Since S descends and T rises as A decreases, it
follows immediately that S now lies below T (for S and T merge when A A*). Also S
lies above the zero slope curve (20) near (0, 0), and hence S enters (0, 0). We now show
that

(22) Y’-- Au "+1 on $ as u - 0+,

which will complete our main argument on the existence of A*. For any A >A a
crossing argument similar to those in 2 shows that, near u 0, S lies below the curve F:
Y Aun+l(1 u), (which is a multiple of the zero slope curve (20)). If S stays above F
near u 0, dY/du > 1-A/A so that Y > (1-A/A)u on S near u 0, and then, by the
uniqueness property of T, $ and T would mergema contradiction; further details of this
crossing argument are omitted. Since (>A) is arbitrary, and S lies above the zero slope
curve (20) near (0, 0), (22) follows. Our arguments also show that for each A > 0 any
solution lying between T and the u-axis satisfies Y Au+1 as u 0+; by an argument
like that ending 2, any two such solutions differ by an exponentially small amount as
u0+.

Having established the existence of a critical value A* of A, it remains to estimate
A* (in terms of n) by suitable inequalities. We could do this by quoting results from
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Johnson and Nachbar [10] for a closely related problem, but will give a slightly simpler
argument for our special choices of D(u) u n, F(u) u(1 u). It is convenient here to
define the variable v by u du/dX auv and rewrite (17) as

2vv’ 2v(1-v)-2Au-l(1-u)
writing’ for d/du. (This variable v was used in our early investigations of the existence
of A*.) Note that Y= uv. Taking A =A*, there is a solution v with v(0+)= 1,
v(1-) 0, and 0< v < 1 for 0< u < 1 (since (19) gives dY/du < 1, so that 0< Y < u).
Hence

2vv’>-2A*un-(1-u)
and, on integrating from u -0 to u 1,

-1 >-2A* fo un-l(1-u)du=-2A*( 1
t/

1 ) 2A*
n+l n(n +1)

whence

n(n +1)

On the other hand, for A <A* we have a solution v with v(0+) v(1-)=0. Then

(uv2)’= 2uvv’ + v 2 2v 2v 2 + v 2- 2Au" (1 u)

1-(1-v)2-2Au(1-u)
<__l-2Au"(1-u).

Integrate from 0 to 1 to obtain

0_-< 1-2A Io u(1-u) du 1-

(n + 1)(n +2)

2A
(n + 1)(n +2)’

Letting A ’ A*, we get

(n + 1)(n +2)

Thus

n(n + 1) _<A,<_ (n + 1)(n + 2)
2 2

Note that for n 1 this gives 1 < A* < 3 compared with the known result A* 2 (from
{}2).

4. D(u)=lOulOxlN-l, N>I. In this section we deal with the case D(u)=
IOu/Ox]v-a, N > 1 and F(u) u(1 u). N 1 gives D(u) -= 1, which is the classical KPP
equation to be covered by 5. As mentioned in 1 we can rule out the possibility
du/dX < 0 by an argument similar to that in 3 (here using the substitution Y
-]du/dXIr-1 du/dX) and so seek a wave solution with u u(x + at) u(X) with u(X)
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strictly increasing from 0 to 1 as X runs from -oe to +oe. Equation (2) becomes

adX dX
+u(1 u) -oo<X<oo

Putting aY (du/dX)v, we obtain

dY
1

Au(1 U) -(1+1/N)(23)
du y1/N A a

and look for a solution running from (0, O) to (1, O) in the region 0 < u < 1, Y > O. We
also need X to run from -oo to +oo, and therefore require that

1-

(24) foY-X/Ndu=+oo,+ I Y-X/Ndu=+oe.

Indicating proofs in outline only, we shall show that, as in the preceding case, there
is a positive critical value A* of A such that this problem has a unique strictly increasing
solution if and only if A < A*, that is if and only if a > a*, where a* (A*) -lw(N/x).
When A A* there is a solution u (X) strictly increasing from 0 to 1 on a semi-infinite
interval IX0, c). Again we have no explicit general formula for A*, but shall give
estimates.

Existence and uniqueness for solutions of (23) entering (1, 0) from the region
0 < u < 1, Y > 0 can be proved by imitating the methods of Johnson [9]. Firstly rewrite
(23) as

d y(N+X)/N _N +__1(y1/N -Au(1 u))
du N

or, with Z y(N+I)/N

(25) dZ= N +___1
du N

(Z 1/(N+1) -Au(1 u)).

It then follows from simple arguments based on the Peano existence theorem that (25)
has a solution with Z 0 at u 1, Z existing for 0-<_ u =< 1, and Z > 0 for 0 < u < 1.
Further arguments in the manner of Johnson [9, pp. 48-49] show that Z is unique and
depends continuously on A->_ 0 for each fixed u in [0, 1). The same facts hold for
Y Zlw(l/x), which gives a solution path S for (23). Note also that whenA 0, Z 0 is
the unique solution of (25) in 0 =< u -<_ 1 with Z(1) 0.

To find the behavior of the solution path S as u - 1-, a simple comparison of S and
its slope with the curve [hu(1- u)]N and its slope (for h <A and A =>A) shows that
Y---[A (1 u)]N on S as u 1-. It then follows that S satisfies the second of conditions
(24).

One may now proceed using arguments quite similar to those for the case
D(u) u" (n > 0)--so details are omitted--and conclude that the critical value A* ofA
exists, as required. WhenA A*, it can be seen that it is again the curve S which gives a
solution strictly increasing from 0 to 1 on a semi-infinite interval [X0, oo); the cor-
responding solution u u (X) can be shown to be valid in the classical sense because
du/dX and (d/dX) ((du/dX)) exist even at X X0.

It remains to obtain estimates for A*. A convenient variable for this is v, defined by
v Y/u (as in the case D un), and then (23) becomes

uv’= l-v-Au(1-u)(Ul))l/N
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or

(v+l/N") vl/N"(1-V)-Au (1- u),
N

(26)
N+I u

where’ denotes d/du. Now assume that A A*, so that $ runs from (1, 0) to (0, 0) with
behavior Y-- u as u 0+, and v Y/u runs from (1, 0) to (0, 1). Note that 0 <- v =< 1,
since 0-< Y-< u on S as in 3. Then from (26)

N (vl+/N")’>= -A*u-1/N"(1-u)
N+I

so that on integrating from 0 to 1,

N
-A* lJoN+I

giving A* => (N 1)(2N 1)/N(N + 1).
Now rewrite (26) as follows’

N (uvl+I/N"),= N
N+I N+I

u-/N"(1 u) du,

{b/(y I+I/N), q_/.) I+I/N}

l/N"(1 v) -Aul-/N"(1 u) +
N

N+I
I+I/N

1/N 1 I+I/N 1-1/N=v -v -Au (1- u).
N+I

But v l/N" (1/(N + 1))v l+/N" is increasing in v for0<_ v <= 1, andso is bounded above by
its value at 1, namely N!(N + 1). Hence

1 (UVl+I/N"),< N Aul-1/N"(1-u).
N+I N+I

Then takingA A* again, uv I//N" 0 at u 0, 1, so that integrating the last inequality
gives

0<_A=N+I -u) du.

Hence A* -<_ (2N- 1)(3N- 1)/N(N + 1).

5. D(u)=(1-u)-, 0<_-y-<_l. We finally turn to the case D(u)=(1-u)-, 0 <-
y-< 1, and F(u)= u(1-u), where 3’ 0 gives the classical KPP equation. We seek a
wave solution u u (X) u (x + at) of

Ou O (D(u) OU)o--i o--; -gx +

with the same conditions as before. Defining Y by D(u) du/dX aY, we obtain

dY Au(1-u)- -2(27) -1- A=a
du Y

and look for a solution with Y > 0 for 0 < u < 1 running from (0, 0) to (1, 0) in the
u Y-plane, checking that X runs over the full range (-o, ).



TRAVELING WAVE SOLUTIONS 891

Assume first that 0 =< 3’ < 1. Then (27) has critical points at (0, 0), (1, 0). For A > 1/4,
(0, 0) is a spiral singularity so that any solution approaching (0, 0) will leave the region
0 < u < 1, Y > 0, and We may therefore asume that 0 <A <= 1/4. It is known from the work
of Johnson [9] that there is a unique solution S approaching (1, 0) from the region
0< u < 1, Y> 0, and we now show that S followed backwards (for decreasing u)
approaches (0, 0) as u 0+.

To see this, let C be the curve Y Au (1 u) a-v. The solution curve $ has positive,
zero or negative slope according as S lies above, on or below C. Following S backwards
from (1, 0), it lies below S for u near 1 but ultimately crosses C and lies above C for all
smaller values of u. Let C’ be the curve Y 2Au(1- u)a-3". If S were to cross C’ it
would then have slope 1/2 whereas C’ has slope

2A{(1 u) a-3, u(1- y)(1- u)-} CA(l- u)

<2A(1-u)a-3"<2A <=,
so that we should have slope S > slope C’. But S lies below C, hence below C’, near
u 1 which implies that S must lie below C’ for all u in 0<u <1. Thus Y<
2u(1 u) 1-3, for 0 < u < 1, which shows that S approaches (0, 0) as u 0+.

For 3’ 1, still assuming that 0 < A-<_1/4, explicit calculation (left to the reader)
shows that there is a solution S leading from (0, 0) to (1, 0).

In the range 0 _-< y <- 1, we have Y < u for all u in0 < u < 1, since dY/du < 1. Since
dX=(D(u)/aY) du, we have dX>(constant/u)du for small u, so that X -oo as
u 0+. For the behavior of $ near (1, 0), hence of X as u 1-, integrate (27) from u to
1 to obtain

Y(u)2 2 Iu [As(1 s)a-3,_ Y(s)] ds

<= 2A fu s(1 s)1-3, ds O((1 s)2-3,).

Hence Y(u) O((1 s) 1-a/2) and

Y(u)2= 2A I, (1-s)l-" ds + f, f(s) ds,

where

It follows that

f(s)= -2[A(1- s)2-3"+ Y(s)] 0((1--S)1-1/23,).

Y(u)2 2A
(1- u) 2-3" as u- 1-,

assuming now that y >0. But dX (D(u)/aY) du then shows that

constant
dX---

(1 u)l+a/23,
which ensures that X +c as u 1-. (3’ 0 can be treated by using the fact that (1, 0)
is then a saddle point of standard type.)

Acknowledgment. We wish to thank the referee for helpful suggestions and for
drawing our attention to the work of Aronson [2].
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THE QUENCHING OF SOLUTIONS OF
SEMILINEAR HYPERBOLIC EQUATIONS*

PETER H. CHANG- AND HOWARD A. LEVINE$

Abstract. We consider the problem u, U,,x + b (u(x, t)), 0< x < L, >0; u(0, t) u(L, t)=0; u(x, O)
ut(x, 0)=0. Assume that b (-oe, A) (0, ee) is continuously differentiable, monotone increasing, convex,
and satisfies lim,_.a-b(u)= +ee. We prove that there exist numbers L1 and L2, 0<L1 <=Lz such that if
L > L2, then a weak solution u (to be defined) quenches in the sense that u reaches A in finite time; if L < L1,
then u does not quench. We also investigate the behavior of the weak solution for small L and establish the
local (in time) existence of u.

1. Introduction. In [3], Kawarada investigated the following nonlinear initial
boundary value problem’

O<x<L, t>O,bit Llxx + 1 U

(P) u(O, t)= u(L, t)= O, > O,

u(x, 0)=0, O=<x =<L.

There, he established the following interesting results:
(A) If L > 2/, then u(L/2, t) reaches one in finite time.
(B) If u(L/2, t) reaches one in finite time, then ut(L/2, t) is unbounded in finite

time.
Whenever (B) occurs, Kawarada says that u quenches in finite time. We shall say that u
quenches if (A) occurs. This is a weaker definition than Kawarada’s.

In [1] and independently in [6] it was established that there is a numbe’r L0 such
that if L > Lo, u quenches in finite time while if L < Lo, u tends monotonically to the
smaller of the two solutions of the stationary problem

1
f"(x)+ O, O<x <L,

1 -f(x)

f(O)=f(L) =0.

In [6] it was also shown that this latter situation also obtains at L L0, where the two
stationary solutions coalesce into a single stationary solution. The number L can be
found exactly, in fact L0 1.5307 ... These papers also included extensions to more
general nonlinear parabolic problems where the nonlinear term has the same qualita-
tive properties as 1/(1-u) (convex, positive, monotone increasing and singular at the
right endpoint of (-oe, a).) The principal tools employed there were the maximum
principle and the various comparison theorems derived from it.
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Motivated by the preceding remarks, we were led to examine the analogous
problem for the wave equation. That is, we studied the problem

1
u,=uxx+, 0<x<L, t>0,

1-u

(W) u(0, t) u(1, t) 0, > 0,

u(x, O) ut(x, O) O, 0 <= x <-_ L.

Although we do not have any physical application in mind, we believe the study of
problem (W) to be of theoretical interest. Since parabolic equations are in some sense
on the borderline between elliptic and hyperbolic equations, it is of interest to know
which of the properties of their solutions are possessed by solutions of the other two
types of equations and what form the properties take in these cases. For example, the
maximum principle for parabolic equations has a stronger version for elliptic equations
and a much weaker version for hyperbolic equations. See [9] and references therein.

The first result we obtained on this problem is contained in Theorem 3.2. For this
problem it says that if L > L1 1.418 ., then u quenches (reaches one) in finite time.
Since LI<L0, we conjectured that for any L>0, u must quench in finite .time.
However, when (W) was solved numerically for small L, the results obtained seemed
to contradict this conjecture.

Guided by the numerical results, we were able to show that if L < 1.238, then
u _-< 0.7732 for all time. That is, if L is small, u cannot quench, even in infinite time.
This result is contained in Theorem 4.1.

Because for problem (W) we do not have as useful a maximum principle available,
the arguments we use are much different than those used for the parabolic problem.

Rather than studying problem (W), we treat the somewhat more general problem
(W’).

u,=uxx+eo(u(x,t)), 0<x<l, t>0, e>0.

(W’) u(0, t) u(1, t) 0, > 0,

u(x, O) u,(x, O) O, 0 <- x <- 1,

which reduces to (W) when e -Lz and q(u)- 1/(1-u), after a change of variables.
Here q: (-o, A)- (0, c) is continuously differentiable, monotone increasing, convex
and satisfies

lim q(u)= +o.

The solution u(x, t; e) for fixed e > 0, is shown to exist in the weak sense (defined
precisely later) on the largest set [0, 1] [0, T), where lu[ < A. If T +c, we say that u
is a global solution. If T < c, then sup {u (x, t) (x, t) [0, 1] x [0, T)} A and we say u
quenches (reaches A) in finite time. If T +, and this supremum is A, u quenches
in infinite time. Thus, if u does not quench at all, u _-< A(1- 8) for some 6 (0, 1), on
the half strip.

We then summarize our results for (W’) as follows: There exist two numbers ex,
E2, 0< E1 E2 < d-00 such that if e < el, U(X, t; e) (the solution of (W’)) cannot quench.
If e > e2 then u (x, t; e) quenches in finite time. We do not prove E1 E2, although we
believe this to be the case. The numerical results indicate that this is so for (W) and
that LI--x/’l /2-- 1.365"’ ". Also, we believe that if e ex e2, then u quenches
in infinite time.

The plan of the paper is as follows: In 2 we define the notion of a weak solution
which we shall use in the sequel. We establish local existence there also. In 3 we show
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that if e is "large" u quenches in finite time whereas in 4 we show that if e is "small",
u cannot quench at all, even in infinite time. In 5 we discuss the behavior of u as

0+"e --> We conclude with some remarks in the final section.

2. The definition of a weak solution. We say u is a weak solution of (W’) on

Dr --(0, 1) (0, T) if"
(i) u is continuous in Dr and satisfies the initial and boundary conditions there.
(ii) lul<_-A(a-) on/r.
(iii) u has weak derivatives u,,, ut on Dr and for all (0, T), u,,, ut L2(0, 1).
(iv) For any function d/(x,t)6C2(r) satisfying the boundary conditions

and 0-_<t=< T,

(2.1)
fo (x’ t)ut(x’ t) dX fo Io [O(x’ r)u(x’ r)-Ox(x’ r)ux(x’ ")] dx dr

+ e lo lo 4,(x, )(u(x, )) dx d.

(v) The total energy associated with (W’) is conserved, i.e.,

(2.2) Er(t) (u 2 +u 2t)dx-e q(n) dl dx Er(O) O.

We next examine the question of the local (in time) existence of the weak solution
defined above. The singular value of the nonlinearity and the consequent restriction
[ul--< A (1- 6) on Dr prevent straightforward application of Reed [10, Thm. 1, p. 5],
because the nonlinearity is now not defined on the domain of dZ/dx2. Nevertheless, a
local existence theorem of the desired kind can be obtained from the contraction
mapping principle used for hyperbolic systems, to be found in Garabedian 11, p. 110].
One still has to deal with the strange nonlinearity and the boundary conditions however.

We proceed as follows: Let 6 (0, 1) be fixed. Consider the problem (W’) with
nonzero initial data

u, Uxx + eq(u(x, t)),

u(O,t)=u(1, t)-O,

u (x, O) Uo(X),

Ut(X O)-- Vo(X),

0<x < 1,

T>-t>O,

T>-t>O, e>0,

where Uo, VoS Ca(O, 1) and uo(O)= Uo(1) O. Letting Ilol[ denote the sup norm of a
function of x, we assume that

(,) Iluo[Ioo + Tllvol[oo < A (1 26).

Define u, u0, v0 by odd periodic (with period two) reflection (in x) on R [0, T]. Define
the following function

by

F.Rlx[O, o)x(-A,A)-R ,
F(x, t, u)= { q(u)’ x[2n, 2n+l),

xe[2n-l,2n),
n =0,+1,+2,. ..
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Then by standard arguments, u solves (W") if and only if u solves, on R x [0, T), the
integral equation

f
+t-e

F(s, rt, u(, rt)) d, err,(2.3) u(x, t)= ul(x,
t-- T

where

1 1 fx+tUl(X, t) (b/0(X 4-l’)+ Uo(X --1’)) 4- .x_
Uo(O’)dr.

Clearly, if (,) holds,

Illu]ll-- sup ]lux(t)ll<a(a-2).

Let B, be the Banach space of odd (in x) continuous functions on R x [0, ’], which
vanish on the lines x n, n an integer, and are of period two in x. Let B(Ul, AG) denote
the closed ball of radius A3 in this Banach space. (Note that u e B,.) Define

’(ul, aS)B,,
by

fOt f
+t-e

F(s, rt, u (, rt)) d drt.(-U)(X, t) U l(X, t) 4- - "x--t+

In view of the definition of F, this map is well defined. It is then easy to check that

(2.4) IllU Ullll < aG,

(2.5) Ill 7u lll < II[u 111, 0 < < 1

for u, v B (ul, AS) provided

,<min IT, ()
’/ ()/ }[A/,(( )A)]/ [,’(( )A)]-/

so that " B(ul, A3)- B(ul, AS) and is a contraction. Thus has a unique fixed point.
This establishes the following theorem.

THEOREM 2.1. A weak (C a) solution oJ’ (W’) exists on Dr if T is sufficiently small,
[or any e >0. The solution is piecewise C2 in Dr and (2.1) and (2.2) hold there.
Furthermore, i]u exists on Drand lul-<_A(1 6) on Or, then u may be continued to Dr+,
[or r suNciently small (and positive).

It can be shown that the solution of (2.3) is regular enough that (2.1) and (2.2)
hold when Uo-= Vo 0. In this case, from (2.3), one easily calculates

u(x, t)=- F(r, x + t-cr, u(cr, x + t-cr)) dr

F(o’, o’-x + t, u(o’, cr-x + t)) d
--t

x+t

Ut(X 0") - F(o’, X + t--r, u(r, X + t--r)) &r

+ F(o’, o’-x + t, u(o’, o’-x + t)) d
--t
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so that, because F(x, t, u) is piecewise continuous, Ux and ut are continuous everywhere
and differentiable in x and except on the lines x n, x + n or x n, where n is
an integer. In fact, except on this point set,

Uxx(X, t)= e[F(x + t, O, O)+F(x-t, O, O)]-eF(x, t, u(x, t))+I,

u,(x, t) [F(x + t, O, O) + F(x t, O, 0)] +/,

uxt(x, t) u,x (x, t) -[F(x + t, O, O) + F(x t, O, 0)] + J

and piecewise continuous, where

Ixx+tI =-- F3(o., x + t-o., u(x + t-o.))u2(o., x + t-o.) do"

e
F3(o", o"-x + t, u(o"-x + t))u2(o", o"-x + t) do"-t-- -=-I +I2,

J=--Ii-I2.

Thus the solution is classical except on

{(x, t) R1 [0,  ]lx, x t, x + are integers}.

It is then an easy matter to show, using care when integrating across jumps in u, ut,

u,, that (2.1) and (2.2) hold.

3. Nonexistence or quenching for large . The results here are analogous to those
in [5]. We repeat them here for completeness and because the class of nonlinearities
here is different from that considered in [5].

Throughout this section, q :(-,A)-(0, c) satisfies the following conditions:
(a) q > 0, q’ >_- 0, q is convex;
(b) limu-.A- q(U)= +oo.

Let

(3.1) (x) q(s) ds

and
2

2 x(3.2) H(x) =-r -+edP(x), -oe<x <A.

For H, we suppose that H(x)>0 on (0, A) and limx-A-H(x)> O.
LEMMA 3.1. Under the above hypothesis

A

00 > J0 [H(o")]-1/2 do".

This is clear since H(o") eq (0)o. + O(o"2) for o" small and positive and bounded away
from zero near o" A.

TX-IEOREM 3.2. If e >0 is such that the above holds for H(x) and q satisfies (a),
(b) above, then a weak solution of (W’) must quench in finite time.
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Proof. Assume the contrary: that lul < A for (x, t)e[0, 1] x [0, eo). Define

(3.3) F(t) =- - sin (rx)u(x, t) dx;

the choice 0(x, t)= sin rx in (2.1) yields

tr fotF’(t) =- sin (x)ut(x, t) dx

fo fo [sin (x)un(x, w)-w cos (x)ux(x, w)] dx dn(3.4) =
+ sin (x)(u(x, )) dx d.

Thus tF’(t) is differentiable and hence so is F’(t). Therefore

t211 /otF"(t) + F’(t) F’(t)- cos (rx)u(x, t) dx +t sin (x)(u(x, t)) dx,

so that, after integration by parts,

Tr I01F"(t)--’2F(t) +- sin (rx)q(u(x, t)) dx.

The use of Jensen’s inequality yields

f"(t) >- -r2F(t) + eq(F(t)) =- H’(F(t)).

Since F"(0) -> eq (0) > 0 and F(0) F’(0) 0, we have F’(t) > 0 and F(t) > 0 on some
interval (0, r/). Therefore, on this interval

1/2(F’(t))2 >_- H(F(t)).

From this it follows that F’ cannot change sign so that F(t) (0, A) for all e [0, oo) and
thus

A

o
[H()]-’/ do- >- J-St

for all which is a contradiction.
Notice that we are invoking part of Theorem 2.1 here, to the effect that if

lul_-<A(1-6) on [0, 1Ix[0, T], then u can be continued as a weak solution on
[0, 1]x[0, T+ t’] with lu[<-A(1-6’)(6’<6) and t’>0.

Example. For the above problem, we take rp(u)= (l-u)-, /3 >0, lu[< 1. It is
easy to verify that H(x) >0 on (0, 1) if either

(i) e _->
Q8 + 1)+a

or
(ii) if e < rZ/3t/(/3 + 1)’+1 and (1-)-{1-(r2/e)Xo+(r2/e)((1 +/3)/2)x}>0,

where Xo is the larger root of Xo(1-Xo)’= e/’rr2 if /3 1 or In (1/(1-x0))-
2 2o/2e >O, wherexosatisfiesxo/1 Xo) e/r2andisthelargerrootif/3 1."/r X

(This amounts to showing H is positive at a local minimum.)
Since, for/3 1, Xo(1-Xo)’ e/’rr2 is readily solved for Xo, we have the following

corollary.
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COROLIARY 3.3. If q(U)= (1-//)-1, then u reaches one in finite time if
2rr20o

(1 + 200)2=

where e= 1 + 20o and Xo 1 e-(0o 1.25643 and L2 /-7 1.41766).
It is of interest to note that the larger/3 is, the wider is the range of e’s for which

quenching in finite time must occur.

4. Global existence. The energy equation (2.2) can be written as

io(4.1)
2

u 2 dx +- u2t dx-e (u(x, t)) dx O,

where is given by (3.1). We write, for q as in 3,
2

(4.2) (u) q (r/) drt q(0)u +-O(u).
Here will be singular at u A if and only if q L1(0, A).

THEOREM 4.1. For a weak solution u of (W’) over Dr, if there is 3 (0, 1] such that
2

(4.3) e<a(1-6) =-(),
7rq (0) +a (1 6

where Ms suPlul_<_a(1- O(u), where 0 < 6 <- 1, then

(4.4) lu(x, t; e)l <a(1-6)

[or all (x, t) [0, 1] x [0,
Proof. Assume that T is the first number such that

(4.5) Max {u(x, t; e)[ (x, t) [0, 1][0, T]}=A(1-6).

From (4.1), (4.2), Schwarz’s and Poincar6’s inequalities for [0, T],

2/0 U2 /0 2
zr dx <- ux dx

__< 2e(I //2 dx)1/2{q Ms( 1//2(0)+ Io dx)a/2}"
From this we obtain the bound

1/2

(Io u2 dx) <-_ 28q (0)(rr2- eMa)-1,

the implied denominator on the right-hand side being positive in view of (4.3). If this
bound is used in the right hand side of the preceding inequality and if the (sharp)
inequality

4U2(X, t)_-< Io u2x (x, t) dx,

is also employed, we obtain the pointwise bound

u2(x, t) <- 82"w22(0)[7"/"2- eMa]-2
(4.5a)

<=A2(1-6)2-6
for some 6’> 0 (by (4.3)) since the latter inequality is equivalent to (4.3) this contradicts
the choice of T in (4.5).
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Actually, we have proved a little more. Since 4 is continuous on (-c, A), Ms is
monotone decreasing in 6 and continuous on [0, 1 so that lim_0+ (6) exists. Defining
-(0) to be this limit, we see that - has a (unique) maximum in [0, 1)((1)= 0), and
that if the maximum occurs at 6o (0, 1), then e < -(60) implies lu(x, t; e)l<A(1-6o)
on the half strip while if 60 0 and e < (0), then e <= (61) for all 61 sufficiently close
to zero so that lu(x, t; e)l<A(1-61), again on the half strip. It is also clear that if
q L (0, A), the maximum must occur in (0, 1).

COROLLARY 4.2. If e <max {-(6): 0_--<6 <--1}, then u(x, t; e) can never quench.
Example. If q (u) (1 u)-t,/3 > 0, then

4,(u) 2u-( t)-’[ -( -/)u -( u)- ].

Since, in (-m, 0), u2O(u) is concave and vanishes with its first derivative at u 0, we
have O(u) -< 0 in (-, 0]. Furthermore, expanding O(u) in a Taylor series about u 0,
we see that on [0, 1),

2 1 /+1(u)
i= (i + 2)

tvj=o(B +f))U

and therefore M (1-6).
For the case 1, (u)= 2u-2[ln (1/(1- u))-u]. We find, by direct computa-

tion, that 60 0.22684 and that u 1-o if e < (60)= (1.2379). Thus, combining
this with the results of the example from the last section, we see that, with reference
to (W): If L> 1.41766L, then u quenches in finite time, while if L< 1.2379L1,
then u 0.7732 for all time.

It is fair to ask whether one could improve the arguments involved in Theorem
4.1 by writing

(I)(u) E (k-1)(O)’’. -" UNI[IN(U),
0

and employing Holder’s inequality on the first N- 1 terms and the (Sobolev) inequality

i01 )
2 N

i01(4.6) C2(N)( lul’dx <-_ u dx,

in place of Poincar6’s inequality to obtain a bound on the LN-norm of u. The constant
C(N) is known and the inequality (4.6) is best possible. We did this for q(u) 1/(1 u)
and for various N. However the case N 2 seems to yield the best value of L2.

The numerical results indicate that if L > 1.365 ., then u quenches in finite time
while if L < 1.365 ..., u does not quench, even in infinite time. More precisely, what
is observed numerically is the following. The solution, for small e, has a discrete
sequence of local maxima located along the line x , > 0. The first of these local
maxima appears to be an absolute maximum, which, as L increases to 1.365 ..., from
below, approaches one from below. However, the time to reach this maximum value
increases without bound as L increases to 1.365 .... Moreover, if L > 1.365 ..., this
maximum value is one and as L decreases to 1.365..., the time taken to reach one
increases without bound. This, if L 1.365 ..., then u quenches in infinite time.

1C(p)=(2rp)/:z(2/(2+p))(,-2)/Z,F(1 + 1/p)/F(2+ l/p), <-p<oo. (C(2) "rr, C(oo) 2.)
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5. Perturbation analysis of (W’). In this section we investigate the behavior of
solutions of (W’) as e 0. The arguments involved are standard and will only be
sketched. We write

q(U) (0)-+" q’(0)U -- U2tl(U)and assume that u -<_ 1-6 implies Ia(U)l<-_M(6). We take A 1 here for convenience.
The linear problem

v.t Vx e(0) + e’(O)v.

(L) v(O,t)=v(1, t)=O,

v(x.O)=v.(x.O)=O.

is easily solved by elementary methods and found to have the following properties if
e < r/,’(0)
(L-l) v(x, t; e)= eva(x, t; e);

(L-2) IVl(X, t; e)l <-M1 where M1 is an absolute constant independent of
x, t, e for e <_-el(1-o’), tre [0, 1];

(L-3) lim_o+(X, t; e) Vl(X, t; 0)(0), which solves

Vltt Vlxx 0(0)o

The following result then holds.
THEOREM 5.1. Let u solve (W") on [0, 1][0, az) and suppose lu(x, t; e)] -< 1 -6

for all e < e’ say, on the half strip. Then

u(x, t; e)= v(x, t; e)+ w(x, t; e),

where

lim e-w (x, t; e) 0
0

for every o-, 0 _-< tr < 2, convergence being uniform on compact subsets of [0, 1] [0, ).
Proof. The difference w u-v satisfies (weakly) the equation

Wtt- Wxx F_,(ot(O)w -’["

with the same initial and boundary data as u and v. The following energy principle then
holds for w

IoE(t) =-- w 2 1 2

dx+- wxdx

io io io 1/2eo’(O) w 2 dx + e u (u)w. dx

If we write

u6(u)w. evuO(u)w. + uO(u)ww..

choosing e so small that 21-eo’(0)< ,rr-2/2, we find that

]w.] dx dn + Be Io Io ]WW,] dx d’rl,
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where A, B are computable constants depending only on 6, M(6), M1.2 For (not
necessarily the same) A, B, we have further that

(5.2) E(t) <-_ eA E(rl) drl + e3Bt,

where we have used the assumption that Ib(u)l<-_M(6) if u -<_ 1-6 and
1/2

Iwl dx <= Iw, dx <=1/2/ Iwl= dx

and where the arithmetic-geometric mean inequality and Poincar6’s inequality have
been used in the second term in (5.1).

Gronwall’s inequality applied to (5.2) yields

E(t) <=A l(t)e 2 + A2(t)e 3,
where Al(t) and AE(t) are uniformly bounded on [0, T] for e [0, eo] say. Putting this
back into (5.2) yields (for different A 1, A2 with the aforementioned properties)

(5.3) E(t) <=A l(t)e 3 + AE(t)e 4 O(e 3).
This can be improved, at the expense of worse order constants, by using the following
consequence of (5.1),

Use of (5.3) in (5.4) yields

E(t)=O(e7/).

Using this in (5.4) once again, we find E(t)= O(e x5/4) etc. Thus, on every compact
subset of [0, 1] x [0, ) and for every 6’> 0,

From the inequality

E(t) O(84-6’) as e 0.

w(x, t) <=- w ctx <

we see that on every compact subset of [0, 1] [0, ),

2-6’lim e w(x, t, )= O,

uniformly.
In particular, w/e 0 uniformly on compact subsets of the half strip. Thus, for

small e, v vie will make the dominant contribution to u/e. This function is, for
w(u)=l/(1-u),

)/t
v(x, t, e)=

[1-cos ((n + 1) e

(2n + 1)[(2n + 1) sin ((2n + 1)x).
-e]

2Here M(3)--sup{lOl(U)l,-oo<u<=l-6}. Actually this supremum need only be taken over
[- (1 6), 6 in view of (4.5a).
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This fact has been observed numerically. That is, we observed numerically that
for small e, u was. not only bounded away from one but also was oscillatory. This seemed
surprising in view of our (mistaken) belief that since u quenched in finite time for L’s
less than L0, u would quench in finite time for all L > 0.

Finally, we make the following observations" We can extend the results of the
paper to the case of nonzero, appropriately restricted initial data. Furthermore it is
possible to obtain analogous results in higher dimensions, at least in so far as 3 and
4 are concerned since only PoincarG’s inequality and the positivity of the first eigenfunc-
tion for the membrane problem are used. Preliminary calculations indicate that results
along the lines of this paper and those in [1], [6] may be possible if the nonlinearity
appears in the boundary condition. The second author is currently investigating this
possibility.

Acknowledgment. The authors thank the referees for several helpful comments
and suggestions.
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ASYMPTOTIC BEHAVIOR IN AGE-DEPENDENT POPULATION
DYNAMICS WITH HEREDITARY RENEWAL LAW*

PIERANGELO MARCATIS

Abstract. This paper is concerned with the age dependent population dynamics where the renewal
law involves hereditary effects. The first section is devoted to a model of Von Foerster type (i.e., a single
species linear model). The second section is devoted to the same model with spatial spread. Both models
are studied by means of the Laplace transform applied to a convolution integral equation (renewal equation).
Actually in the model with diffusion we convert the equation to an abstract differential equation on a
Banach space. The semigroup approach combined with a spectral mapping argument allow us to use the
Laplace transform also in this case. An asymptotic expansion as in the classical Von Foerster model is
obtained.

Introduction. In this paper we shall study a model for the age dependent
population dynamics of a single species (e.g., a cell population, a bird population or
the female human population). These models are studied using integral equations
theory. Indeed the model’s equation can be reduced to an equivalent integral equation
of convolution type, the so called "renewal equation". For this equation we refer to
the papers of Feller [7], Paley-Wiener [14], Coale [2] and the books of Hoppensteadt
11 and Bellmann-Cooke 1 ]. In the classical theory (see 11 ]), if we denote by u (a, t)
the density of population at age a and time t, the "birth law." is assumed to verify the
following equation"

A

u(0, t)= Jo b(a)u(a, t) da,

where b(a)>-O is the age specific birth rate. If we consider, for instance, a bird
population, this law does not hold because we have to take into account the maturation
period of the eggs.

In this case we consider a function g(s)>= 0 which denotes the proportion of the
eggs that will yield living birds s units of time after the eggs are laid. Therefore, the
"birth law" can be assumed to be of the following "hereditary" type’

A

u(O’t)=It-r g(t--S) Io b(a)u(a,s)dads,

where r > 0 is the maximum maturation period for the eggs. This condition has been
considered by Cushing [3], when r +c.

Let us denote by re(a)> 0 the age specific death rate; then in a way similar to
[11 ], we get

Ou Ou
+--=-m(a)u(a, t), (a, t)e [0, A]x N/,
Oa Ot

(P) u(a, O)= b(a, 0), (a, O)[o,a]x[-r, O]
A

u(O, t)= | g(t-s> | b(a)u(a, s) da ds,
aO

In order to consider spatial spread, let u(a, t, x) denote the density of population
per unit age, unit time and unit surface, where x belongs to an open bounded subset

* Received by the editors November 7, 1980.
t Dipartimento di Matematica, Libera Universit degli Studi di Trento 38050 POVO (TN)-Italy. This

work was supported by CNR Grant No. 79-00696-01.
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fl of R2. Thus, the birth law is given
A

u(O’t’x)= ft-rg(t-S) fo b(a)u(a,s,x)dads.

In a way similar to the case without delay (see Marcati-Serafini [13]), we get

Ou Ou
--+--=-m(a)u(a, t, x) +divx [G(x) grad u(O, t, x)],
Oa Ot

(a, t, x) e [0, A] x R+ x II,

(P’)

u(a, O,x)=c/)(a, O,x), (a, O,x)e[O,A]x[-r, 0] x II,

u(O,t,x)= g(t-s) b(a)u(a,s,x)dads, (t, x) e N+ x II,

OU
--=0 or u=0 on0lq, C(x)_->c0>0.

(u is the outward unit normal).
The problem of spatial spread in age dependent population dynamics was pro-

posed by Gurtin [9] and investigated by Gopalsamy [8], Di Blasio-Lamberti [4] and
Marcati-Serafini [13]. Gurtin [9] proposed a more general diffusion operator of the
type

A

-[divx fo K(a,a’,x)gradxu(a’,t,x)da’]
that has been studied in [4]. Some other diffusion models can be found in Webb [17]
for epidemics.

Our purpose here, is to study the asymptotic behavior of (P) and (P’) in order to
obtain an asymptotic expansion for the solution (as in the classical case). The methods
employed here are Laplace transform theory, for the problem (P), and the Laplace
transform combined with semigroup theory and spectral analysis for (P’).

Remark. This model can be applied also to a female population. In this case g(s)
is concentrated in a narrow interval near r. Let us denote, by b(a)u(a, s) da, the number
of females with ages between a and a + da who conceived at time s. Then

a+(t-s)

exp [- fa m(o-)dcr].b(a)u(a,s)da
is the number of females who survive till the time t. The number of offsprings will be
given by

A a+(t-s)

u(0, t)-ft-r go(t-s)Io exp [-- fa m dr]b(a)u(a, s)da ds.

Actually, the function m in the age interval where the females can be conceived is
nearly a constant value _m. Then we can assume

A

u(O’ t)-- It-r g(t--s) exp [--m- (t--S)] fo b(a)u(a, s) da ds

holds also for the female population; that is,

g(s) go(s) exp [-_ms].
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1. Asymptotic behavior for (P). Assume that the following hypotheses hold;

(1.1)

Let

bC[O,A], b(O)=b(A)=O, b>-O,
A

C[0, A], m > 0, Jo m(a) dam +o,

4) C([O,A]x[-r, 0]), & =>0,
o A

l(0’0)"-I--r g(-S) Io b(a)cb(a, s) da ds,

g s C[0, r], g _-> 0, Ilgll .
]p(t)=exp[-Io m(a) da

(1.2) V(t) b(t)p(t) if s [0, A], V(t) 0 outside [0, A],

K(t)= ft-r g(t-s)V(s)ds if t[O,A+r],(1.3)

and

(1.4)

K (t) 0 outside [0, A + r]

A

f(t) I(t--r)vO g(t-- s) I {p(a)/p(a s)}cb(a s, O) da ds

o A

"t- I(t--r)^O g(t- S) Io b(a)c(a, s) da ds,

(where v and ^ are the sup and inf symbols).
Solving (P), along the characteristics t-a const., we obtain

u(a,t)=[p(a)B(t-a) if t>a,
(1.5)

[p(a)/p(a t)]b(a t, 0) if _-< a,

where B(t)-- u(O, t).
If we insert the above expression for u in the "renewal law", we get

(1.6) B(t)= f(t)+ J0 K(t-s)B(s) ds.

The equation (1.6) is called the "renewal equation".
In order to have a solution u C to (P), we need a solution B C. So we have

to make stronger assumptions on b, g, m. But the considerations that we shall examine
about the existence and the asymptotic behavior of a solution to (1.6), do not require
any ditterentiability of the data.

THEOREM 1.1. The following conclusions hold:
(i) Assuming only condition (1.1), we have the existence and the uniqueness of a

positive solution B C(+) to (1.6). Then, by (1.5), the problem (P) has a unique
continuous positive solution in the sense that for all (a, t) [0, A]+ one has the
existence of the directional derivative

u(a +h, t+h)-u(a, t)
D.(a, t)= lim

h0 h
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and

Dl,l(a, t)=-m(a)u(a, t).

(ii) Moreover, if g, b, are C 1, then u is C except the characteristic line a.

Proof. The first part of (i) is a classical result concerning linear Volterra integral
equations (see, for instance, [1]). The second part follows by solving (P) along the
characteristics t- a const and calculating D1.1 by (1.5). To prove (ii), we remark that
p is differentiable in [0, A], and p’(a)=-m(a)p(a).

Then p’ is in LI[0, A]f3 C[0, A), so f and B are differentiable in (0, +). In
addition, for all > 0,

B’(t) =f’(t) + Jo K’(t-s)B(s) ds.

Since f, in general, is not differentiable in 0, B is not differentiable along t-a 0.
The same holds for u. ]

The following result is concerned with the asymptotic expansion for the solution
to (1.6). The proof strictly follows the classical theory (see, for instance, [11]).

We shall denote by the superscript the Laplace transform of a given function.
THEOREM 1.2. If the hypotheses in (1.1) are fulfilled, we have the following

asymptotic expansion for B (t)"

B(t) Bo exp (p*t) + o(exp (p*t)) as t- oo

where Bo >-_ 0 and

I(pr) 1, p* max {Re p"/(p) 1}.

Proof. Since f, K have compact support their Laplace transforms are analytic
entire functions. By Gronwall’s lemma applied to equation (1.6) there exists r such
that

[B(t)[-<_ const, e t.

So,/(p) exists for Re p > r. By (1.6), one has

/(p) (1 -I(p))-f(p), Re p > o’.

The function/(p) has a meromorphic continuation in the half-plane Re p _-< r, and its
poles are given by the roots of the characteristic equation/(p) 1. This equation has
a unique real simple root p*, such that for all p p* and/(p) 1, it follows that
Re p <Pr. In addition, the set of the roots of/(p)- 1 is a countable subset of C. In
each vertical strip [Re p[ <_-const., there are a finite number of roots (see [11]). Now if
we choose 3’ such that p > y, and Re p < 3’ if p p, and/(p) 1, then

1 I v+iB(t) - .v-o
(1 -I(p))-af(p) e"’dp + =Re [et/(p)]

(the convergence of the integrals follows by the Riemann-Lebesgue lemma (see [6]),
since f, K have compact support). Therefore one has

B(t)=Boe":’+o(e*’) as t-oo. [3

In the next result we shall make a comparison of the solution to (1.6) with the
qualitative behavior of the problem without delay, where r 0 and g is equal to the
Dirac distribution concentrated in 0.
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THEOREM 1.3. Denote by p* the real root of (p) 1, that is the characteristic root

of the problem without delay then the following conclusions hold. For all r > 0 it follows
that"

i) Ifp*<O then p*<p* <0.
ii) Ifp* 0 then p O.
iii) Ifp* > 0 then 0 < p < P*.

A
Then o V(t) dt<l is necessary and sufficient for p* <0, while V(t) dt> 1 is
necessary and sufficient ]:or p > O.

Proof. It is sufficient to point out that the functions

pR- Q(p)6R, pI(p)
are monotonic decreasing. Then, if p* < 0, it follows that

/(p*) 1 r(p*) > (p*) r(p.) =/(p*)
so/(p*) >/(p*) and hence p* < p*

Moreover, 1 > I(0)>/(0) and/(p*) >/(0), so p* <0, and (i) is proven. The
proof of (ii) is obvious. In the same way as for (i) one can get (iii). [q

Remark 1.4. The above results are also true if g(s) ds drt, where rt" [0, r] is
a nondecreasing function such that r/(r)= 1 + rt (0).

Remark 1.5. An important consequence of the above theorem is that the behavior
at infinity of the solution to equation (1.6) is qualitatively determined by the behavior
at infinity of the solution to the equation of the model without delay,

D(t) F(t) + | V(t- s)D(s) ds,
o

where
A

F(t) It {p(a)/p(a- t)}6(a- t, 0) da.

In particular, the gestation delay does not yield oscillations or bifurcations, while these
phenomena can be found in many nonlinear models (see [3]).

2. Investigation of the model (P’).
A. Existence and uniqueness. We convert the model (P’) to an abstract differential

equation on a suitable Banach space.
Let L be the infinitesimal generator of a strongly continuous semigroup {T(t):

=> 0} on the Banach space X. Let us denote by D(L) the domain of L (that is densely
embedded in X) and, by[. I, the norm on X. Let K cX represent a closed convex
cone with zero vertex. Assume K is invariant under the action of the semigroup, that
is,

(2.1) T(t)KK, t>0.

(A)

The equation (P’) can be put into the following abstract setting"
Ou Ou
+ -m(a)u + Lu,
Oa Ot

A

u(0’ t)--It-r g(t--S) fo b(a)u(a, s) da ds,

u(a, 0)= 6(a, 0),

a [0, A], teR+, O[-r, 0],
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where the following hypotheses are fulfilled"

(2.2) g, m, b verify (1.1),

(2.3) & e C([0, A] x [-r, 03; K),

To obtain (P’) from (A), we assume

(2.4) Lu div [C(x) grad u],

0 A

I-g(--S)Io b(a)&(a, s) da ds O(O, O).

ccl’a(fi), C(x)Co>O, a[0, 1).

Then let us consider 0f sufficiently smooth (e.g., 012 C2),
X Co(l)) {u C(II)" u 0 on

D(L) {u Cl(fi) f’l Co(fi)" Lu C0(fi)},
if we require Dirichlet boundary conditions; otherwise,

{ 0--U-u 0 onX C(f), D(L) u e C(fi) Lu X,
0,

when Neumann boundary conditions occur. Lp spaces can also be used. In all these
cases, we assume K- {u X" u _>-0}. For the semigroup properties we refer to Kato
[12] and Stewart [15], [16].

We introduce here the abstract form of the "renewal equation"

(2.5) B(t)=f(t)+ g(t-s)B(s) ds, B(t)= u(0, t),

where

K (t) I(t_r)vo g(t s) V(s) T(s) ds (X),

A

](t) I(t_r)v0 g(t--s) Is b(a){p(a)/p(a -s)}T(s)&(a -s, O) da ds

0 A

+It--rg(t--S) Io b(a)&(a,s)dads.

In a way similar to [13], it is possible to prove the following existence and
uniqueness theorem.

THEOREM 2.1. The following propositions hold:
i) Assume that the hypotheses (2.2), (2.3) are ]ulfilled; then there exists a unique

solution B C(R+, K) to the "renewal equation" (2.5).
ii) Moreover, if

&(a, O)6D(L)f-IK forall (a, O)[O,A]x[-r, 0],

(a, O)[O,A]x[-r, 0]L&(a, O)X

is continuous, then

(2.6) B(t)D(L)f-IK forall t>-_O

(X) denotes the Banach algebra of bounded linear operators on X, endowed with the norm
IIuII-sp{IUxl" xl- , x x}.
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and t-LB(t)X is continuous. So (A) has a unique solution given by the
expression

(p(a)/p(a-t))T(t)c(a-t, O) if t<=a,(2.7) u(a, t)=
p(a)T(a)B(t-a) if t>a,

in the sense that the directional derivative Dl,1 (defined as in Theorem (1.1)) exists, is
continuous, and Dl,(a, t)=-m(a)u(a, t)+ Lu(a, t).

Proof. By standard contraction mapping arguments, one has a unique solution
B C(R+, X). Moreover, this solution can be approximated by the Picard iteration
scheme

Bo(t) f(t), Bn+l(t) =/(t) + | K(t-s)Bn(s) ds.
Jo

Since f(t) is in K for all =>0, then by (2.1) one has Bl(t) K, for all =>0. For the same
reasons, if Bn(t) K then Bn+l(t) K. Therefore, B C(R+, K). Now we go on to prove
(ii). Now, let us define the so-called Yosida approximations L nL(n-L)-1, for
sufficiently large n. Then one has

(2.8) LB(t) Lf(t)+ | K(t-s)LB(s) ds
o

since L, commutes with T(t). By Gronwall’s lemma, it follows that

Itn(t)-t,,n(t)[ <= const, e’lt,f(t)-t,,f(t)l,
for a suitable 8 > 0. By the above assumptions (ii), we have that for all => 0, f(t) is in
D(L). Then, by well-known properties of Yosida approximations, Lnf(t) converges to
Lf(t). In this way, LB(t) is a Cauchy sequence in X and B(t) D(L). Finally, passing
through the limit for n c in (2.8), one has LB(t) is a solution of

LB(t) =Lf(t)+ | K(t-s)LB(s) ds.
o

Solving (A) along the characteristics a const, we get (2.7). Since Lf(t) is continuous
in t, LB(t) is also continuous in t. In this way, it follows from (2.7) that

u(a,t)D(L) for all (a, t) [0, A]+

and (a, t) Lu(a, t) is continuous. Then (2.7) is a solution to (A). It is unique, since if
there are two different solutions u, v to equation (A), then u (0, t) and v(0, t) would be
two different solutions to (2.5), which is not true. 71

B. Asymptotic behavior. The aim of this section is to find an asymptotic
expression for the solution to the "renewal equation" (2.5), and then by (2.7) to the
solution of (A).

The main result of this section is seen in the following theorem.
THEORUM 2.2. Assume that L verifies the following assumptions:
(Hi) T(t) is an analytic semigroup of bounded linear operator on X.
(Ha) There exists A in the resolvent set of L such that (A-L)-1 is completely

continuous.
(H3) There exists a unique eigenvalue A0 ofL such that2

Ao max {Re A: A r(L)}.

tr(L) is the spectrum of L and crp(L) is the point spectrum of L.
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Let us denote by

Go(t) It-r g(t--S)V(S) e xs ds,

P o) max {Re p" do(p) 1}.

Then the solution B to (2.5) has the following asymptotic expression"

B(t) Bo(t) exp [p)t]+ o(exp [p)t]) as 00,

where Bo(t) is a polynomial in with coefficients in K.
COROLLARY 2.3 (Marcati-Serafini [13]). If g 6o and r 0 and if

z0 max {Re z" (z)= 1},
then p o) Zo + ho.

The proof of this proposition will be given at the end of the paper. Our first remark
is concerned with some consequences of the hypotheses (H1), (H2), (H3) given above.

Remark 2.4. With the above hypotheses (Ha), (H2), T(t) is a completely con-
tinuous semigroup, and tr(L)= trp(L)= {hn:n 1}.

By (H1), one has the existence of 6 > 0 such that 0 < 6 < zr/2 and

6 + r/2 < Arg h, < (3/2)r- 6

(see, for instance, Kato [12]).
In order to study the asymptotic behavior of (2.5), our goal is to apply here the

Laplace transform approach as.made in the first part of the paper. Since , g, K have
compact support, their Laplace transforms f, g, K are analytic entire functions
(actually the analyticity of K(p) is proven in the strong operator topology, but by the
uniform boundedness theorem, one has that K(p) is analytic in the uniform operator
topology).

By applying Gronwall’s lemma to (2.5), there exists /3 >0 such that IB(t)l_-<
const, e’ as =>0. Actually,/3 can be chosen so large that II (p)ll< a, Then, by (2.5),
one has

/}(p) (1 -Ig2(p))-(p), Rep >/3.

We wish to extend B to the entire complex plane except a set of "singular points".
More precisely"

DzFIrITIOrq 2.1. We say p C is a singular point for (1 -/(p))- if 1 o’(/(p)).
Let us denote by 6e the set of all singular points.

LEMMA 2.5. The operator K(p) is a completely continuous linear map on X.
Therefore p if and only if 1 cr (I(p)).

Proo[. Let
A

I2I(p) f e-OtV(t)r(t) dt;
o

then /(p)= ,(p)ffI(p). Therefore, /(p) is completely continuous if /-(p) is too.
First, assume that V is C and p is in the resolvent set of L. We have

A

I21(P) (P -L)- Io e-piT(t) V’(t) dt.

Since (p-L)- is compact, then for all p in the resolvent it follows that /(p) is
completely continuous. However, the resolvent set is dense in C, so we can approxi-
mate, in the uniform operator topology, a generic/-)(p) by a sequence {/_]r(pn)}, where
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pn is in the resolvent set, so that /-r(pn) is completely continuous; then /-it(p) is
completely continuous, too. If V is not C 1, we can find a sequence {Vn} C such that
Vn converges uniformly towards V. We obtain a corresponding sequence of
completely continuous maps /-n(p) converging to /_it(p) in the uniform operator
topology. This guarantees that H(p) is completely continuous, for all p C.

Let us recall now some results on the "functional calculus for unbounded linear
maps" given in Hille-Philips [10].

THEOREM 2.6. Suppose A is the infinitesimal generator of a CO semigroup on the
Banach space Y and I is a real-valued absolutely continuous measure with compact
support in +. If[or all z C,

(z) | e ztd (t)
o

and, for all y Y,

(A)u Jo etAy d/x (t),

then the following spectral mapping result holds:

o-((A)) (tr(A)) {0}.

Our next result is concerned with a characterization of St’ in terms of an infinite
system of scalar equations labeled by the eigenvalues of L.

THEOREM 2.7. Let

Gh(a) g(a-s)V(s)exp(AhS)ds, AhO’p(L).

Then for all p 5 there exists h N such that p is a solution to

Gh(p) 1.

Proof. Let us consider p 5; then 1 rp(I(p)), that is 1 o-p(ff(p)/-]r(p)). By
Theorem 2.6, applied to

A =L-p,

one has

d/x(t)= V(t)dt, (p)= l’(-p),

I2I(p)= Q(p-L).
Therefore, 1 o’p((p)/-)(p)) if and only if 1/,(p)tro((p-L)). Indeed, (p)=0
implies/(p) 0 and then p ow. Therefore, 1 trp(/(p)) if and only if there exists
,h e ro(L) such that 1/(p) Q(p --,h), that is, dh(P)= ,(P) 9(p --h)= 1.

In order to apply residual calculus to the inverse Laplace transform of/(p), it is
important to know the distribution of the singular points in the complex plane.

THEOREM 2.8. Let p(h) max {Re p" h(P) 1}; then one has"
i) rh(p(h)) 1 and for all other p such that th(p) 1 it follows that Re p <p(h).

ii) p(0)>p(1)__> p(h)p(h+l)....
iii) On each vertical strip [Re p[-<const there is a finite number of elements of 5.

Then is closed.
Proof. Statement (i) follows by the classical theory on the Lotka-Von Foerster

characteristic equation applied to 0h(p) 1 (see [11]) In order to prove (ii), we
observe that by (H3), one has Go(a) > Gl(a); then p(O)> pil) since o(P) 1
Without loss of generality, we assume Re hn+ <_-Re An; then, as above, p(h+X)<_p(h).
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Let us now prove (iii). Let p + it/. Then the Riemann-Lebesgue lemma implies
that IIg:( / i,7)11 tends to 0 as Il tends to m uniformly in : on compact intervals. 71

COROLLARY 2.8. The above theorem implies that p() is an isolated singular point
and, ]:or each p , p p(o, it follows that Re p < p (o).

THEOREM 2.9. The singular point p tO is a pole of finite order for the map
p (1 _/(p))-l. That is, it is possible to find a positive integer s, a positive real number
, such that

(2.9) (1 -/(p))-i M(p)(1 to(p))-s,
for 0< Ip-p(l_-< ,, where M(p) is analytic in [p_p(O[__< ,.

Proof. With the same argument used in the proof of Theorem 2.7, we can see that
{h(P): h N} is the set of the eigenvalues of/(p). Choose a neighborhood Ip-
pO)[<_ u of pO), such that 0o(p) is the unique eigenvalue of/(p) in the open disk
[h- I < tr, while the other eigenvalues rh(p), h => 1, are outside ]h- 11 p. Where
u, o- > 0, p > o-. We observe that to(p) is a pole for the map A (A -/(p))- having
the same order of o as a pole of ( (r-L)-a. Indeed (see Yosida [18, Chap. VIII,
Theorem 4], this order depends on the dimension of the "range" of the operator

A_(p) ( -I(p))- dh.

By induction, it is possible to prove

[/ (p) o(p)]"-[ o];x o,

provided that [I(p)--o(p)]mX=O. Indeed, ro(p)x=I(p)x implies that e’x
tLe x, by inverting the Laplace transforms. Then, by (H3), it follows that ,oX Lx.

Moreover,

/(P)[/(P)- o(P)]"-i-[L Ao]iX o(P)[/(P)- o(P)]"--I[L Ao]iX
then

L[/(p)- 8o(p)]-i-a[L Ao]iX ho[/(p)- 8o(p)]"-i-a[L A o]iX.

So it follows that

[/(p) 6o(p)]"-;-[t; o]+x o.
In this way, we have obtained

range (A-I(p)) =range / (z-L)-1 dz

This argument shows that t0(p) is a pole of fixed order, independent of p (when
p is near pO), of say, order s.
Then (A-/(p))-a can be expanded into a Laurent series in the set 0<IA- to(p)l <
dist (to(p), OB), so that

(A-/(P))-a= E Ai(P)(h-ro(p))i,

where

o (x-R(p))-(x-8o(p))-"+Ai(p)
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If we choose A 1, we get

(1 -/(p))-i (1 do(p))-M(p),

where M(p) is analytic in
Remark 2.10. Since p(O) is a simple root of ((p)= 1, then it is a pole of order s

for the map (1- Go(p))-s; by (2.9), it is a pole of order s for the map (1-/(p))-1.
Now we go on to prove Theorem 2.2 stated above.
Proof. Let us consider c e R such that Re p < c < p(0)( p(0)r for all p e 6e{p(}.

Since B C by the inversion formula, it follows that

We have that

(2.10) lim
0-+oo +iO

1 [3+ioo j(p) e"tdp.B(t)

(p) e"t dp lim (p) e"’ dp O.
0-+oo ac--iO

Indeed, if : [c,/3 it follows that

Icfc (+iO)t(+ iO) e d <- I1( -g’(’ / i0))-[[1( + io)l e

By the Riemann-LebesgUe lemma, we get

I1/(’ + i0)ll - 0, Ifl(: + i0)1--, 0 as 0 tends to oo uniformly in : [c,/3].

Then the above limits are proven. Therefore we get

1 fc+iOo(2.11) B(t) Res [/(p) e"t]+ (p) e"dp.
p =p(O) ,c--ix

Since the principal part of the Laurent expansion for/(p) e pt is given by (near p<o)),

(2.12)
a_a a-s

(p P (o)) +" "+
(p P (O))s, a_i K, j 1 s,

then by residual calculus, we get

Res [/(p) e’] (a-x +"" + a_sts-’) e
p =p(O)

p()t p(O)t
Oott) e

Then it follows that

1 fc+ioo (p) e"tdp.(2.13) B(t) Bo(t) e
p()t

ffi
To complete the proof of Theorem 2.2, we shall obtain the following estimates

(p) e dp O(ea) as tends to m.
oc--i

Indeed, one has

/ (p) f(p) +/(p)(1 -/(p))-l(p);
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then

I(p)(1-I(p))-X[(p) dp.i ac_io

J(p) e’t dp =/(t)+/.c-,oo
We observe that/(c + i) and ](c + iy) and the Fourier transforms of e-CtK(t) and
e-Ctf(t). Since K, f are continuous maps with compact supports then they belong to L:.
Consequently, by the Plancherel theorem (see [17]), the above transforms are in L: in
the y variable. But (1-/(c+iy))-1 is bounded in y; then the product /(c+iy)
(1 -/(c + iy))- f(c + iy) is L in y. Thus, by (2.15), it follows that

(c+iy) e(+iy)t dy < I/(t)l +-- II(c/iy)(1-I(c/iy))-’:(c/iy)ldy.

Since f has compact support, it follows that If(t)l O(e’). Therefore (2.14) is obtained.
In this way, since O(e ct) o(eP(t), we get Theorem 2.2. fi

Proof of Corollary 2.3. It is sufficient to point out that, in this case, Go(t)=
V(t) exp (Aot), then o(p)= Q(p-Ao).

Remark 2.11. The same considerations made in Theorem 1.3 and Remarks 1.4,
1.5 are true also for the model (P’). Indeed, it is sufficient to repeat the above
arguments replacing/ with o and Q(p) with I(p-Ao).

COROLLARY 2.12. The solution to the problem (A) has the following asymptotic
expansion"

p(O)(t_au(a, t)=exp rn(a) da T(a)(Bo(t-a) e + o(e p((t-’) as tends to o.
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ANALYSIS OF GALERKIN APPROXIMATIONS OF A CLASS OF
PSEUDOMONOTONE DIFFUSION PROBLEMS*

G. ALDUNCINt AND J. T. ODEN"

Abstract. A class of nonlinear parabolic problems characterized by convective terms which depend
nonlinearly on the solution and its gradient, are considered. Specifically, the operators characterizing the
problems are shown to be pseudomonotone and to satisfy Grding inequalities. The existence, uniqueness,
and Galerkin and Faedo-Galerkin approximations of the general class of nonlinear diffusion problems are

investigated.

1. Introduction. In this paper we are concerned with the existence, uniqueness,
and Galerkin and Faedo-Galerkin approximations of the following general class of
nonlinear diffusion problems: Let fl be a bounded domain in R with boundary MI,
and O< T<o. Given data f in fix(O, T) and initial data u0 on lq, find u
u (x, t), (x, t) D, (0, T), such that

---V a(Vu)+b(u, Vu)=f in O lq (0, T),

(1.1) u=0 on Z= 011 (0, T),

where

u(.,0)=u0 onlq,

a(Vu) aVu + klVul"-2Vu,
(1.2) a,kL(), 2_-<p <o,

a(x)_->ao=>0 and k(x)=>ko>0, a.e.xf,

and b(u, Vu)= b(x, u(x, t), Vu(x, t)) is subject to the conditions:

CI. Ib(r,K)l_-<cll"lKI v(’,K)e",

(1.3) q-0 or q->l, r=0 or r->l,

l<-q+r<p-1.

CII. b(’, [) is totally Fr6chet differentiable in R g" and its partial derivatives
O,:b: n (, R) and 0b: " -(", ) are such that, for (q, r) satisfying (1.3)
and v(r, ) R x,

[0cb(r, )[_-< c[r[o-a[[ if q # 0,

[Ob((, )[-<_ Cr[([’][r- if r # 0.

The case r 0 will be understood as b b(u) (not a function of Vu), and the case q 0
as b b (V u) (not a function of u).

It is well known that nonlinear diffusion terms such as those represented by the
term a (Vu) in (1.1), are useful in modeling nonlinear heat conduction. They also occur
in models of the flow of non-Newtonian fluids, particularly in the study of molten metals

* Received by the editors June 21, 1978, and in final revised form November 10, 1980. The work

reported here was completed during the course of a project supported by the U.S. Army Research
Office-Durham under grant DAAG 29-77-G-0087.

t Texas Institute for Computational Mechanics, University of Texas at Austin, Texas 78712.

917



918 G. ALDUNCIN AND J. T. ODEN

and in certain problems of flow through porous media. However, it is now widely
recognized that convection and advection play an important role in many of these
physical processes, and that adequate mathematical models of such processes should
frequently include the effects of nonlinear convective terms, such as b(u, Vu). The
presence of such convective terms, however, leads to solutions which differ consider-
ably from those obtained in pure diffusion problems; solutions can exhibit shock-like
fronts; uniqueness, stability and regularity of solutions become more important issues,
and the analysis of the behavior of approximate solutions is significantly more compli-
cated. It is standard practice in studies of Galerkin approximations of such nonlinear
convection-diffusion problems to restrict the classes of problems under study in such
a way that the methods of monotone operators can be used to obtain error estimates
and theorems on convergence. While such studies are not without some value, they
sidestep the major difficulties mentioned above and may not be applicable to many
problems of physical interest.

Our objective in this paper is to analyze two types of approximations of classes of
nonmonotone parabolic problems of the type (1.1) using the theory of
pseudomonotone operators. These include fully-discrete Galerkin methods and, under
some additional restrictions, semi-discrete Faedo-Galerkin methods of approximation.
We note that, in general, this type of semi-discrete approximation is not necessarily
well-defined for coercive pseudomonotone parabolic problems.

Following this introduction, in 2, we show that the spatial operator in (1.1) is
coercive and pseudomonotone on a dense continuously embedded subspace of the
Banach space LP(0, T; W’P(f)) and that this implies that solutions to (1.1) do exist in
L(0, T;L2(I’))L’(O, T; W’’(I)) [6]. In general, multiple solutions will exist to
(1.1) and there cannot exist a continuous dependence on the data. However, regularity
conditions on the solutions can be given which will guarantee their uniqueness, and
these are discussed in 3.

In 4 we introduce an elliptic regularization of problem (1.1) of the type used by
Lions [5], and describe properties corresponding to Galerkin approximations and we
give an approximation theorem which establishes their strong convergence. We also
derive error estimates for such approximations. Finally in 5 we describe Faedo-
Galerkin (semi-discrete) approximations and show that, in the case of our model
problem, sufficient conditions are satisfied which guarantee the existence and also
uniqueness of these approximations. We also prove sufficient conditions for weak and
strong convergence of such approximations and establish corresponding approximation
error estimates.

Notation. (V, []. []) is a real, separable, reflexive Banach space with topological dual
(V’, I[" [1,), (’,") denotes the duality pairing on V’ V. (H, (.,.), [. I) is a real Hilbert
space identified with its dual, in which V is densely and continuously embedded:
VH V’.

(?/’, I[1"111) denotes the usual space L(0, T; V), 2-<p < oc, which is a separable,
reflexive Banach space, whose dual space can be identified as
L’(0, T; V’),p’=p/(p-1),[.,.] denoting the corresponding duality pairing.
(, (’,")e, I" Ie) denotes the Hilbert space L2(0, T; H) which, being identified with its
dual, is such that ?/"

(0//, II1" Ill,u) and (o/g,, II1" II1) denote the separable, reflexive Banach spaces

={v: v V, ’},

={v: v V, o,},
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Here b=Ov/Ot is the distributional time derivative of v which belongs to
@’((0, T); V)=(@((0, T)), V). Hence (cf. [4] and [5]), 07/ 7" 7/’, 74/" is con-
tinuously embedded in C([0, T]; H) and, if u, v 7///’, u, v satisfy the Green’s formula

(1.4) [, v]= (u(r), v (r)) (u (0), v(0))-[, u].

Moreover, the trace mappings v - v(0) and v - v(T) are such that {v (0)" v o/g.} H
{v(T)" v 7/’}, {v(0)" v } and {v(T)" v a//} are dense in H.

2. Existence analysis. For the model problem (1.1), we take as spaces V and H,
the usual Sobolev spaces

(2.1) V Wlo’p (lq), 2 _-< p _-< , H L(f).
Then, problem (1.1) assumes the following abstract form"

Find u e 7///’ such that

(2.2)

Ou
--+A(u)=f, f given in
Ot

u(0) Uo, Uo given in L2(D),
where A" --> ’ is defined by

[A(u), v]=[Al(U), v]+[A2(u), v],

(2.3) [AI(U), v]= fo a(x, Vu(x, t)) Vv(x, t) dx dt,

[Az(u), v] fo b(x, u(x, t), Vu(x, t))v(x, t) dx dt,

in which a(Vu) is as defined in (1.2) and b(u, Vu) is subject to conditions CI and CII.
We now proceed to establish the existence of solutions to problem (2.2). The

following two theorems determine basic properties of the operator A.
THEOREM 2.1. Let A: T’- T" be the operator defined in (2.3). Then i) A is

bounded, ii) A is coercive, and iii) A is locally Lipschitz continuous in the sense that
Vu, v B (0) {v r: IIIvlll < , , > o}, w , there is a positive constantC( such that

(2.4) ][a(u)-a(v), w]l < c(,)lllu 111, IIIwlll,

Proof. We shall use the notation

a [lalk, k [Ikl[ and [[’[1,o [[’[IL(O).

(2.5)

i) Applying H61der’s inequality, we easily obtain that

Illa(v)lll, <-- a mes (Q)(P-z)/P IV ]l-t- klllvlll
+c mes (Q)-l--Vllllll/

ii) From Friedrichs’ inequality, it follows that, Vv

(2.6)

Thus,

(2.7)

Ilvll;(o,;Vo.( <_-(c(s, n)mes (I))/" + a)llvvll,o.

[A(v), v] > aollVvll =,o+ ko(1 + c (p, n)mes (11) t’/ )-lllvlll
-c mes (O)(P-l-q-r)/Plllvllll+q+r VV e
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But, using Young’s inequality in the last term in (2.7), leads to

(2.8) [A(v), v]> aollVvll =
where yl and y2 are >0. Therefore, [A(v), v]/illvll[+ + as IIIvlll+ ,

iii) By the inequality in Nn [10],

lxl-x-lyl-2yl<c{Ixl/lylF-lx-y[,
(2.9)

c x/r-1 if2_-<r_-<3, c r-1 if3_-<r<eo

and H61der’s inequality, we obtain, Vu, v B. (0) c 7/’, w 7/’,

(2.10) I[A(u)-Ax(v), w]l_-<{a mes (Q)(-=)/"+ kc(p)(2)p-2}lllu -viii Illwlll.
We now use hypothesis CII. First observe that

(2.11)
fo lo db(s’ Vs)[A2(u)-Az(v), w]=

dO
wdOdO

fo 5o {Oeb(, V’)r/+ Oveb(, V:)" Vr/}w dO dQ,

where =v+Ort, rl =u-v and 0[0, 1]. Hence, because of CII and H61der’s
inequality,

I[A2(u)-A2(v), w]l =< (Cq + Cr) mes (l) (p-l-q-r)/p f Ill,Ill"/r-a d0111,l[I Ilwll,o.
.o

Then, since u, v B, (0)c 7/’, there is a constant 73 "Y3(P, q, r, Q) such that

(2.12) [[AE(u)-A2(v), w]l--< y3/x o+r-llllU -viii
Therefore, (2.4) follows from estimates (2.10) and (2.12) and the proof of the theorem
is completed, l-I

The next property of A, established below, is crucial, not only in proving the
existence of solutions to (2.2) but in subsequent studies of approximations.

THEOREM 2.2. The operator A: T" defined in (2.3), satisfies the following
nonlinear G&rding-type inequality: /u, v

[A(u)-A(v) u v]> aoaollU o...o1+
(2.13)

where Ho (1)) Wo"2 (II) and Co > 0, a > 0, c2(/x) > 0.

Proof. We observe that, Vu, v

(2.14) [A(u)-A(v), u-v]>-_[Al(u)-Al(v), u-v]-l[Az(u)-A(v), u-v]l.

From the inequality in IR" [10],

(2.15) (Ix Ir-2x -[y Ir-2y, X y) ->_ 21-rlx yl , 2 --< r < oe

and (2.6), it follows that
2[AI(u)-AI(V), u v]>_- ao(1 + c2(2, n)mes (f)2/)-llllu vlllL

(2.16)
+ koZl-P(1 + c’(p, n)mes (I))/")-llllu -viii ’.

On the other hand, according to (2.12) and Young’s inequality for u, v e B, (0) 7/" and
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any b > 0,

Therefore, by introducing (2.16) and (2.17) into (2.14) and choosing b small
enough, the desired result (2.13) is obtained. [-1

THEOREM 2.3. For any data 7#’ and Uo L2(), there exists at least one solution
u to problem (2.2).

Proo[. Theorems 2.1 and 2.2 and Aubin’s compactness theorem [1] confirm that
conditions in [8] are satisfied. Therefore, A is coercive and 7-pseudomonotone from
7/’- ’ and, by virtue of Lions [6, Chapt. 3, Thm. 1.2], the assertion of the theorem
follows.

Remark, 2.1. From the proofs of Theorems 2.1 and 2.2, it is apparent that the
operator A of (2.3) regarded as a map from V into V’, is bounded, coercive and locally
Lipschitz continuous, and satisfies the Grding-type inequality

(2.18)
(A (u)-A (v), u v) => oaollu v I1.) + llu 11

According to Oden [8], A: V- V’ is necessarily V-pseudomonotone. Hence, from the
theory of pseudomonotone elliptic equations (cf. [6]), A is surjective from V V’; i.e.,
there exists at least one solution in V to the stationary problem

(2.19) A(u) =f, [ given in V’.

The evolution problem (2.2) possesses at least one equilibrium state for each V’.

3. Sufficient conditions for uniqueness. We now proceed to determine sufficient
conditions for uniqueness of solutions to the pseudomonotone diffusion problem (2.2).

In the case of monotone parabolic problems, "monotonicity" --> "uniqueness" and
this follows from the Carath6odory type differential inequality dlu(t)-v(t)12/dt<-O,
a.e. t[0, T], lu(0)-v(0)12 0, the unique solution of which is ]u(t)-v(t)12=O, u and
v being solutions of the problem. This suggests that in the nonmonotone case with
Grding-type inequalities, the possibility of establishing a differential inequality of the
form

d
lu(t)_v(t)ls <c]u(t) v(t)ld- a.e. e [0, T],

(3.1)
lu(O)- v(o)l =o,

or equivalently,

(3.2) lu(r)-v(r)l <_-c lu(t)-v(t)ldt v’e[0, T]

for some c e and 2 -< s < oo, would be sufficient for concluding uniqueness. Indeed,
from Olech and Opial [9, Thm. 3], lu(t)-v(t)l -0, is the unique solution to (3.1). We
show that in certain particular cases and, in general, for sufficiently smooth solutions,
problem (2.2) falls into this class.
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THEOREM 3.1. Let u 7g" be a solution of problem (2.2). Then u is unique in the
following three cases:

i) r=0andq=l;
(3.3) ii) r 0 and n < p;

iii) ao > 0 and u L(O, T; W’ (l))).
Proof. Assume that u u(t; f, Uo) and v v(t; f, Uo) are two solutions of problem

(2.2) and define r/= u- v. It is apparent from (2.16) that

(3.4) (a(u(t))-al(v(t)), for a.e. t[0, T],

where Co > 0 and c > 0. Thus, from the difference of the equations satisfied by u and
v, we obtain the integral inequality

1/2lrt(r)[2+doao II(t)ll =,{(n) dt <-_ A =- (A2(u(t))-A:(v(t)), rt(t)) dt

do>0 Vr[0, T].

We now estimate the right-hand side via the formula (2.11) with w
i) r--0 and q 1. In this case we have the estimate

(3.6) A ca ]7(t)]= dt Vr [0, T],

which combined with (3.5) gives the integral inequality (3.2) with a 2cq and s 2.
Consequently, r/--- 0.

ii) r 0 and n < p. From the Sobolev embedding theorem, Wo’p (D,) is continuously
embedded in CB(f)= {v C(): v bounded in 11} whenever n < p. Then

(3.7) 7/" L’ (0, T; W’’’ (f)) L (0, T; L(f)), n < p.

Let/z be chosen such that u, v B, (0) 7/. Then, from (2.11), with w r/ and
using (3.7), we obtain, Vr [0, T],

(3.8)
()1 (t)l= dt dO

:Z Cqld
q-1 ( (t d 2<-s=

2p
p+l-q

Introducing this estimate into (3.5) produces the integral inequality (3.2) with

2p
ce (2CqtX q--1)s/2 and 2 -< s < p.

(p+l-q)

Therefore, r/= 0.
iii) ao>0 and u L(0, T; W]" ())). Let /x >0 be such that u, v e B,(0)c

L(0, T; Wo’ (f)). Then, from (2.11) with w r/, we obtain Vr [0, T],

(3.9) q+r-1 IOA. < tz (CqC(2, n)mes (-)l/n _[_ Cr) [[r (t)l[{(n)[r/(t)[ dt.

In this case, the question of existence appears to be open.
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Hence, since by hypothesis ao> 0, we can apply Young’s inequality with constant b,
e.g., b X/aoao, to obtain the upper bound for (3.9)

Io" Ioaoao iin (t)ll 2
2 ,,a) dt +- I(t)l2 dt,

where a a(1/b2)>0. Combining these results with (3.5) gives (3.2) with s 2, and
n=0. E

4. GnlerMn nppo|mnfions. In this section, we study Galerkin approximations
of the model problem (2.2) which are based on an elliptic regularization of
obtained as suggested by Lions [6]. We will establish some results on the strong
convergence of such approximations.

For the model problem (2.2), we introduce the elliptic regularization

(4.1) e(fi, i)e-(u, i))e+(u(T), v(T))+[A(u), v]=[f, v]+(Uo, v(0)),

where A is the operator defined in (2.3). Following standard techniques discussed in
detail by Lions [5] and [6], it can be shown that for every e > 0, there exists at least
one solution u 07/to (4.1) and, that, in the sense of 7/" c (@((0, T)), W-I’P’(I))), u
satisfies the distributional equation

-eii + fi + A(u) f in’,

(4.2) -eti (0) + u, (0) Uo in L2(II),
tie(T) 0 in L2(I)),

which is equivalent to (4.1). Moreover, for any sequence {u}>o C 07/ of solutions,
there exists a subsequence, also denoted {u},>o, such that, as e 0+, u converges
weakly to a solution u of (2.2) in the sense:

u u weakly in 7/’,

weakly in 7/",
ot ot

(4.3)

e 0 weakly in ,
Ot

A(u) A (u) weakly in F’,

u (0)-- u (0) weakly in ,
u (T)--- u (T) weakly in .

To construct Galerkin approximations of (4.1), we introduce a family of subspaces
{agh}O<h=l of q/ such that: i) //h is finite-dimensional with basis functions
{bl, b2,’’’, b,}, with dimension mh , as h - 0+; and ii) h is dense in //. A
Galerkin approximation of (4.1) involves seeking a function U h such that

(4.4)
E( "h h hU, k)a,--(U, ck)e+(U (T), &k(T))+[A(Uh ), &]

=If, 4k]+ (Uo, 4k (0)), k 1, 2,’’’, mh.

The solvability in q/h of (4.4) is assured by the -pseudomonotonicity and
coercivity of the operator 4" ag ag, in (4.1). Similarly, as for (4.1), if {uh}0<h__<l is a
sequence of Galerkin approximate solutions, it can’be shown that there exists a function
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u and a subsequence, also denoted {uh}0<h__<l, such that, as h 0/,

(4.5) A(uh)---A(u)
u(o)--.u(O)
Uh(T)--u(T)

weakly in F,

weakly in L:(Q),

weakly in 7/",

weakly in L2(),
weakly in L2().

We will now demonstrate that for our model problem (2.2) much stronger results
can be obtained.

THFORZM 4.1. Let {u}>0 c be a weakly convergent subsequence of solutions to
problem (4.1) and with its weak limit u 742 a solution of (2.2). Then, as e 0+,

(4.6)

u u strongly in

/-fi - 0 strongly in LZ(Q),

u(0) Uo strongly in L2(),
u(T) u(T) strongly in L:(f).

Proof. We regard equation (2.2) as holding on and subtract (4.1) from it. The
following orthogonality condition is obtained:

(4.7) -(eft,, 6)g+(Uo-U(0), v(0))+[fi-fi,, v]+[A(u)-A(u,), v]=0 Vv 07/.

According to (4.3), there is a/x > 0 independent of e, such that u, u B, (0) c 7/’. Hence,
using formula (1.4) and the Grding-type inequality in (2.13), we see that

(4.8)
lu0-u(0)12+[a-, u-u]+[A(u)-A(u), u-u]

->1/21uo u(O)12/-lu(r)-u(r)12/lllu ulll ,2()llu ull’0,

Next, combining these two results, we conclude that

Due to the compact embedding of o/# in LP(Q) (cf. [1]) and the weak convergence
result (4.3), (4.6) follows. 7]

THEOREM 4.2. Let {uh h}O<h be a subsequence of Galerkin approximate
solutions defined by (4.4), converging weakly, in the sense of (4.5), to a solution u all of
problem (4.1). Then, for fixed e >0, as h 0+

(4.10)
uh (0)--" u(O)

uh(T)u(T)

strongly in

strongly in L:(Q),
strongly in L:(f),
strongly in
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Proof. We follow similar arguments to those given previously. Restricting (4.1) to
and subtracting (4.4) from it, we obtain the orthogonality condition

(4.11)
e(ti uh, l/V)e-(u uh, ITV)e+(u(T)- uh (T), W(T))

+[A(u)-A(Uh), W]=0
Now, from (4.5) and (4.3), there is a Ix >0, independent of h, such that Uh, u
B,(0) c 7/. Then, by virtue of (1.4) and (2.13), it follows that

elfi- h 12--(U- uh, tJ- tffh )e+lu(T) uh (T)I2 +[A(u)-A(Uh ), u- uh
(4.12) >=ela--O2I+1/2Iu(O)--uh(o)I+1/21U.(T)--uh(T)I

+ 0llu uh 2
L=(O,T;H,m>> / IlIlU uh III -(*)llu U2

Therefore, combining (4.11) and (4.12),

+ ollu uh
L2(0,T ;Hol(II))"q- 0 IlIlUe uhe [[I p

(4.13) _-< 2(, )llu U2ll’o + E (a __Ue,e" h )
-(u u), a W).+(u(T)- U (T), u(T)- W(T))

+[A(u)-A(uh ), u W] VW Oh.

But a// is compactly embedded in LP(Q) [1] and Uh converges weakly to u in
the sense of (4.5). Hence, the right side of (4.13)0 as h0+, and this proves the
theorem. 7q

We next give an error estimate for the Galerkin approximations of the regularized
elliptic problem (4.1).

THEOREM 4.3. For fixed e > O, let u, oR be a solution of problem (4.1) which is
the strong limit (in the sense of (4.10)) of the subsequence of Galerkin approximate
solutions {uh ’h}O<h<_ defined by (4.4). Then the following approximation error
estimate holds VW h

(4.14)

1/2CllU (0) uh (0)12 + 1/2lU (T) Uh (T)I2

+ ceoaollU Uh 112=(O,T;Uo(m + lllu u2 III +1 rh I
.o+ C:lu (0)- w(0)l:

+ clu wl+ dlllu wlll’ + c41a 12,
where Ci, 1,. ., 4, Ceo, c1 Cl(al), c2 a2(T, Ix), Y(e) and (C(T, Ix)) are
strictly positive constants. Here C(T, Ix) is the local Lipschitz continuity constant of
(2.4).

Pro@ The estimate (4.14) follows directly from (4.13) upon applying formula
(1.4), the local Lipschitz continuity of A, (2.4) and Young’s inequality.

5. Faedo-Galerkin approximations. We are concerned here with Faedo-
Galerkin approximations of the model pseudomonotone diffusion problem (2.2). We
note that this type of approximation process is not necessarily well-defined for
nonmonotone parabolic problems" the corresponding weak convergence is a condi-
tional property. We shall show that Faedo-Galerkin approximate solutions to problem
(2.2) exist and are unique, and we shall determine sufficient conditions for weak and
strong convergence.



926 G. ALDUNCIN AND J. T. ODEN

Let { Vh}o<h<=l be a family of finite-dimensional subspaces approximating the space
V(=W’p (f/)) in the following sense: (i) {1, g,2,’ , Om} denotes a basis for Vh, with
dimension mh o0 as h -+ 0/; (ii) U h Vh is dense in V. A Faedo-Galerkin approximation
in Vh of problem (2.2) is defined as an absolutely continuous function uh
CA(f0, T]; Vh), which is a solution of the system

(5.1)
.)rh (/), illk or (A (Uh (t)), Ok) (f(t), Ok),

u(o Uo,
k=l,2,’’’,mh,

for a.e. e [0, T] and where U0h u0 strongly in L2() as h-+ 0+. We observe that if
Uh is solution of (5.1), then its time derivative h belongs to LP’(0, T; Vh).

We next establish the solvability of problem (5.1).
THEOREM 5.1. For each h (0, 1], the Faedo-Galerkin approximation problem

(5.1) possesses a unique solution Uh CA(f0, T]; Vh) continuous with respect to U.
Proof. The local existence of solutions to (5.1) in CA(f0, th]’, Vh), th > O, is implied

by the pseudomonotonicity property of A (cf. Remark 2.1). Indeed, f 7/", and A is
necessarily bounded and demicontinuous from V V’ and these are sufficient condi-
tions for the vector field F(t, U)= ((f(t), g,k)-(A(U(t)), Ok)) from D =[0, T]x" -[R’" to satisfy the Carathbodory conditions in D. Here U m JR"" denotes the coordinate
vector of U Vh with respect to the reciprocal basis of Vh.

The uniqueness and continuous dependence on the initial data of local solutions
to problem (5.1) follows from the condition [3] that for each compact set w c D, there
is a function gw LI(O, T) such that

(5.2) IF(t,U)-F(t,W)l<-gw(t)lU-Wl, (t,U),(t,W)w,

which is satisfied because A is locally Lipschitz continuous from V- V’ (cf. Remark
2.).

It remains to be shown that the interval of existence [0, th] [0, T]. This is a
consequence of the coercivity of A from V-+ V’, as follows from part (1) of the proof
of Theorem 5.2, given below. E]

We now proceed to analyze the convergence of the Faedo-Galerkin approxima-
tion process.

THEOREM 5.2. From the sequence of Faedo-Galerkin approximate solutions
defined uniquely by (5.1), there is a subsequence, also denoted {Uh}0<a__<l, and there exist

functions u l# and gg 7/" such that, as h -+ 0+,

(5.3)

uh-- U

uh--bl
A(uh).---.
Uh(T)---u(T)

weakly in ,
weakly* in L(0, T; L2(lq)),

weakly in 1/",

weakly in L2(F/),
and

v +[a, v]=[f, v] Vv e V, u(0)= uo.

Moreover, the limit function u is a solution of problem (2.2) (i.e., =A(u)) provided
one of the following conditions is satisfied:

(5.5) i) rh e T", 0 < h -< 1, and {l]]grhlll,}0<ha is bounded;

(5.6) ii) A: ?/’- ?/" of (2.3) is -pseudomonotone.
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Proof. We follow the usual pseudonomontone method which consists.of: 1) finding
a priori bounds; 2) passage to the limit; and 3) the pseudomonotonicity argument.

1) From the proof of the coercivity property of A, (2.8), it is apparent that A is
also coercive from V V’. Then, by standard arguments, it follows that the sequence
{Uh}o<hNl turns out to be bounded in and in L(0, T; L2(f)).

2) With the previous result and the boundedness of A from V ’ given by (2.5),
the validity of (5.3) follows via weak compactness arguments and, then, upon the
passage to the limit in equation (5.1), (5.4) is easily concluded (cf. 1-6, Chapt. 2]).

3) It remains to be shown that, if either (5.5) or (5.6) holds, then

(5.7) [T, v]= [A(u), v], Vv 7/’.

From (5.1), (5.3) and (5.4), we see that

lim {[rh, Uh + [A(Uh) uh]} lim [, Uh [, u
h$O h$O

=[c, u]+[e, u]

lim {[ti, uh]+[A(Uh), u]}.
h$O

Therefore,

(5.8) lim[A(uh), Uh--u]=--lim[h--tJ, uh]=-1/21imlUh(T)-u(T)l<-_O.
h$O h$O h$O

Now, by the usual arguments.J6], (5.7) follows from (5.8) and the first statement of
(5.3) when assuming either (5.5) and using the 7g/’-pseudomonotonicity property of
A" 7/" o//.,, or (5.6). This completes the proof of the theorem.

We next establish that condition (5.5) is also sufficient for the strong convergence
of the approximation process.

Theorem 5.3. Suppose the condition (5.5) holds with bound /x’>0. Then the
subsequence { Uh}o<h<_l ofFaedo-Galerkin approximate solutions converging weakly to

a solution u t/" of problem (2.2), in the sense of Theorem 5.2, is such that, as h - 0/,

uh U strongly in L(O, T; L2()),
(5.9)

uh- u strongly in .
In fact, the following approximation error estimates hold tZ Lp (0, T; Vh)"

lu()- u(,)l --< luo Uohl +(T, )llu-
(5.o)

+:(r,,’)lllu-Zlll W[0, r];

Illu uhlll < Uho =/w + Ig24( r, /z )l[u u.hll
(5.)

+/5(T, , ’)lllu -zlll’/,
where tx > 0 is a bound for u and { Uh}o<h<=l in .

Proofi By using formula (1.4) and the Grding-type inequality (2.13) in

Lp (0, r; W’p ([l)), r e [0, T], it follows that

o’(c(t)-

ffh(t)+A(u(t))-A(Uh(t)), uh(t)) dt

(5,2) >=,1/21u (,’) g’ (’)l= luo-- gho l= + ,
p’/ p
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and, from equations (2.2) and (5.1), the following orthogonality condition holds:

(5.13) (tj(t)-fjh(t)+A(u(t))-A(Uh(t)),Z(t))dt=O VZL’(0, T; Vh).
.0

Hence, introducing (5.13) into (5.12) and using the local Lipschitz continuity property
(2.4), we obtain

1/2lu(r)- uh(z)12+al Ilu(t)- uh(t)ll dt

(5 14) <1/2[Uo--Uhol2+ae(lX)llU uh[I p’ u lll +111 t)hlll,}llu ZII]

Vr6[0, T], VZ6Lp(0,T; V).

Therefore, the approximation error estimates (5.10) and (5.11) are implied by (5.14).
Note that the strong convergence of uh- U in LP(Q) is a consequence of the first
statement of (5.3), assumption (5.5) and the compact embedding of 74/" into LP(Q).

The potential case. As a final result, we shall establish that if the bounded, coercive
locally Lipschitz continuous, Grding-type operator A of (2.3), is potential in the
following sense:

CIII. A is the gradient of some Gteaux differentiable functional J: V- N, for
which there is a constant 3 > 0 such that

(5.15)

then, for data

(5.16) (f, Uo) L2(Q) V,

(5.17) Uo Uo strongly in V,

the Faedo-Galerkin sequence of approximations defined uniquely by (5.1) is such that

{Uh}o<h=l is bounded in L(0, T; V),
(5.18)

{fQh}0<hl is bounded in L2(Q).

Since L(Q) ’, the second statement of (5.18) is stronger than (5.5) and, con-
sequently, the results of Theorems 5.2 and 5.3 are true in this potential case.

We now prove this result and establish the corresponding regularity of limit
functions.

THEOREM 5.4. Let the operator A of (2.3) satisfy condition CIII and consider
problems (2.2) and (5.1) with data (5.16), (5.17). Then the Faedo-Galerkin sequence
of approximate solutions {Uh}o<h=l is bounded in the sense of (5.18). Furthermore, there
is a subsequence of approximations, also denoted {Uh}o<h<=, converging strongly to a
solution u 7g" of problem (2.2) in the sense of (5.9), such that, as h - 0/,

(5.19)
weakly* in L(0, T; V),

weakly in L2 O).

Proof. Let {Uh}o<h<_l be the Faedo-Galerkin sequence defined uniquely by (5.1),
(5.16), (5.17), which approximates problem (2.2) with data (5.16), and suppose also
that condition CIII holds. Then, by replacing 0k by /_rh in equation (5.1), integrating
with respect to time from 0 to re[0, T] and, then, observing that dJ(Uh(t))/dt
(A(Uh (t)), rh (t)) and that (f(t), fh (t)) <=-[f(t)l2 / 1/2] )rh (t)[2 for a.e. (0, T), we
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obtain

(5.20) 1/2 Ih(t)ldt/llUh(-)llJ(Uho)/1/2 If(t)ldt V’re[0, T].

But, from the boundedness of A as a map from V V’ (cf. remark 2.1),

J(Uh)=J+ fo (a(sU), Uho)ds<=Jo+ I,, IIa(sfh)ll* ds IIUoll-<_const.

Therefore, (5.18) is true.
Next observe that from Theorem 5.3, there is a subsequence of approxima-

tions {uh}0<h<__l that converges strongly to a solution u of problem (2.2) in
//’ ("I L(0, T;L2()). Hence, uh---u weakly in 7/’(L1(0, T; V) densely) and this
together with the first statement of (5.18) is equivalent to the first statement of (5.19).
Also {U}o<h__<l is bounded in 0?/( 7/" densely) and this with U---u weakly in 7/" is
necessary and sufficient for U-- u weakly in 0-// (cf. [11, V. 1]). Then the second
statement of (5.19) necessarily holds and this completes the proof of the theorem. 7

Conclusions. For the nonlinear evolution problems considered here, we have
shown that the existence conditions of coercivity and 7/V-pseudomonotonicity of
A: 7/", are satisfied and that, under conditions (3.3) uniqueness of solutions is
guaranteed. The elliptic regularization ideas discussed in 4 provide a general
framework for Galerkin approximations of coercive 7/U-pseudomonotone problems.
We have established criteria for the existence and weak convergence of such approxi-
mations, as well as strong convergence whenever a nonlinear Grding-type inequality
of the form

[A(v)-A(w), v-w],llv-wll-H(,llv-wlkO,T;X>) vv, w B,(O)c 7#,

holds. Here a > 0, and X is a Banach space continuously embedded in H and in which
v is compactly embedded. Also, if in addition, A: V- 7/" is locally Lipschitz continuous,
we have shown that error estimates for Galerkin approximations can be derived.

The Faedo-Galerkin method was considered as an alternative method for con-
structing approximate solutions. In these cases, coercivity, boundedness and demicon-
tinuity of A from V- V’ are sufficient conditions for existence, and local Lipschitz
continuity from V- V’ is a sufficient condition for uniqueness. As we have seen, the
convergence of this method is a conditional property in the case that A is nonmonotone;
the Faedo-Galerkin method is weakly convergent if: (i) the sequence of time deriva-
tives of the approximate solutions is bounded in 7/"; or (ii) if A: 7/’ 7/" is 7/’-

pseudomonotone. The convergence of the method is strong if: (iii) condition (i) holds
and A is locally Lipschitz continuous and satisfies a nonlinear Grding inequality of
the type given above. Furthermore, in the case in which condition (iii) is satisfied, error
estimates are derivable which are compatible with the interpolation theory of finite-
elements in Sobolev spaces [7], [2].

This establishes condition (i) as a fundamental convergence condition for the
Faedo-Galerkin method when applied to coercive 7/V-pseudomonotone parabolic
problems. In particular, we have shown that this condition is satisfied whenever A is,
in addition" continuous and potential from V V’, its potential is coercive, and the
data (f, u0) V. In this potential case, the convergence condition (i) holds in
Y( 7/"; furthermore, the approximate solutions form a sequence bounded in
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LL(0, T; V)’- 7/, and the regularity in time result (u, Ou/Ot) (0, T; V)x
holds for the exact solutions of the problem.
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A TURIN INEQUALITY ARISING IN INFORMATION THEORY*

R. J. McELIECE, B. REZNICK AND J. B. SHEARER

Abstract. We present a strengthened version of a polynomial inequality recently obtained by Davisson
et al. in a paper on information theory. It is of a type originally obtained by Turin for the family of Legendre
polynomials.

Let us define the polynomials Pn (x) by P1(x)= 1, and for n => 2

(1) V(x) := x+
k--1

In a recent paper on information theory [1], the authors required and proved the
inequality Pn/,(x) <-_ (x + 1)P (x)P,n(x), for x ->_ 0, n, m -> 1. In this note we shall prove a
stronger inequality, which we find to be of independent interest:

(2) P_l(X)P+(x)<P(x)2 for all real x, alln _->2.

An inequality of this kind is called a Tur6n inequality. Turin [2] showed that (2) holds
for -1 <x < 1 if the Pn’s are the Legendre polynomials, and Karlin and Szeg6 [3]
proved (2) for several other families of orthogonal polynomials. However, our poly-
nomials are not orthogonal, and do not appear to satisfy higher order determinant
inequalities of the type considered in [3].

Before proving (2) we note certain consequences. If we define

(3) F.,.,(x) P(x)P,(x)’

it follows from (2) that for any fixed x >=0 Fn,m(X) is a strictly decreasing function of n
and m. For, omitting the fixed argument x, (2) can be rewritten as P//Pn > P/2/Pn/
for n => 1. Thus by induction P//P >P+./I/P+. for all n, m => 1. This can be
rewritten as Pn/.,/P > P./.,/I/P/, and so by another induction Pn/.,/P > P’/.,/P’
if n’> n. Dividing both sides by P., we have (cf. (3)) F,., > Fn,,,n for n’> n. Since Fn, is
symmetric in n and m, this shows that F,.,(x) is strictly decreasing in n and m, as
asserted. It follows that, for fixed x -> 0, n, m ->_ 1,

(4) F,,,(x) <=FI,a(x) x +1/2,

(5) F,.(x) > lim F,,m,(X) x/x(1 + x).
’,m

(The limit calculation in (5) is an easy consequence of Stirling’s formula.) The inequality
from [1] noted above is equivalent to F.,.(x)<-x + 1, and so inequality (2) is indeed
stronger. Incidentally, (4) and (5) together show that F.,.(x) is very nearly independent
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of n and m for large fixed values of x. For example we have 2.449 < F,,m (2) =< 2.500 and
10.488 < Fn, (10) =< 10.500, .for all n, m.

We now proceed to the proof of (2). First we note that P,(-x) (--1)n+lPn (X 1).
This implies that the function P,,(x)2-P,,_l(X)P,/l(X) is symmetric about x -, and
can be written as a polynomial in u (x + 1/2)2 In fact, we have by direct calculation

P-PIP3 6
=O.028,

p23 e2P4 2961--U +1

0.0069u + 0.00077,
2 2 329P -P3P5 =-g-6-6u + 1440000u + 4000

0.0028u 2 + 0.00023u +0.000025,

P-P4P6 3 107 2 209 81
7---b/ + 3240000/,/ + 16200000b/ + 100000000

20.0014u +0.000033u +0.000013u +0.00000081, and

p26 PsP7 (7.94E -4)u4 (3.62E 5)u 3

+ (7.46E --6)u 2 + (4.70E 7)u + 2.69E 8).

From this, (2) is immediate for n <_-5, since all coefficients are positive. However, the
coefficient of u "-3 is negative for all n _-> 6, and so deeper methods of proof are required.
In any event, because of this symmetry, it suffices to prove (2) for x ->_ -5.

Now define the polynomials On (x) by

O,,(x) xP,(x)= x +
k=O

We will show that

(6) (n-l(X)(n+l(X)< O,(x)2, x >- -5, x #0, n >-2.

For x # 0, (6) implies (2) immediately, and by continuity it implies P,_I(0)Pn+I(0) <=
P, (0)2. However, equality cannot hold, since a simple algebraic manipulation of (2) for
x 0 yields

1+ > 1+ n>2,

a well-known inequality. We now proceed to the proof of (6).
The functions O, (x) are related tO the gamma function by

F((x + 1)n)
(7) O,,(x)

n"F(nx)

(The singularities on the right side of (7) are removable.) Hence we may extend the
definition of Q. (x) to nonintegral values of n using the function

r((x + 1)y)
F(x, y)

y YF(xy)

We will prove (6) by proving the generalization

(8) F(x, y-1)F(x, y+l)<F(x, y)2, x>=-5, xO, y=>0.

We must handle positive and negative x separately.
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Case 1. x > 0. For any fixed x > 0, F(x, y) is continuous and positive for all y > 0,
and so to prove (8) it suffices to show

02
(9)

OY 2 log F(x, y) < 0 for all y > O.

We have

log F(x, y) log F((x + 1)y)-log F(xy)- y log y,

02 1

0Y
z log F(x, y)-(x + 1)20’((x + 1)y) xZO’(x) --,y

where 0(z) is the digamma function F’(z)/F(z) and O’(z) is its derivative, the trigamma
function. If now we define

(lO) [(z)=z’(z)-z,
(11) zl (x + 1)y, zz xy,

we have

02 1
2 log F(x, y) --z-(f(Zl)-f(z2)).(12)

Oy y

Thus Case I will be disposed of if we can show that f(z) is a decreasing function of z, i.e.,
f’(z) < 0 for z >0.

It is known [4, item 6.4.6] that

(13) 6’(z + 1)- O’(z) z -2, and so

f(z)=z2O(z)-z=l+z26’(z+l)-z, andso

(14) f’(z) z26"(z + 1)+ 2z6’(z + 1)- 1.

It is also known that, for all z 0, -1, -2, ...,
(15) 6’(z)

1 1 1
)3

1

=--+Z --Z -Z.=0+E 6(z+n (z+n+1)3’
1 1 1 1 (1 + 2(z + n))3

(16) "(z) 2 3 4 ’1- 2.., g )6z z 2z gz6 ,=o 6z (l+z

Equation (15) follows from (13), since the functions L(z)=6’(z)-z--(2z2)-1-
(6z3)-1 and R(z)=,=0(6(z+n)3(z+n-1)3)-1 both satisfy L(z+l)-L(z)=
R(z + 1)-R(z) (Gz3(z + 1)3)-1 for all z, and both approach 0 as z -->. Equation
(16) follows similarly, from the known recurrence 6"(z + 1)-6"(z)= 2z -3 [4, ibid.].

Since the summations in (15) and (16) are positive for z > 0, the terms preceeding
the sums are upper bounds on 6’ and 6". Substituting these bounds into the left side of
(14), we get after some calculation

1 3 zf’(z)<=- )6(z4+6z +14z +16z+6)<0 if z>0
6(z+l

and this completes our proof of Case 1.
Case 2. -<-_x <0. For any such (fixed) x,F(x, y) is continuous for all y >0, but

changes sign at y k/lx], k 1, 2, . Notice that (8) is true trivially if F(x, y 1) and
F(x, y + 1) have opposite signs. On the other hand, if F(x, y 1) and F(x, y + 1) have
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the same sign, then F(x,. cannot change signs (or be zero) in the interval (y 1, y / 1),
since the distance between consecutive zeros of F(x,. is _-> 2 if x _-> -. Thus to prove
(8) it suffices to replace the condition (9) with

21ogIF(x,Y)l <0 fory>0.
0y

This leads once again to (12), and so it is sufficient to show that

f(Zl)<f(z2).

Since (cf. (11)) z is positive and z is negative, and since we have already shown that
f(z) is strictly decreasing for positive z, it will be sufficient to prove

(17) f(z) >= f(O) for z < O.

It is known [4, item 6.4.10] that for z O, -1, -2,

,’(z)= E
--o (z +.n)’

and so (cf. (10))

z 2

(18) f(z)= 1 +’= (z + n)-z"

From (18) we see immediately that f(0) 1, and that f(z) > 1 if z < 0. This proves (17),
and so completes our proof of Case 2.
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CHARACTERIZATION OF POSITIVE QUADRATURE FORMULAS*

FRANZ PEHERSTORFER"

Abstract. We give a complete description of those numerical integration formulas based on n nodes
which have positive weights and are exact for polynomials of degree equal or less than 2n- 1- m, where
O<__m<_n.

Let integers n, m No, m-< n and a nonnegative weight function w defined on

[-1,+1] be given. If there exist nodes Xl,’’’,Xn,--I<Xl<X2<’’’<Xn<I and
weights h 1,""", An such that

+1

i=1

for all PPzn-l-m (where P2n-l-m is the set of polynomials of degree at most
2n- 1- m), we say that (1) is a (2n- 1- m, n, w) quadrature formula (qf) based on
xl,’’’, xn with weights A 1,’’", An. If all weights Ai are positive we call (1) a positive
(2n- 1-m, n, w) qf. This notation was introduced in [8]. Let us note that Gaussian
quadrature is the unique positive (2n- 1, n, w) qf. Interpolatory quadrature formulas
are (n 1, n, w) qf.

Bernstein, see [1, p. 93], stated a necessary condition for the positivity of a
(2n 1 m, n, w) qf. To the best of our knowledge a corresponding sufficient condition
is not known. A full characterization is only available for (2n 3, n, w) qf. It was given
by Michelli and Rivlin [8]. Positive (2n -3, n, w) qf were first considered by Fejer [3].

In this paper we give a full description of positive (2n 1 m, n, w) qf.
In order to state our results we need the following notation. Let U be the open unit

disk {z IIz[ < 1} in the complex plane. As usual we call a function f: C C a Carath6odory
function (C-function) if f is analytic in U and Re f(z) > 0 for z e U.

Furthermore we denote by q*,(z)=znq(z-1)=/I-li=l (1-2gz) the reciprocal
polynomial of qn(z)=yg__ (z-zg), y,z,zeC. Tk denotes the Chebyshev poly-
nomial of first kind of degree k.

THZORZM 1. A (2n 1 m, n, w) qf based on the nodes Xl, , xn, -1 < xl < xz <
[-[2n-1 (Z Zi),<xn < 1 is positive if and only if there exists a polynomial q2n-(Z)=lXi=l

zi U, with real coefficients, such that

2-’+1 Re {z-(n-1)q2n_l(Z)}= fi (X --Xi)
/’=1

x (z+l/z),z e i’ q 6 [0, 7r], and

qn-l(Z)--Zq2n-l(Z)
qn-1 (Z)+ zqzn-l(Z)

2n-l-m

1 + Z CkZ ’ -]- O(z2n-m) for z e U,
k=l

where c 2 I+_ Tk(x)w(x) dx/I+_ w(x) dx for k 1,..., 2n 1 m.

* Received by the editors October 9, 1980.

" Institut fiir Mathematik, Universitit Linz, A-4040 Linz, Austria.
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Proof. Necessity. Since the qf is a positive (2n 1- m, n, w) qf it follows that
+1

2 I_ Tk(x)w(x) dx

+1

w(x) dx
Y I] cos k arccos x]
]=1

cos k0. for k =0,..., 2n-l-m,

where I] + for j 1,. , n and q] := arccos x].
Now let us put

Ck I] COS k]
j=l

Then we obtain that

for k =2n-m,. ., 2n- 1.

1 1 z 2 2.-

2.)R (z):= i] 2 1 + Y ckz + O(z for z U.
]=1 1-2z cos ] +z k=l

Since R is a (degenerate) C-function with R(0)= 1, there exist (compare [10, pp.
2n-1229-231]) a polynomial q2,_l(z) e l-I]--1 (z-zi), zi U, with real coefficients and a

e {+1} such that

q*2n-1 (2;)- 8ZQ2n-I(Z) _1 a, 1 Z
2

qn-l(Z)q-SZq2n-l(Z) 2 i=1 1-2z cosp]+z
for z U.

Because of q] e (0, rr) for j 1, , n, it follows that q’2,-1 (1) + eq2,-l(1) O. Hence
e 1. Observing that (z e i’)

Z
Re {z-("-l)q2._l(z)} -- [zq2n-l(Z)+ qn-1 (Z)]

=2"-1fi ( l+z
]=1 2z

--COS qg]) 2"-1 I (COS q--COS
]=1

one part of the theorem is proved.
Sufficiency. Using the facts that the roots of q2,-1 are real or complex conjugate

and that zq2,-l(z)+q’,-l(Z)=I-I (z ei’)(z e-i’’), where q]=arccos x], we getI----1
that (see [10, p. 230])

[ z + e iqiqn-1 (Z) zq2n-l(Z)
1 A kz e i%+q’2.-1 (z) + zq2.-l(z) ]=

Z

z e

1 wZ2
]=1 1-

for z U,

where I] for/’= 1,..., n.
Thus we obtain by putting h 41], f 1,. , n, that

1 --Z
2 2n-l-m1

hi 2 1+ Y. ckzknt-O(z2n-m)
2]=1 1-2zcoso]+z =1

for z e U,
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from which we conclude that
+1

T(x)w(x) dx

+1

w(x) dx

hi cos k arccos xi
j=l

for k =0, , 2n- 1-m.

COROLLARY 1. A (2n 1 m, n, w) qf based on the nodes X l, Xn, 1 < x <
..<x<l, is positive if and only if there exists a polynomial s2_2(z)
n--1 iOi) --iOI-li=l (z e (z e where 0 < 01 < 02 <" < 0,-1 < rc such that 0 < ql < 01 < (492 <
< O,-a < qn < rr and

(1-z)s._(z) --.,
=1+ Y ckz

k + O(z2-’) forzU,
r2,(z) k=l

where

qi arccos xi, rz,(z)= I] (z-e"’)(z-e "’)
j=l

and
+1

2 I_ Tk(x)w(x) dx

+1

w(x) dx
fork 1,..., 2n- 1-m.

Proof. Necessity In view of the proof of Theorem 1, there exists a polynomial
2,-a (z- zi), zi U, with real coefficients, such thatq2,(z)= z [I=

2q’n(z)-q2,(z) 1 1-z
q’(z)+q2n(z) 2 Ail-2z cospi+z

2n --1

=1+ 2 czk+O(z2n-m),
k=l

where (see [10]) Ai =-2(q2*n-q2.)(zi)/(zi(qn + q2.)’(zi))> O, zi e iw‘, qi (0, "tr’). Set-
ting r2.(z)=(q*2.+q2.)(z) and s2._2(z)=(q*2n-q2.)(z)/(1-z 2) we obtain, since
z(d/dz)rz(z) =-i(d/dq)r2(e i*) for z e i, that

2(1 ei2’i)s2n_2(e i’’)
d

-:-- r2. (e ’*’)

=-4 sin qi
e --i(n--1)qiS2n--2(e ii)
d

e --inti’r2n (e i’)
do

from which the assertion follows.

>0,
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Sufficiency. Partial fraction expansion gives

(1--Z2)S2n-2(Z) 1 (Z +e
i‘o’ z +e -i‘oj

Aj +
r2n(z) 4i= Z’ ’e’‘oi z e-’‘oi]

21 1-z
E /] 2 forzU,i=1 1-2zcosoi+z

where ’i (-2(1-z)sz,_z(zi))/(zi(d/dz)rz,(zi)), zi e i%.
Since e -in’- (e i‘o -i(n-1)‘oS2 i‘o

r2,, and e -2(e are greater than zero at q 0, it follows
that

d
sgn --7-- e-i"%z, (ei‘o’) (- 1)i -sgn e

a0

--i(n-- 1)%S2n_2(e i‘oi

for/" 1,..., n. Hence A.R+, j {1, n}. Thus there exists a polynomial q2n(Z)
zI-I2i-[ (z- zi), zi u, with real coefficients, such that

q’.(z)--qz.(Z) 1 (1-z 2)
q.(z)+qz.(Z) 2 Ail-2z eosq.+z

(1-z)s._(z)

From Theorem 1 the assertion follows.
Notation. Let Pl(Z)= z -]--" be that polynomial which is orthogonal on the unit

circle with respect to the weight function f(q) := w (cos q)lsin ql for q [0, 2r), i.e.,

Io e-ii‘oPt(ei‘o)f(qo) dq 0 for j=0, , I-1.

For the determination of the orthogonal polynomial PI see [4] and [12]. The
particular cases w(x) 1//1-x z and w(x) 1 are of special interest. In the first case it
follows immediately that Pl(Z) z l, No. In the second (Legendre) case Pl is given by
the recurrence formula Pt+l(z)= ZPl(Z)-atP (z), where P0(z)= 1, at--0 for even
and at -1/(2/+ 1) for odd. Another representation of P can be found in [12, p. 295].

The main result of this paper is the following.
THFORZM 2. A (2n 1 m, n, w) qf based on the nodes xl, , x,, -1 < Xl < x2 <

"<x, <1 is positive if and only if there exists a polynomial q,,(z)=l-Ii=l (z-zi),
z U, with real coefficients, such that

2-"+1 Re {z-("-l)q(z)Pz.-1-(z)} l-I (x -xi),
1-.1

x 1/2(z+l/z) z e i‘o,e[0,r].
Proof. Necessity. In view of Theorem 1, there exists a polynomial p2,-(z)=

1-["=- (z- zi), z U, with real coefficients, such that

P*zn-1 (Z)--Zpzn-I(Z)
p.-(z)+zpz.-x(z)

2n-l-rn

1 + Y. c,z q-O(Z2n-m),
k=l
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where
+1

2 I_ T,(x)w(x) dx

+1

w(x) dx

2,rr

2 fo e-ik’aw (cos )lsin ql dq
27r

w (cos q)lsin ql dq

Now let ’l denote the polynomial of second kind with respect to the weight function
f(o) w (cos )[sin o[ (see [4, p. 6]).

According to [5, Theorem IX’] (see also [4, Theorem 18.2]) there exists a function

b C --> C which is analytic in U and satisfies the inequality [b (z)[ < 1 for z U, such that

(1) Pn-1 (Z)-- Zpzn-I(Z)
P:n-1 (Z) + zp2n-l(Z)

Z "2n-l-rn (Z )) (Z ’n-m-l(Z
zP2n-l-m(Z)C(z)+Pn-m-1 (Z)"

Isolating b from this equality we find that b can be represented by

ql(Z)
where q(z) I-[ (z zi), zi U,(Z) q (Z)’ i=1

qt has real coefficients, and l-> m.
Let us assume that > m. Then it follows from (1) that -zfz.-1-.,ck + lq._.,_ and

zP2.-1-,.ck + P*,,-a-,., have (1-m) common zeros on Iz] 1, which implies that

P2n-m-1 ’2n-rn--1

has (!-m) zeros on ]zl 1. But this is impossible, since (see [4, p. 7])

P2n-m-l’n-m-1 + f2n-m-lP*2n-m-1 Kz2n-l-m,

where K 6 R+.
With the aid of (1) we obtain that

2"-1 I (X --Xi)= Re {z-"+’pz._,(z)}
i=1

-(zq,(z)Pz.-1-(z)+q(z)P.-- (z))

Re {z-(n-1)qm(z)P2n_l_m(z)} forx= z+ ,z=e ,pe[0, Tr].

Sufficiency. Let b(z)= q.,(z)/q*.,(z). Then, see [5, Theorem IX’]

H(z) :=- 2n --1--m

zP2n-1- +P.-1-m
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is a (degenerate) C-function with initial coefficients 1, C l, C2n--1--"‘, where
2"rr

o
e-ik’w(cos q)[sin

Ck 2’rr

w (cos q)lsin ql dq

2n--1Thus there exists a polynomial pEn_l(z)=l-Ii=l (Z--Zi), zie U, with real coefficients
such that

PL-I(Z)-Zpz,,-x(Z)
p._ (z)+ zp._l(Z)

2n-l-"‘

g(z) 1 + Y’. CkZk + O(Z 2n-m)
k=l

for z U.
The assertion follows now from Theorem 1.
The following corollary gives us a simple characterization of positive (2n- 1-

m, n, (1- x2)-1/2) qf. It completes the results of the author [9].
COROLLARY 2. A (2n-l-m,n, (l--x2)-1/2) qf based on the nodes Xl,’,Xn,

-1 <xl <x2 <" "<xn < 1 is positive if and only if there exists a polynomial Y’.k=O akzk,
(ao, a"‘-l) R"‘, a. 1, which has all zeros in U, such that

2-n+1 Z akT._"‘+k(X)= (X--Xi),
k=O /=1

x [-1, +1].

Proof. Since P2n_I_"‘(Z)=Z2n-l-m the assertion follows immediately from
Theorem 2.

Notation. Let Uk, k No, denote the Chebyshev polynomial of the second kind.
COROLLARY 3. Let n, m No, m <= n, and assume that Ek=0m akzk,

(ao, , a"‘-l) R"‘, a"‘ 1, has all zeros in U. The qf based on nodes which are the zeros
of the polynomial Yk=O akU,-"‘+k is a positive (2n 1 m, n, x/1 x 2) qf.

Proof. Let qm(Z) =Yk=0 akzk S2,-2(Z) 2,-., . 2)--tZ q.,(z)--q.,(Z))/(1--Z and
r2,(z) z2"+2-.,q.,(z)-q*"‘(z)/(z2- 1). Further let 0t(q) arg zq.,(z)/q*m(Z) for z
e io q [0, 2rr). Then it follows that s2,-2(r2,) has a zero at z. e’% q. (0, 2r), if there
is a u Z, such that 62,-.,(0j) 2mr(02,/2-,,(q.) 2ur). Since 0l increases from 0 to
2(m + l)Tr, as q varies from 0 to 27r, we deduce that s2,-2(r2,) has all zeros on the unit
disk and n 1 (n) zeros on the upper unit disk. Observing that (z e ’)

02.-., (q) + 27r > Oz.-., (q) + 2 arg z Oz.+z-., (q) >

for q (0, 27r), it follows that the zeros of r2n and (1-- Z2)S2n-2 separate each other.
Taking into consideration the facts that

+1

2 f_ r(x)41-x dx

_{-1 fork=2
Ck= +1 0 forkN\{2}

41-xdx

and

(1-zZ)sz._z(z)
r2,(z)

=l--z2+O(z2-"‘) for z U,
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the assertion follows from Corollary 1 and the relation

(z)
Im{zn/l-"q,(z)}

(x)Z r2n akUn-m+k
sin q g=o

x 1/2(z+l/z) z e ,[0,r).
As a simple consequence of Corollary 2 and Corollary 3 we obtain a result of

Micchelli [7].
COROLLARY 4. Let n, m No, m <- n, and assume that a, > a,_a >.. > ao > O.

The qf based on nodes which are the zeros of the polynomial Y=oaT-,+
(Y=0 akUn_,+) is a positive (2n-- l--m, n, (1--xZ)-a/)((2n l--m, n, /1--x)) qf.

Proof. Since a,, >. > ao > 0 it follows from Enestrom’s theorem, see [6, p. 42],
that 2=0 az has all zeros in U. According to Corollary 2 and Corollary 3 the assertion
is proved.

With the help of a result of Shohat 11] we also get a complete characterization of
those positive quadrature formulas, having nodes outside of the interval (-1, + 1).

THEOREM 3. Let n, m, $1, $2 NO, S $1 nt" $2 and suppose that m + s <- n. A qf with
nodes xl<xz<" "<Xsl_-<-l<Xsl+l< <x,-s_< l_-<x-2+a< .<xn is exact ]’or
polynomials of degree <-2n 1 -(m + s) and has positive weights Al+x,..., A,_2 if and
only if

2-("-)+1 Re {z-("-s-X)q,(z)P’z(,_)_l_,n(z)} (x

x =1/2(z + l/z), z e i, q [0, 7r], where P’l is that polynomial of degree l, which is
orthogonal on the circumference with respect to the weight function

w(cos q) (cos q-x.) (cos
/=1 k=

Let us note that sgn A/. (-1)’1-/. for/’ 1,. , sl and sgn A/. (-1)/.-("-’2+a) for
f=n-s2+l,...,n.

Proof. Follows immediately from Theorem 2 and Shohat [11, pp. 468-470].
By Theorem 4.1 and Theorem 5.1 of [2] and Theorem 3 we are able to characterize

that nonnegative algebraic polynomial of degree n, which has the least deviation from
zero in the L-norm, among all nonnegative algebraic polynomials of degree n with
leading coefficients An,’’’, An-k. For example we obtain

COROLLARY 5. Suppose n, m eN0, [(2n-m + 1)/2]=n =2n-m.
2 2n k(a) Let R2n(X)--Hj=I (x-x =2k=2,_,,AkX +’’’, where x/.e(-1, +1) forl

+1 +1
1,’’’, n. If -1 p(x)w(x) dx >=_ R2n(x)w(x) dx for all nonnegative algebraic poly-
nomials of degree 2n with leading coefficients a2n,’", a2n-m, then them exists a
polynomial q,(z)= 1-Ii= (z- zi), zi U, with real coefficients, such that

2-"+1 Re {Z--(n--1)qm(Z)Pzn_l_m(Z)}= I-I (X--X/.),
/’=1

x =1/2(z + l/z), z =e i’, p e [0, "rr].
(b) Suppose that q.,(z) 1-I’=1 ,z- zi), zi e U, has real coefficients+aand let R2n(x)

[Re {z-(n-a)q,(z)Pz-l-.(z)}]2= k=zn_.Akx k +’’’. Then

_
p(x)w(x) dx >-_

+_ R2n(x)w(x) dx for all nonnegative algebraic polynomials p ofdegree 2n with leading
coefficients A
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SOME TRANSFORMATIONS OF BASIC HYPERGEOMETRIC
FUNCTIONS. PART I*

A. VERMA+ AND V. K. JAIN$

Abstract. q-analogues of certain formulas of Gasper are obtained. Orthogonality relations of q-Hahn
and q-Racah polynomials are also obtained by a different method than a method of Askey and Wilson [SIAM
J. Math. Anal., 10 (1979), pp. 1008-1016]. A bilinear generating function for q-Hahn polynomials is also
discussed.

1. Recently, Gasper [4] has shown that the well-known formula of Watson [13]
expressing the product of two terminating hypergeometric functions in terms of an F4
function

(1.1)
2F1 [ n,n + a

C ;z]2Fl[ -n’n+ac l]
(c),,

admits a generalization of the form

(1.2)

(-1)"(1 + a c),
F4[-n,n+a;c, l+a-c;zZ, (1-z)(1-Z)],

3F2[-n’n+a’b]c,d 3Fz[-n’n+a’e];c,f

(-1)"(l+a-c),,F[-n,n+a" b,e;d-b,f-e.](c), d, ]: c; l + a -c

Gasper [5] also showed that Bailey’s formula [2]

(1.3) 2F [ a’ b
z 2F1[ a, b

c l+a+b-c ;Z] Fa[a, b; c, 1 +a +b-c; z(1-Z),Z(1-z)],

which is valid inside the simply connected region surrounding z 0 and Z 0 with
1, has a discrete analogue of the form

(1.4) 3F2[a’b’-x ] [ a’b’-y ] F[a’b’-x’y+e;-y’x+d ]c,d
3Fz

l+a+b-c,e d,e’c;l+a+b-c

where x, y 0, 1, 2,.... Formula (1.3) is a special case of the general transformation

F4[a, b; c, c’; z(1-Z), Z(1-z)]
(1.5)

2
(a)(b)r(l+a+b-c-c’)zrzr a+r,b+r a+r,b+r.

;o (1)(C)(C’)r 2F
c + r

z 2F c’ + r

which is due to Burchnall and Chaundy [3]. Gasper [5] has also shown that (1.5) admits
the generalization

F[a,b"-x, y+e;-y,x+d ;] mi(,y)2 (a)r(b)r(l+a+b-c-C’)r(-X)r(-y)
d, e" c; c’ r=O (1)r(C)r(C’)r(d)r(e)r

(1.6)

3F2[a+r’b+r’-x+r]; 3F2[a+r’b+r’-y+r],c+r,d+r c +r,e+r
Received by the editors October 22, 1979, and in revised form September 15, 1980.
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where x, y 0, 1, 2, . Clearly (1.6) reduces to (1.4) when c’= 1 + a + b -c.
The extensions (1.2), (1.4) and (1.6) were obtained by Gasper by employing an

extension of the proof used by Watson for proving (1.1) and that by Bailey for proving
(1.3). In this note we begin by showing that these results of Gasper follow from the
classical ones by a use of a beta-function transform. Other results of Gasper viz. [5(1.7),
(3.1), (4.1), (4.4)], can also be obtained by using the beta-function transform of
known results. It may be remarked that Jackson in his paper [8] had remarked that the
q-analogues of (1.5) and its inverse relations will be investigated in a subsequent paper.
However, they were never discussed by him. In this paper we discuss in 3 the
q-analogues of (1.1)-(1.6). We also discuss in 4 and 5 the q-analogues of some
interesting results of Gasper [5], [6]. Some interesting properties of q-Hahn and
q-Racah polynomials are obtained in 6 as applications of the transformation theory
of basic hypergeometric functions discussed in 3.

2. Notation and definitions. Let

{a; q], (1-a)(1-aq)... (1-aqn-1), [a;q]o =1, [a;q]= 1-[ (1-aqi)
/=0

and the generalized basic hypergeometric series is defined as

al, ap+l ]p+lp+r
bl, b,+

q; x

[aa; q]. [ap+l; q].x"(-1)"rq
=X
n=0 [q; q],Ebl; q],""’ [bp+r;

which is convergent for all values of x when r 1, 2,. and for Ix[ < 1 when r 0.
As usual, we define the basic double hypergeometric series as:

[ (at)" (bs); (Ct). ]b (du)" (e); (fw)’
x, y; q

E E [(ar); q].,+,[(bs); q]m[(Ct); q],,xmy 1
,=0 ,=0 [q; q],,[q; q]n[(d,); q],,+[(e);- [(fw); q]n"

3. To deduce (1.2) from (1.1), multiply both sides of (1.1) by zb-lze-l(1
Z)a-b-(1--Z)f-e-1 and integrate both sides with respect to z and Z from 0 to 1, to
get (1.2) under the restrictions Rl(b) > O, Rl(d b) > O, Rl(e) > O, Rl(f e) > 0. These
conditions have arisen due to the method followed and can be removed by analytic
continuation. The need for using the restrictions and then removing them may be
avoided by using the equivalent contour integral taken on the path (1 +, 0 +, 1 -, 0 =)
in the z, Z-planes. For details see MacRobert [9, pp. 259, 364].

To deduce (1.4) from (1.3) we have to proceed in a slightly roundabout way. We
begin by assuming that a is a negative integer so that (1.3) holds for all z, Z. Now
multiply both sides of (1.3) by z-X-l(1- z)d+"-aZ-Y-IZ-Y-(1-Z)e+y-1 and integrate
both sides with respect to z and Z from 0 to 1, to get (1.4) under the restriction that
a is a negative integer and Rl(-x) > O, Rl(x + d) > 0, R/(-y) > 0, Rl(e + y) > 0. Under
the condition that a is a negative integer both sides of the resulting expression are
polynomials, and hence the formula is valid for all complex values of x, y, d and e. Then
restricting x, y to 0, 1, , we find that the resulting formula is a polynomial in a, hence
is valid for all complex values of a.

(1.6) may be deduced from (1.5) by an argument similar to the one used in deducing
(1.4) from (1.3); hence the details are omitted.



TRANSFORMATIONS OF BASIC HYPERGEOMETRIC FUNCTIONS. 945

Next, we prove a q-analogue of (1.2) in the form

32 q; 32 q;
c,f ae c,d

(3.1) ;q q ,aq b,e;-,-

,,()-n(n+/2& e b cdf
[c" q],,

q
aq ’abe’ q’ q

d,f:c;

Setting d zb, f eZ in (3.1) and letting b, e 0 gives a q-analogue of (1.1) in the form

q aq
21 q, 2qb

q aq
q;

C C

c -n(n+/ aq -1, z, Z c
q

[c;q]n aq a
q;q

-l’c;
C

To prove (3.1) we follow a procedure similar to the one used by Gasper [4] for
proving (1.2). Sears [10, eq. 8.3] has shown that

[e ] [de
(33) 4[a,b,c,q_n ] c,q ,q ,c,q

n43 .,C01_ cq
1-n;q;d,e,

;q;q

[d ][e;q] ;q g "where abcq- de. Substituting for and letting n m, (3.3) gives

(3.4) 3[a,b,c d] c
’q ;q ,,c

;q; a q;-,e ql [ 2; q] [ d,--abde c

Denote the left-hand side of (3.1) by S and transform the second series by (3.4).
This gives

S=
[q q]i[aq q]i[e; q]i[cq ;q]

[d;q]L;qJ

ae/

[cd ][d;q] -;q [c;q]n
o [q-n;q],[aqn;q],[e;

’=o [q; q][c; /][f; q]

[qr q]n[b" q]( c-)r(af)"q r(r-l--2n)/2

;q ;q
a
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Now by the q-analogue of Vandermonde’s theorem [11, eq. 3.3.27] we know that

(3.6)
s(s-r-i)+d[cqr; q]j q

[c; q]i[q; q]i[q; q]r s=o [q; q]s[C; q],[q; q]’-,[q q]r-,

and

(3.7)
C n-/

a 1-r+j-q
s [q-,,+i., q]s_i/p[aq,,+i.,

] p=i-s [a 1-r+i. 1;q [q; q]-+ -q q
--j C s--j+p

Using (3.6) and (3.7) in (3.5), setting j s + k, r s + l, we have after some
simplification,

-n(n+l)/2 C

[d;q] ;q [c;q]

Eq-"; q]+,Eaq"; q]s+
=o p=o [q; q][q; q]o

[b; q][e; q]\abe] q

a p

I[eqS’ q- f q’l
bq ,- q-’

"21[. fq ;q; /

k -a-q

d
;q;q

Summing the two inner 21 series by the q-analogue of Gauss’s theorem [11, eq.
3.3.2.6!, we get (2.1) on simplification.

Lastly, we prove the q-analogue of the formula (1.6) in the form"

(3.8)

c a, b" q-X, eqY" q-Y, dq" cd

d, e" c; c’ ab
q ’ q’ q

min(x,y) [a; q]r[b q]r
r=0 [q; q]r[C q]r

cc’ q [q-X; q][q-; q]r(cc’d)q

[c’; q][d; q][e q](ab)
--x+rq aq, bq

32 cqr, dqr
cd x-r] [q-y+r aqr bq ]q, q 32 c,qr, eqr q; q
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where x, y 0, 1, 2,. . On setting c’= abq/c in (3.8), we get a q-analogue of (1.4) in
the form

[a,b,q- cd ] Fa, b,q-Y ql34’ "q" q
c,d ’--a- 3rb2[ e, a

(3.9)

abq ab
q’ q

d,e" c;
C

Proof of (3.8). Let

[d; q]x[e; q]y a, b" q-X eqY q Y, dqX cd

by[d ] [ 1b_;q;q d,e’c;c’ ’ab
q q’q

Z
r, s>-O

[a; q]r+s[b; q]r+s[q-X; q]r[q- q]s(--1)r+Scrq r(r+l)/2-s(s+’)/2-rs+2s

a
[q; q]r[q; q]s[C; q]r[C’; q]s q 1--X

21
aq -y+s,_ bq+

,q, 2t1 ,q,
+r--x 13 l+s-y

b 1--y J e-q ;q b

q l-r-s

[a; q]r+s+i[b; q]r+s+[q-X; q]r+i[q-Y; q]+k(--1)r+SC
[q; q]r[q; q]s[q; q][q; q]k[C; q]r[C’; q]

r(r+ 1)/2-s (s + 1)/2-(r+s 1)k +2s+1

r+] s+k

Setting r+ m and s + k n and simplifying, we get

s= y. [q-X; q]m[q-,; q],[a q],[b q]nq m+n

a,.,n_->o
[q; q],[q; q]n q -X. [ ql-y. q],.,,e

[q-X., q]m[q-y., q],,[a’, q]m[b’, q],[ q-,,., q] q-re.q, qm+n+mn

a
[q; q],[q; q], q-x. ] [ 1-. ] [c.q][c,.,q q ,q ,q

By the q-analogue of Saalschiitz’s theorem [11 eq. 3.3.2.2], we have

(3.11) 3t2
ac

q-m, q

b 1-m a l_n

;q;q
q ,q
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Substituting (3.11) in (3.10), we have

[q-X., q]m[q-y., q].[a’, q],.[b’, q]. - q q"

,,.eO[q,q].[q,q],,[_ - ] I - ]q ;q q ;q [c;q].[c"q].,

abq ]min(m,n) CC’
q [q q ],[q- q]rq

--o [q,q][. ql-’" I [’’q ql-"],q

Finally, setting m r + s, n r + and changing the order of summation, we have also
after some simplification

(3.12)

min(x,y)
[q-X; q]r[q -y’, q]r[a; q]r[b’, q]r[ abq-’cc, q] (cc’q)

;q] [c; q]r[C’; q],’(be)

+r C
q ,aq

’b
"3&2 ;q;

1--x+rq ,cq

C
q ,oq,-

;q;

Lql-y+r,c’q
The proof of (3.8) is completed by transforming the two 3&2 series in (3.12) by the
transformation

(3.13) 3C2[ b’ c’ q-n
d, e

7-de ] c
q -, c, q

;q;
oc

q’
[e q]n 3b2 q’

d,
c 1-n-q

which is obtained from (3.3) by letting a and f o. To transform the first of the 3t2
in (3.12) let b bq", c aq", d cq r, e dq r, n -x-r in (3.13), and to transform the
second 3t2 in (3.12) let bc’/a, cbqr, dc’q r, e(b/e)q 1-y+r, n =y-r in (3.13).

4. In this section we prove a q-analogue of a formula due to Gasper [5 eq. 1.7] in
the form:

]&
a,b’q-X, eqY’q-Y, dq cd x-y,

d,e" c;b ’--a q q’q

-;q -;q
a a

[d;q].[e;q]y

a, q-X.7, q-y;c-
b cq

;n,q;
l a 1-x a 1-y e

Lc,2q :-q
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To prove (4.1), rewrite (3.10) in the form

[d; q]x[e_;..q.!y. 4
a, b’ q-*, eq y" q-Y, dq cd x-y,

[ ] [];q;q d,e’c;b ’ab
q q’q

,L a c
b 2. b2 ;q;

m=O
[q q]m[- ql-X q] [c ql-y, b

q
C

--; q [q-X" q],,[a" -" q

-;q [q;q], q ;q [c;q]m
y

,q ,q
3(2

ql-,,,_qea
(by transforming the 32 inside the summation by using (3.4))

e

m=0 r=0 [q; q],,[q; q]r[c; q]m q

[q-X., q],[a’, q]m -" q [q-m., q]r[q-y., q]m+r

Set m =/" + r, change the order of summation and simplify to get (4.1).
Setting c b in (4.1), we have the interesting result

(4.2)

qb[a,b’q-X, eqY;q-Y, dqX. dx-y,_ ]d, e: b;b a
q q’ q

a y ;q ;q a,-,q b
Y43 ;q;--q

[d; qx][e; q]y b,qa X-x,_a q_y e

Another interesting special case of (4.1) is obtained by setting c a:

(4.3)

6[a,b’q-X, eqY;q-Y, dq dx-,,._ ]d,e’a;b ’b
q q’q

a Y ; q q
min(x,y)

[d;q],[e;q]y r-----O

[q-X; q ]r[q-Y q ]rb rqr

-q ,q q ,q e
e

(4.2) and (4.3) are q-analogues of results proved earlier by Gasper [5].
It might be of interest to point out that the inverse of the relation (1.5) given by

Burchnall and Chaundy [3, eq. 55] has been extended by Gasper [5] to the inverse of
the relation (1.6) by following the method used by Burchnall and Chaundy [3]. Similarly
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the inverse of formula (3.8) can be written in the form

3qb2 [ a’ b’
d

q
ut2

qxcd ] 3(2 [ a’ b’
q q]

min(x,y)
[a; q]r[b; q]rLabq q [q-X, q]r[q q]rd qr(l+x)

E
r=O [q; q][c; q][c’; q][d; q][e; q]r

--x+r --y+r

"4)
aq bq" q eq q dq. cd

dq , eq" cq ’, c’q ab
--y, lq q, q]

where x, y =0, 1, 2,....

5. The main result of this section is

3b2[a’b’q-xc,d
;q;q

(5.1)

tz --; q q-X; q]y --a- q [/.;q]y

[C; q] =o [q; q][d; q][ q-’, q]
_y A A
’a’b

3(2
Ad

q; 3(2

’ ab

y_ A ab

;q;q
dq

c

which is a q-analogue of a result due to Gasper [6, 26]. Gasper used his result to deduce
a discrete Dirichlet-Mehler formula for the Hahn polynomials

+a +/3 +k, -x.]1 + a, -N

where N is a nonnegative integer and x 0, 1, 2,. , N. To prove (5.1), we require the
following expansion formula’

[-x ]q ,a,b
3(2 q z

c, d

If](5.2) A _.q
[c; q]x

[A’q][q-X;q]q
362 ;q;z

i=O [q, q 1--X q jC
h

To prove (5.2), substitute the series definition for 3&2 in the right-hand side of
(5.2), change the order of summation and sum the inner 201 by the q-analogue of Gauss’
theorem [11, eq. 3.3.2.6].
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Now to prove (5.1), set z q in (5.2) and transform the inner 3b2 on the right-hand
side by the transformation

(5.3) 34)2 [q- a, ]
q

(a__) -’ b
;q;q 32 de

;q;
d,e [e; q]

d,
ab

(which is obtained from (3.3) by letting c and f O) to obtain

4)
q a, b
c,d

;q;q

A ;q [A;q]/[q-X q]i --[c;q]x =O[q,q][d.q][ q-X

-’
ab

a’b;
3(2 Adq; q

;q]i abq

(5.4)

[c,q]x j=o y=o

(abix )i (_ 1)Yq-Y(Y+ 1)/2+iy+y+i

(cA)iix

j--y

[q," q]i[q," q]y[d’, q]i[A_ q ,-x
q]C

362 Ad
q q

Ix,
ab

;q

[c;q]x y=O[q;q]y[d;q]y[q_X.] \cA/

__y __AA ]F --X+y ,A Ad
’a’b q ’--q

3(2
Ad

;q; 32 ;q;abIxq
cx j’

which is a q-analogue of a result of Gasper [6, 25].
Transforming the second of the two 3b2 on the right-hand side of (5.4) by the

transformation (3.13), we get (5.1).

6. q-Hahn polynomials of degree n are defined [7] as

l+a+/3+n

](61) O,,(x;a,,d’q) 3qb2
q ’q ’q

l+a -d q; q
q ,q
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These polynomials satisfy the orthogonality relation (see also [1, p. 11])

(6.2)
N {o., ](x)O,,(x;a,,N;p)Qm(x;o,,N;p)= 1

,,=o
h(n)

for n, m 0, 1,..., N, where p q-l,

if m # n,

if m n,

/.(x)
[P; P]N[Pl-’ P]x[P +t’, P]u-x (l+a)(N-x)

[P; P]x[P; P]IV-,,[Pz++’, P]N
p

and

h(n)
(_ 1),, p-,,v., p ],, p +,., p ],, p

+, +o., p ],, (1 _pX+,+t+2,,)p-,,,,+l)/Z-,,,+,,u
[p;p],,[pX+O;p],,[p2+,+o+N; p],, (1- p a+,+o)

To prove (6.2) rewrite the left-hand side of (6.2) (with pq 1) as

Y’.lV [q; q]N[q’+Z, q]u_,[q q]xq’+o)x
x=0 [q; q]x[q; qlN-x[q2+’+

l+a+/+n

q]N
3(DE [ q ql+a -N’ q

q ,q
-N-13I,q,q

3b2[q-,,,
+++,

]ql q x-N-z
+, -N q; q

q ,q

N [q; q]N[q’+ q]v_,[q ’+ -N--,--O.

Z
q]*[q q]mqi+)x

x=0 [q q],[q; q]N-x[qZ++O; q]v[q -v’, q],,,

[q-N-l-m-a-t3., q]m
[q2+, +t., q]v[q-IV., q]m

r,s 20

[q q][qX++0+--", q]r[q ;q]s[ql+’++m;q]s
[q; q]r[q q][qX+, q]s

[ql+O. q]N_r[q,+,+r, [q-N+r[q2+a+l+N ;q]s 21 q-13-N+r
;q; q

[q-N-l-m-a-O., q],.,, .. [q-,,., q]r[q,+++,., q]rqr
[q-N., q]. r=0 [q’, q ]r[q2+a +t3., q ]r

_--m l+a +/+rn

32 _l+a _2+t+O+r q; q
q ,q

;q;q]

Summing the inner 3(2 by the q-analogue of Saalschiitz’s theorem, we readily get (6.2)
(in view of pq 1). Orthogonality relation for the q-Hahn polynomials could be easily
completed by showing that Q,(x;a, , N; p) is orthogonal to a polynomial of each
lower degree. The specific polynomials can be chosen so that they could be attached to
the weight function, but there may be some interest in a proof that gives the orthogonal-
ity directly.
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Next, we obtain a bilinear generating function for q-Hahn polynomials in the form
(q-analogue of a result of Gasper [4, 3.3])

S(x, y; a, fl, N,M;p)

[p-Z pl/2]n[_pl+(o,+13+N)/2 pl/2]npn(z-N)/2h(n)
n=O [p-N Pl/Z]n[--pl+l/2(’+13+z) P 1/2in_l
O,(x;a,,N;p). O,(y;a,,M;p)

(6.3) [p(1-N)/2., pl/2]z[pN/2 pl/2]z[_pl+(a+13)/2 pl/2]z
[p-N p1/2]z[pl+(o+13+N)/2 pl/2]z[_p1/2 p1/2]z

[
+/ (3++,/ -. -, -b

p ,p(2/ ,P "P ,P ,P ,P --x-.
p(1-N-z)/2 (2-N-z)/2 -M l+a. l+o P,P P

,P ,P "p ,p

Proof of (6.3). Consider

Sz(X, y; a,/3, d, e; p)

[q-/Z; ql/Z],,[_q-a/2; ql/2],.,[q,+O+13; q],.,[ql+O,; q],,
.=o [qiq].["_q1+(+13+z’/2,. ql/2]n[ql+(a+13+d)/2 q l/2]n

(1 q1++o+2.)(_).
[qa+13" q],.,(1-ql+’+)

n(n+ +z +d+213)/2

q -13-d q q q
+ -d q, 32 l+a q; q

q ,q q ,q

[q-Z/2 ql/2]n q-d ql/2]n[q3+’+13 q2]n[ql+’+13 q]nq n(z+d)/2

.=0 [q; q],,[_qa+(,+o+z)/2; ql/2],,[q1+(,+13+d)/2; qX/2],,[ql+,+13; q2]..

;q +y-13 -e-d
,q," q!J

l+a+13+n. -y, -x. qx-d,
b

q ’q q q q
-d l+t 1+13q ,q "q ;q

(on using (3.1))

q J,+A-q q .],+l.q qJ2r+2sl.q[q-Z 1/2, -e/2 1/2, 2+a+13 -x.

r,s>=O [q," q]r[q, q]s[ q1+(+13+z)/2, ql/2],+[ql+(,+O+a)/2, ql/2],+

[q-y; q],.[qX-d., q][qy-e q]s(--1)r+Sq -(r+s)(r+s+l-z-d)/2+r(x+y-13-e-d)+s

[q-e q]r+s[q-d 1+, 1+13.q Ir+,tq q ]r[q

[ql+a+13+2r+2s; q]n[q3+O,+13+2r+2s; qZ],,[_q(-d+r+s)/2., ql/2]n
[q; q]n[q l+a+13+2r+2s q2]n[ql+(+B+d+r+s)/2", ql/2]n

[q(-z+r+s)/2 ql/Z]nq,(2+d)/Z

[q(1-d)12; qll2]z[qd/2; ql12]z[_q+(o,+13)/2 q1/2]
[q-al2; ql12]z[q+(o,+13+d)12; qalE]z[_q/2; q12]z

l+(a +13)/2 (3+a +13)/2 --y. x-d

b
q ’q ’q "q ’q ’q ’q

q(1-z-d)/2 1-(d+z)/2 -e. 1+a. 1+13,q ,q q ,q
;q +y-13-e-d, q q]
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(on summing the inner series by the summation theorem [12, 5.8])

p(1-d)/2 pl/Z]z[pd/2 p1/2]z[_p1+(o,+t3)/2 1/2]z;p
[p-d pl/2] [pl+(o,+/3+d)/2., pl/2]z[_pl/2; pl/2]z

(6.4) 1+(a+/3)/2 +/3)/2 --y. pX y--e
P ,P ,p(3+, :p ,p -d,p

p(1-d-z)/2 (2-d-z) l+a. 1+/3
,P ,P "p ,p

;P,P

Setting d N, e M in (6.4), we get (6.3).
In (6.3) let z -N to get

SN(X, y; a, , N, M;.p)

[p++;
[p-’, p]upU(++)

[p-X; p]r[p-y; p]r[pX-N., pjN_r[pY--m; p]N_rpr(l+o)
.E
r=>o [p; p][p; p]N_,.[pl+o,; p][pl+., p]u_rp-r(x+y)

(__ 1)U[p2+ +t., p]N [p-y., p],c[p-X; p]x[p-N+x; P]N-x[P y-M p]-x
[P; P]x[P P]N-x[P-M’, P]u[Pl+’; P]x[P 1+t3", P]N-x

N(N-1)/2+x(l+o+x +y)

Hence

(6.5)
0

SN(X, y; a,/3, N, N; p) 1
if y # x,

ify =x.

Formula (6.5) gives the dual orthogonality relation for q-Hahn polynomials. This is a
special case (b 0) of the orthogonality for the q-Racah polynomials which was given
by Askey and Wilson in [1, eq. 1.7]. The q-Racah polynomials are defined by

(6.6)
l+n l+x

P,(/z (x); a, b, c, d" q)=P,,(lz(x))=4cb3[q aOqaq, oa’ q cq’ caq ]--q, q; q

(tx(x) q-X + cdql+X and aq, bdq or cq is of the form q-U). They satisfy the orthog-
onality relation (see [1] for details)

(

0 ifm#n,
(6.7) ’. ](x)P(.i(x))P(l(X))= I 1 if m n,

x=o
h(n)

for n, m 0, 1, 2,...,N where

j(x)
[aq; q]x[Cq; q]x[bdq; q],[cdq; q]x(1-cdq 1/2’)

[q; q]x[dq; q]x[ff q] [-;q] (1-cdq)(abq)



TRANSFORMATIONS OF BASIC HYPERGEOMETRIC FUNCTIONS. 955

and

h(n)
[aq; q],,[cq; q],,[bdq; q],,[abq; q],,(1-abqz’+l)

[q; q],,[bq; q],, q
c

q (1-abq)(cdq)"

eq; q? q q -q q

-; q -; q [cdq2" -, q

A proof of (6.7) can be given by following a procedure very similar to one used in
proving (6.2). Indeed transforming the second of the two 443’s in (6.7) by (3.3), we get

N

E j(x)P,,,(lx(x))P,,(lx(x))
x=O

N [aq; q],[cq; q]x[bdq; q].[cdq;
=E
x=o [q;q]x[dq;q]x[;q] [-;q]

(1-cdq)[bdq; q],,[cq; q](abq) 43 aq abq

[q-’, abq x+’, q-", cdq+x
4t3 l aq, bdq, cq

l+x a l+nq ,-q abq q

aq, -y 7-

(cd) --’ q
c

a"[bdq q],,[cq q],,
[abql+"; q]s[q-"; q]s[q-"; q],,[abq +’’, q]r

[q; q],[q; q]s[aq; q] ---; q c
q

;q;

(using the summation theorem [11, 3.3.1.4])

[abq ] [a_ ] (Cda)’ [ ] [cq q [cdq 2", q] q --"L C a

l la+q l lCq;q

[q-m; q]r[abql+m; q]rqr [aql+r, abql+n, q-n ],.>=o [q q]r[abq 2", q]r 32
aq, abq2+r q q
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Summing the inner 3t2 by the q-analogue of Saalschiitz’s theorem, we readily get (6.7).
The proof of the orthogonality relation in [1] is different. There P,(lx(x)) was

shown to be orthogonal to a polynomial of each lower degree. The specific polynomials
were chosen so they could be attached to the weight function. The proof in [1] is more
elementary than the proof we gave, but there may be some interest in a proof that gives
the orthogonality directly.
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SOME TRANSFORMATIONS OF BASIC HYPERGEOMETRIC
FUNCTIONS. PART II*

V. K. JAIN

Abstract. q-analogues of some quadratic transformations are obtained. We also derive the generaliz-
ations of these transformations of basic hypergeometric series which on specialization yield some known as
well as new summation theorems.

1. Carlitz [5] obtained the q-analogue of the terminating version of the following
quadratic transformation"

[ a,b,c ] I 1/2(l+a),l+a-b-c._ 4x)21x (1-x)-a3F2 (1-x(1 1) 3F.
1 +a-b, l +a-c 1 +a-b, l +a-c

where a =-n. In 3 of this note we obtain q-analogues of the quadratic transforma-
tions

(1.2) zF
2b

2z (1-z)-a2F1
a 1/2(1 + a) z

b+1/2 ’(1-z)2

(13) 2F[2a, a+b:, ] [ a,b Z
2

]2a + 2b
z (1 z)-azF1 a+b+1/2’ 4(1- z)

(1.4) 2F[ 2a, 2b ] [ a, b ]; z =2F ;4z(1-z)
a+b+ a+b+

and discuss some of their generalizations. As applications of these results we obtain
some of the known, as well as new summation formulae for basic hypergeometric series.

2. Definitions and notation. If we let

Iql < 1, [a; q], (1 a)(1 aq)... (1 aqn-1), [a; q]o 1

and [a q] r0 (1 aq r) then we may define the basic hypergeometric series as

[al, a2, ao+l ] [al; q], [ap+l; q]nX"(--1)nrq r’(’’-1)/2

;q;xP+I)p+r
hi, bz, bp+r n=0 [q; q],[ba; q],’’" [bp+r;

where the series p+lbv+r(X) converges for all positive integral values of r and for all x;
when r 0, it converges only for Ix I< 1.

3. A q-analogue of the transformation (1.2) is

(3.1) 3c2[a’b-bb 2 az
;q; -z]--[az;[Z;q]_______

q]m2 [a,b2qaq., q2., Z 2] ]z < 1.

Proofof (3.1). In view of the q-analogue of Vandermonde’s theorem [9, 3.3.2.7],
we have

[ q 2 2]
2

(3.2) 21 b2q q q 7-
* Received by the editors May 30, 1978, and in final revised form December 30, 1980.
5" Department of Mathematics, Bareilly College, Bareilly (U.P.) India.
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Using (3.2) we may rewrite the left-hand side of (3.1) in the form

y. [a;q]’(-z)"q"" ’1

[ -",j ].=o [q," q],Iaz’, q], 261
q

b q
q2; q2

(3.3)
[a" q]2rZ 2r aq 2r

;o [q2., q2][bq; q2][az., q]211 azq q, z

Summing the resulting inner series by a limiting case of the q-analogue of Gauss’s
theorem [9; 3.3.2.5], we get the right-hand side of (3.1).

Rewrite (3.1) in the form

[a, aq 2 21 [a;q],[b2;q2](-z) [aq’;q]z(3.4)
21 b2q q z

r=0

replace z by zt and multiply by to-l(1- tq)d-c-1, and take the q-beta integral [7] on
both sides to obtain

(3.5) 43[a’aq’c’cq"
d, dq’

q z2] [a;q]n[b2’ q2]n[c;q]n(--Z)n
21 [aq",cq",, q; z],,=o [q; q]n[b 2", q],,[d’, q]n dq

Izl< 1o (3.5) for c q-N (N a nonnegative integer), z =q yields the following q-
analogue of a transformation due to Bailey [3; 4.41]"

(3.6) 4b3[a, aq, ql-N, q
b 2q, d, dq

-N a --;q b,-b,q
2. / N4(2,q ,q2 a

[d" qIN 2, a 1-N
;q;--

q
It may be remarked that using (3.2), we can rewrite

a 2, b 2 c, -c ]43 ab4, -ab4, c2’ q’ q

in the form

(3.7) [a2. q]2r[b2;q]2rq 2r

[ a2q2r’b2q2r ],=0 [q qZ]r[cZq, q2],[aZbZq,q2]2r 22 abq 1/2+2, -abq 1/2+2r; q; -q

[a 2q q2]c[b 2q q2]
[a2b2q; q2][q; q2].

2 2

2(1 2 ;q ;q
cq

Now, if a or b is of the form q- the resulting 261 may be summed by the
q-analogue of Vandermonde’s theorem to yield a q-analogue of Watson’s summation
theorem due to Andrews [2] (since if a or b is of the form q-N-1/2, the above 43 is
equal to zero).

Next, we prove a q-analogue of the quadratic transformation (1.3) in the form

(3.8) 32
a ab,-ab [a2z2; q2] 2. 2 2qq; z ]c262 2 2 2, q a z

a b q, z a
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Proofof (3.8). Transforming the 2t1 in the right-hand side of (3.1) by the formula

Ic(3.9) 2[a,b 1 [az;q]oo a,
q; z =b_ - q; b

c [z; q]
Lc, az

due to Jackson [6] and replacing a, b and z by a 2, ab and -z respectively, we get (3.8).
Lastly, a q-analogue of (1.4) is

[a2, b2, z ] [a2, b 2 2

](3.10) 312 q; q 312
z 2 2

ab/-, -abe a2b2q, 0
q q

where a or b is of the form q-N.
To prove (3.10), we first prove the following transformations"

and

(3.11)

a 2, b 2, C, d
414 abx/-, -ab4-, f, g

2- Vb2 2-a c[a2; q ],k q ],k q],[d;
q,-z 2. --- -3.

;o [q; q][a b q; q ][f; q][g; q]

3t3 -q, fq gq
q; -zq

4(4 ;q;
l-q, b, f, g ,,=0 Eq2; q2],,[b; q],,Ef; q],,[g; q],,

(3.12)

q,q,

Proof of (3.11). In view of the q-analogue of Saalschfitz’s summation theorem
[9, 3.3.2.2], the left-hand side of (3.11) can be rewritten as

[
l--n,q ,a ](3.13) S= 2

[aa; q2]"[b2; q2],[c;q][d; q]z
=o [q,ggd[( 32 a-2q2-2n, b-2q2-2n q q

Rearranging the two series and then diagonalizing, we get the right-hand side
of (3. ).

Similarly (3.12) is proved by observing that its left-hand side is

;q ;q [c;q][d;q]z
S=Z

=o [q2", q2][b’, q] If; q][g’, q]
(3.14)

,[ q-2, b-q -,a_b_eq3_2;- ]_36Lab_qa_2 ;q

If a, b, c or d is of the form q-, z =-gq, f=-cd and then g m, (3.11) yield
(we sum the inner series by the q-analogue of Saalschtz’s summation theorem):

[ a2’b’c’d ] [ a2ba’c’d_-ab,-cd’" ](3.15) 43kab, q; q 43 2 2

ab2q, -cd, -cdq
q q

(3.15) for d 0 and c z reduces to (3.10), whereas for d =-c, (3.15) yields

am indebted to Professor R. Askey for drawing my attention to the formula (3.15) which he and J.
Wilson have obtained recently.
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2 2a ,b ,c,-c
(3.16) 4b3 ab’,/-, -ab’,/-, c

I ,O ,C 2
2; q; q =42 aE.Eq, c.q; q

In (3.16), if a or b is of the form q-S, we can sum the 3(2 on the right-hand side
by the q-analogue of Saalschiitz’s theorem to obtain the q-analogue of Watson’s
summation theorem due to Andrews [2]. On the other hand, if c q- we get

(3.17)
a b 2, _q-.,v, q-N ] [a2q;q2]N[b2q;q2]N

43 ab4-, -abx/-, q-2N; q; q
[a2b2q; q2]N[q; qZ]s’

which is the q-analogue of a result of Bailey [4]. (3.17) for N gives the q-analogue
of the Gauss’s second summation theorem due to Andrews [1]. It may be remarked
that (3.17) also yields the q-analogue of Gauss’s second summation theorem due to
Andrews if c d f g, z q and summing the inner series on the right-hand side by
a limiting case of the q-analogue of Gauss’s theorem and using the q-analogue of
Gauss’s theorem.

On the other hand, if d=q-N, f=-(c/b)q -N, z=-(g/b)q2 and then g-oo,
(3.12) gives the transformation

q
a, -, c, q-N

a

q, b, _ql-N
(3.18)

[ q ] m ___b b
q ;q

[-b; q] --;q
C N 2 -2N

--;q [-q;q]v - -;
C N b2, -cq -cq

Formula (3.18) may also be deduced from (3.15) on replacing a 2, b e and d by b/a,
ab/q and q-S and transforming the left-hand side by a result due to Sears [8, 8.3].
Equation (3.18) for c =-q- yields the q-analogue of a terminating version of
Whipple’s summation theorem for 3F2 (1) due to Bailey [4]"

(3.19) 4t3
a,-, -q q [ab q ]v --; q

a ;q; a

-q, b, b-lq 1-2 [b; q]2N

In (3.19), letting N- c, we get the q-analogue of Bailey’s summation theorem
due to Andrews [1]. This may also be deduced from (3.12) if c =d =f=g, z =q,
summing the inner series by a limiting case of the q-analogue of Gauss’s theorem and
then summing by the q-analogue of Gauss’s theorem.

Formulae (3.17) and (3.19) are different in nature from the q-analogues of the
Watson and Whipple theorems given by Andrews [2] (see also Bailey [4]).

Acknowledgment. I am grateful to Dr. A. Verma for suggesting the problem and
for his helpful discussions during the preparation of this paper.
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